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Extended abstract in French

L’hypothèse de la polarisation

Le λ-calcul est à la base d’une correspondance célèbre entre une
partie de la théorie des catégories, la programmation fonction-

nelle et la théorie de la démonstration intuitionniste. Au début des
années 90, des liens supplémentaires sont apparus entre:

• la modélisation catégorielle des effets;
• la modélisation de l’ordre d’évaluation et du contrôle au sein des

langages de programmation;
• la théorie de la démonstration classique.

Depuis, ces trois domaines fournissent une vision interactive du
calcul. Mais il reste à établir les principes qui régissent l’extension de
la correspondance à ce point de vue interactif.

Les polarités, qui distinguent les connecteurs négatifs (∀, →…)
des connecteurs positifs (∃, ∨…), sont héritées de l’intuitionnisme.
La reconnaissance de leur importance théorique est l’un des fruits
du tournant interactif, à la fois pour la théorie des langages de pro-
grammation et pour la théorie de la démonstration.

La polarisation correspond à l’hypothèse que les polarités doi-
vent être prises en compte de manière formelle:

• pour les modèles catégoriels, la polarisation correspond à relâ-
cher l’hypothèse que la composition est associative a priori, sur
certaines polarités;
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• dans les modèles des langages de programmation à base de conti-
nuations, les polarités déterminent si une continuation est desti-
née à être appliquée ou à être passée;

• dans la théorie de la démonstration classique, les polarités déter-
minent l’élimination des coupures.

Ainsi, la polarisation est responsable de l’ordre d’évaluation des pro-
grammes, et de la constructivité des démonstrations. Les polarités
apparaissent derrière de nombreux phénomènes:

• le problème de Blass dans les sémantiques de jeux décrit par
Abramsky [Abr03] et par Melliès [Mel05];

• la présence de paresse en appel par valeur décrite par Hatcliff et
Danvy [HD97] et par Führmann [Füh99];

• l’incorrection du polymorphisme libre en appel par valeur en
présence d’effets de bord (Harper et Lillibridge [HL91]);

• la hiérarchie arithmétique dans l’étude de l’arithmétique de
Peano;

• la focalisation dans la recherche de démonstrations (Andreo-
li [And92]);

• les relations logiques à base d’orthogonalité (voir Girard [Gir87],
Krivine [Kri09], Pitts [Pit05], et, en ce qui concerne la polarisation,
M.-M. [Mun09]);

et certainement davantage.
La thèse contribue à la compréhension de la nature, du rôle et

des mécanismes de la polarisation dans les trois domaines. Notre
approche est basée sur une représentation interactive des démons-
trations et des programmes à base de termes, qui met en évidence la
structure des polarités. Par interactif on entend que la nouveauté
par rapport au λ-calcul est le rôle explicite accordé au contexte
d’évaluation (pour les programmes) ou à l’opposant (pour les dé-
monstrations). Elle est basée sur les lieurs 𝜇 et ̃𝜇 et sur la relation
entre les machines abstraites et les calculs de séquents, introduits
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par Curien et Herbelin avec le calcul 𝜆̄𝜇 ̃𝜇 [CH00]. En l’honneur de
Gentzen [Gen35] qui a introduit les calculs de séquents LJ et LK,
et suivant une suggestion d’Herbelin, on utilise la lettre “L” pour
nommer les calculs basés sur les lieurs 𝜇 et ̃𝜇.

La syntaxe L a pour champ l’étude de la structure des démons-
trations selon Gentzen et la modélisation des langages de program-
mation d’ordre supérieur selon Landin [Lan64, Lan65]. Le but est
de fournir les moyens d’une unification de directions de recherche
récentes: la modélisation des effets à la suite de Moggi [Mog89], la
quête d’un lien entre la dualité catégorielle et les continuations à la
suite de Filinski [Fil89], et la notion interactive de construction selon
Girard [Gir87, Gir91, Gir01] et Krivine [Kri09].

Dans chacune des trois contributions qui suivent, correspondant
chacune à un chapitre, nous avons trouvé que les calculs L four-
nissent la représentation canonique d’une structure intéressante:

• Dans le Chapitre II, on caractérise la polarisation à travers une
structure catégorielle où la condition d’associativité de la com-
position est relâchée. La caractérisation détaille comment la
polarisation est aux adjonctions ce que l’appel par valeur en pro-
grammation est aux monades. Un langage interne est fourni par
le calcul Ldup.

• Dans le Chapitre III, on décompose les traductions par passage
de continuation pour le contrôle délimité en trois étapes: 1)
l’implémentation des opérations du langage comme solutions
d’équations dans un calcul abstrait en style direct; 2) la traduc-
tion du style direct au style indirect; 3) le retour au λ-calcul, obs-
curcissant la traduction. Les calculs Lpol,t̂p+ et Lexp sont utilisés
comme étapes intermédiaires dans la traduction.

• Dans le Chapitre IV, on décrit une correspondance “formule
comme type” pour une négation involutive en déduction natu-
relle. Pour cela on introduit le calcul λℓ, qui implémente l’idée
que les contextes capturés, contrairement aux continuations, per-
mettent l’accès à leurs constituants. Le raisonnement extension-
nel est permis à travers le calcul Lpol,t̂p⊝ .
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Ces chapitres sont précédés d’une introduction aux calculs L, qui
suppose du lecteur uniquement une connaissance élémentaire du
λ-calcul simplement typé et de la réécriture.

Certaines hypothèses simplificatrices rendraient les polarités
moins saillantes. Notre étude a laissé les phénomènes intéressants
apparaître parce qu’on a cherché une description du calcul qui soit
non-typée (à la Curry), extensionnelle et directe. L’approche di-
recte des programmes et des démonstrations souligne que lorsqu’un
système est étudié au moyen d’une traduction dans un système
plus simple, comprendre la traduction est aussi important que com-
prendre sa cible. Ces trois contraintes nous permettent d’échapper
aux pièges des hypothèses suivantes:

• Rechercher un modèle catégoriel qui met en jeu une catégo-
rie unique — par exemple, si le but est d’obtenir une généra-
lisation catégorielle des algèbres de Boole, pourquoi conserver
l’associativité de la composition?

• Rechercher un cadre fortement normalisant a priori— par exem-
ple, beaucoup de propriétés remarquables du Système F [Gir72],
notamment d’extensionnalité et donc d’isomorphismes, sont une
conséquence de la normalisation forte [GSS92]. Mais, outre
qu’elle nous lie à une logique particulière, la normalisation dé-
polarise le système, c’est-à-dire que l’ordre d’évaluation n’a plus
d’importance.

• Supposer que la transparence référentielle est essentielle pour la
constructivité — par exemple, cette hypothèse n’est pas valide
dans les interprétations directes de la logique classique à base
d’opérateurs de contrôle. En présence de tels opérateurs, l’ordre
d’évaluation est important pour la constructivité, même lorsque
le cadre est fortement normalisant.

• Supposer que l’on peut se restreindre a priori à des démonstra-
tions de certaines formes — par exemple, l’étude du calcul des
prédicats classique est simplifiée si on se restreint aux démons-
trations η-longues. Mais il est connu que l’astuce se limite au
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premier ordre et correspond en outre à une traduction de Gödel-
Gentzen (Laurent [Lau02]).

Nous nous sommes rendu compte que de telles hypothèses ne sont
pas inoffensives.

On résume maintenant les contributions de chaque chapitre.

L’approche « L » des programmes et des
démonstrations

Le Chapitre I introduit l’approche L et en particulier la polarisation.
Cette introduction s’inspire des articles publiés: M.-M. [Mun09] et
Curien et M.-M. [CM10]. La fin du chapitre présente par ailleurs en
détail les contributions des trois chapitres qui suivent, dans leurs
contextes respectifs.

On résume ici les arguments principaux du chapitre en prenant
pour exemple le λC-calcul de Lafont, Reus et Streicher [LRS93].
La Figure 1 présente le λC-calcul ainsi que son évaluation dans
une machine de Krivine décrite par Streicher et Reus [SR98]. Il
s’agit d’un calcul pour la déduction naturelle classique inspiré de
l’interprétation de Griffin [Gri90] qui type l’opérateur 𝒞 de Felleisen
par l’élimination de la double négation:

𝒞 ∶ ¬¬𝐴 → 𝐴 .

La Figure 2 présente le calcul Ln (originellement 𝜆̄𝜇 ̃𝜇𝑇) qui est
une syntaxe en appel par nom pour le calcul des séquents classique
introduite par Curien et Herbelin [CH00]. Les règles de typage dans
le calcul des séquents sont présentés dans la Figure 3.

L’idée qui relie les deux calculs est que les règles de transition des
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𝑡, 𝑢 ⩴ 𝑥 ∣ 𝜆𝑥 𝑡 ∣ 𝑡 𝑢 ∣ 𝒞
(a) Termes quasi-preuves

𝑁, 𝑀 ⩴ 𝑋(t1,… , t𝑛) ∣ 𝑁 → 𝑀 ∣ ∀x𝑁 ∣ ⊥
(b) Formules

—Γ, 𝑥 ∶ 𝑁 ⊢ 𝑥 ∶ 𝑁 —Γ ⊢ 𝒞 ∶ ¬¬𝑁 → 𝑁
Γ, 𝑥 ∶ 𝑁 ⊢ 𝑡 ∶ 𝑀—Γ ⊢ 𝜆𝑥 𝑡 ∶ 𝑁 → 𝑀

Γ ⊢ 𝑡 ∶ 𝑁 → 𝑀 Γ ⊢ 𝑢 ∶ 𝑁—Γ ⊢ 𝑡 𝑢 ∶ 𝑀
Γ ⊢ 𝑡 ∶ 𝑁—(x ∉ fv(Γ))Γ ⊢ 𝑡 ∶ ∀x 𝑁

Γ ⊢ 𝑡 ∶ ∀x 𝑁—Γ ⊢ 𝑡 ∶ 𝑁[u/x]
(c) Déduction naturelle classique

𝑐 ⩴ ⟨𝑡 ‖𝜋⟩
𝑡, 𝑢 ⩴ … ∣ k𝜋

𝜋 ⩴ stop ∣ 𝑡⋅𝜋
(d)Machines,

termes et
piles

⟨𝑡 𝑢‖𝜋⟩ ≻𝑛 ⟨𝑡 ‖𝑢⋅𝜋⟩
⟨𝜆𝑥 𝑡 ‖𝑢⋅𝜋⟩ ≻𝑛 ⟨𝑡[𝑢/𝑥]‖𝜋⟩
⟨𝒞 ‖𝑡⋅𝜋⟩ ≻𝑛 ⟨𝑡 ‖k𝜋⋅stop⟩
⟨k𝜋 ‖𝑡⋅𝜋 ′⟩ ≻𝑛 ⟨𝑡 ‖𝜋⟩
(e) Règles de réduction

Figure 1: Le λC-calcul en appel par nom

opérations du λC-calcul dans la machine abstraite:

⟨𝑡 𝑢‖𝜋⟩ ≻𝑛 ⟨𝑡 ‖𝑢⋅𝜋⟩
⟨𝜆𝑥 𝑡 ‖𝑢⋅𝜋⟩ ≻𝑛 ⟨𝑡[𝑢/𝑥]‖𝜋⟩
⟨𝒞 ‖𝑡⋅𝜋⟩ ≻𝑛 ⟨𝑡 ‖k𝜋⋅stop⟩
⟨k𝜋 ‖𝑡⋅𝜋 ′⟩ ≻𝑛 ⟨𝑡 ‖𝜋⟩

constituent des équations que l’on peut résoudre dans Ln. Les opé-
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𝑡 = 𝑡⊝ ⩴ 𝑥 ∣ 𝜇𝛼.𝑐 ∣ 𝜆𝑥.𝑡
𝑒 = 𝑒⊝ ⩴ 𝜋 ∣ ̃𝜇𝑥.𝑐

𝑒⊝ ⊇ 𝜋 ⩴ 𝛼 ∣ stop ∣ 𝑡 ⋅ 𝜋
𝑐 ⩴ ⟨𝑡 ‖𝑒⟩

(a) Termes, contextes et commandes

𝑡 𝑢 ≝ 𝜇𝛼.⟨𝑡 ‖𝑢 ⋅ 𝛼⟩
k𝑒 ≝ 𝜆𝑥.𝜇𝛼.⟨𝑥‖𝑒⟩
𝒞 ≝ 𝜆𝑥.𝜇𝛼.⟨𝑥‖k𝛼 ⋅ stop⟩

(b) Plongement du λC-calcul

⟨𝑡 ‖ ̃𝜇𝑥.𝑐⟩ ⊳R𝑛
𝑐[𝑡/𝑥]

⟨𝜇𝛼.𝑐‖𝜋⟩ ⊳R𝑛
𝑐[𝜋/𝛼]

⟨𝜆𝑥.𝑡 ‖𝑢 ⋅ 𝜋⟩ ⊳R𝑛
⟨𝑡[𝑢/𝑥]‖𝜋⟩

(c) Règles de réduction

𝑒 ⊳E𝑛
̃𝜇𝑥.⟨𝑥‖𝑒⟩

𝑡 ⊳E𝑛
𝜇𝛼.⟨𝑡 ‖𝛼⟩

𝑡 ⊳E𝑛
𝜆𝑥.𝜇𝛼.⟨𝑡 ‖𝑥 ⋅ 𝛼⟩

(d) Règles d’expansion
Figure 2: Le calcul Ln

rations du λC-calcul sont en effet caractérisées par leur action sur les
piles:

𝜆𝑥 𝑡 ∶ 𝑢 ⋅ 𝜋 ↦ ⟨𝑡[𝑢/𝑥]‖𝜋⟩
𝑡 𝑢 ∶ 𝜋 ↦ ⟨𝑡 ‖𝑢 ⋅ 𝜋⟩
k𝜋 ∶ 𝑡 ⋅ 𝜋 ′ ↦ ⟨𝑡 ‖𝜋⟩
𝒞 ∶ 𝑢 ⋅ 𝜋 ↦ ⟨𝑢‖k𝜋 ⋅ stop⟩

Le lieur 𝜇 rend cette action interne au langage des termes, en liant
des co-variables (𝛼, 𝛽…) dénotant des piles:

𝜇𝛼.𝑐 ∶ 𝜋 ↦ 𝑐[𝜋/𝛼]

On en déduit des solutions à ces équations, c’est-à-dire une défini-
tion des constructeurs du λC-calcul:

𝑡 𝑢 = 𝜇𝛼.⟨𝑡 ‖𝑢 ⋅ 𝛼⟩
k𝜋 = 𝜆𝑥.𝜇𝛼.⟨𝑥‖𝜋⟩
𝒞 = 𝜆𝑥.𝜇𝛼.⟨𝑥‖k𝛼 ⋅ stop⟩
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Γ = ⃗𝑥𝑖 ∶ 𝑁⃗𝑖 Δ = ⃗𝛼𝑗 ∶ 𝑀⃗𝑗

Γ ⊢ 𝑡 ∶ 𝑁 ∣ Δ Γ ∣ 𝑒 ∶ 𝑁 ⊢ Δ
𝑐 ∶ (Γ ⊢ Δ)

(a) Jugements

—(⊢ ax)Γ, 𝑥 ∶ 𝑁 ⊢ 𝑥 ∶ 𝑁 ∣ Δ —(ax ⊢)Γ ∣ 𝛼 ∶ 𝑁 ⊢ 𝛼 ∶ 𝑁,Δ

𝑐 ∶ (Γ, 𝑥 ∶ 𝑁 ⊢ Δ)—( ̃𝜇 ⊢)Γ ∣ ̃𝜇𝑥.𝑐 ∶ 𝑁 ⊢ Δ
𝑐 ∶ (Γ ⊢ 𝛼 ∶ 𝑁, Δ)—(⊢ 𝜇)Γ ⊢ 𝜇𝛼.𝑐 ∶ 𝑁 ∣ Δ

Γ ⊢ 𝑡 ∶ 𝑁 ∣ Δ Γ ∣ 𝑒 ∶ 𝑁 ⊢ Δ—(cut)⟨𝑡 ‖𝑒⟩ ∶ (Γ ⊢ Δ)
(b) Groupe identité et structure

Γ, 𝑥 ∶ 𝑁 ⊢ 𝑡 ∶ 𝑀 ∣ Δ—(⊢→)Γ ⊢ 𝜆𝑥.𝑡 ∶ 𝑁 → 𝑀 ∣ Δ
Γ ⊢ 𝑡 ∶ 𝑁 ∣ Δ Γ ∣ 𝜋 ∶ 𝑀 ⊢ Δ—(→ ⊢𝑓 )Γ ∣ 𝑡 ⋅ 𝜋 ∶ 𝑁 → 𝑀 ⊢ Δ

Γ ⊢ 𝑡 ∶ 𝑁 ∣ Δ—(⊢ ∀)∗
Γ ⊢ 𝑡 ∶ ∀x 𝑁 ∣ Δ

Γ ∣ 𝑒 ∶ 𝑁[t/x] ⊢ Δ—(∀ ⊢)Γ ∣ 𝑒 ∶ ∀x 𝑁 ⊢ Δ

(∗ ∶ 𝑥 ∉ fv(Γ,Δ)) —(⊥ ⊢)Γ ∣ stop ∶ ⊥ ⊢ Δ
(c) Groupe logique

Figure 3: Typage dans le calcul des séquents en appel par nom

Le λC-calcul se plonge ainsi dans le calcul Ln et hérite d’une relation
d’équivalence contextuelle qui est extensionnelle.

De façon remarquable, considérer le λC-calcul à travers son im-
plémentation dans le calcul Ln entraîne trois simplifications impor-
tantes:

1. Les règles de typage sont en correspondance avec celles du calcul
des séquents.

2. Grâce à l’ajout de contextes explicites, la théorie équationnelle
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est plus simple que sa description directe dans le λC-calcul.

3. Les choix qui ont été faits concernant la stratégie d’évaluation ap-
paraissent plus clairement, en particulier avec une symétrie entre
l’appel par valeur et l’appel par nom, caractérisés par des règles de
réduction qui donnent la priorité au terme ou au contexte.

On illustre cela dans ce qui suit.

Une correspondance avec le calcul des séquents
L’idée est d’associer à la coupure du calcul des séquents classique de
Gentzen [Gen35]:

Γ ⊢ 𝐴,Δ Γ, 𝐴 ⊢ Δ—Γ ⊢ Δ
la règle de typage suivante:

Γ ⊢ 𝑡 ∶ 𝐴 ∣ Δ Γ ∣ 𝜋 ∶ 𝐴 ⊢ Δ—
⟨𝑡 ‖𝜋⟩ ∶ (Γ ⊢ Δ)

.

Γ devient un environnement de variables de termes (𝑥1 ∶ 𝐴1,… , 𝑥𝑛 ∶
𝐴𝑛) et Δ devient un environnement de variables de piles (𝛼1 ∶
𝐵1,… , 𝛼𝑚 ∶ 𝐵𝑚). �

�
�
�

Γ ⊢ 𝑡 ∶ 𝐴 ∣ Δ
Γ ∣ 𝜋 ∶ 𝐴 ⊢ Δ

⟨𝑡 ‖𝜋⟩ ∶ (Γ ⊢ Δ)

Dans l’encadré ci-dessus, le premier des trois jugements est familier:
le type d’un terme est donné par une conclusion du séquent. Le
second jugement décrit le type d’une pile par une hypothèse du
séquent, et peut se lire « 𝜋 est une réfutation de 𝐴 dans le contexte
Γ,Δ ». Le troisième jugement attribue des types aux variables de la
machine ⟨𝑡 ‖ 𝜋⟩, laquelle n’a pas de type propre. Le slogan est que la
réduction des commandes correspond à l’élimination des coupures.



22 L’hypothèse de la polarisation (Extended abstract in French)

Adjoints
La notation abstraite 𝜇/ ̃𝜇 résout le problème des coupures commuta-
tives de la déduction naturelle. C’est expliqué en grande partie par le
fait que les règles d’élimination sont retrouvées comme les adjointes
des règles d’introduction à gauche, à travers la définition:�� ��𝜏∗(𝑡) ≝ 𝜇𝛼.⟨𝑡 ‖𝜏(𝛼)⟩ .

Ainsi, la dérivation de la règle d’élimination de → dans LK:

Γ ⊢ 𝐴 → 𝐵,Δ
Γ ⊢ 𝐴,Δ —Γ,𝐵 ⊢ 𝐵,Δ—Γ, 𝐴 → 𝐵 ⊢ 𝐵,Δ—Γ ⊢ 𝐵,Δ

donne bien 𝑡 𝑢 = (𝑢 ⋅ −)∗(𝑡), puisqu’elle est en correspondance avec
la dérivation suivante:

Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵 ∣ Δ
Γ ⊢ 𝑢 ∶ 𝐴 ∣ Δ—(ax ⊢)Γ ∣ 𝛼 ∶ 𝐵 ⊢ 𝛼 ∶ 𝐵,Δ—(→ ⊢)Γ ∣ 𝑢 ⋅ 𝛼 ∶ 𝐴 → 𝐵 ⊢ 𝛼 ∶ 𝐵,Δ—(cut)⟨𝑡 ‖𝑢 ⋅ 𝛼⟩ ∶ (Γ ⊢ 𝛼 ∶ 𝐵, Δ)—(⊢ 𝜇)

Γ ⊢ (𝑢 ⋅−)∗(𝑡) ∶ 𝐵 ∣ Δ

Les règles de typage du λC-calcul de la Figure 2 sont retrouvées de
cette façon à travers les règles de la Figure 3.

Contextes non linéaires
Les piles (notation 𝜋) sont des contextes (notation 𝑒) linéaires, au
sens de la logique linéaire [Lau02]; leur présence suffit si le but est de
décrire la réduction de tête d’un terme (machines de Krivine).

Curien et Herbelin introduisent le lieur ̃𝜇 qui définit des contextes
non-linéaires à travers leur interaction avec un terme. Celui-ci rend
explicite les choix d’ordres d’évaluation, et permet d’obtenir une cor-
respondance complète entre machines et calcul des séquents. Le
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contexte ̃𝜇𝑥.⟨𝑡 ‖𝑒⟩ est introduit par la règle suivante:

⟨𝑡 ‖𝑒⟩ ∶ (Γ, 𝑥 ∶ 𝐴 ⊢ Δ)—( ̃𝜇 ⊢)Γ ∣ ̃𝜇𝑥.⟨𝑡 ‖𝑒⟩ ∶ 𝐴 ⊢ Δ

On peut comprendre ̃𝜇𝑥. ⟨ 𝑡 ‖ 𝜋 ⟩ comme le contexte du terme 𝑢
au sein du terme du λC-calcul (𝜆𝑥.k𝜋𝑡)𝑢. La complétude des règles
de typage vis-à-vis de la prouvabilité dans le fragment →, ∀, ⊥ du
calcul des séquents est établie avec la dérivation suivante qui montre
comment obtenir la règle (→ ⊢) manquante.

Γ ⊢ 𝑡 ∶ 𝑁 ∣ Δ Γ ∣ 𝑒 ∶ 𝑀 ⊢ Δ
——Γ ∣ ̃𝜇𝑥.⟨𝑥 𝑡 ‖𝑒⟩ ∶ 𝑁 → 𝑀 ⊢ Δ

Polarité négative
Les termes du calcul Ln sont négatifs. Cela signifie que la réduction
du 𝜇 est restreinte aux contextes qui sont des piles:

⟨𝑡⊝ ‖ ̃𝜇𝑥.𝑐⟩ ⊳R𝑛
𝑐[𝑡⊝/𝑥]

⟨𝜇𝛼.𝑐‖𝜋⟩ ⊳R𝑛
𝑐[𝜋/𝛼]

En conséquence, l’évaluation d’un terme négatif est retardée tant
qu’il n’est pas en position de tête, dans la terminologie du λ-calcul.
En ce sens-là, la polarité négative décrit une réduction en appel par
nom. Dans le calcul Ln, la position de tête est déterminée par le fait
que le contexte est une pile 𝜋.

Polarité positive
La polarité positive, non représentée dans le calcul Ln, restreint la
réduction du lieur ̃𝜇 aux termes qui sont des valeurs (𝑉+):

⟨𝜇𝛼+.𝑐‖𝑒+⟩ ⊳R𝑝
𝑐[𝑒+/𝛼+]

⟨𝑉+ ‖ ̃𝜇𝑥+.𝑐⟩ ⊳R𝑝
𝑐[𝑉+/𝑥+]

Autrement dit un terme positif est appelé par valeur.
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La polarité négative donne la priorité, dans ⟨ 𝜇𝛼.𝑐 ‖ ̃𝜇𝑥.𝑐′ ⟩ ,
à l’évaluation du contexte ̃𝜇𝑥.𝑐′, tandis que la polarité positive re-
vient à donner la priorité à l’évaluation du terme 𝜇𝛼.𝑐. Le lieur ̃𝜇
permet de décomposer la liaison let 𝑥 be 𝑡 in 𝑢, qui est standard de-
puis Moggi [Mog91] pour modéliser l’appel par valeur. Le terme
let 𝑥 be 𝑡 in 𝑢, qui a la même polarité que 𝑢, est obtenu à travers la
définition suivante:�� ��let 𝑥 be 𝑡 in 𝑢𝜀 ≝ 𝜇𝛼𝜀.⟨𝑡 ∥ ̃𝜇𝑥.⟨𝑢𝜀 ‖𝛼𝜀⟩⟩ .

Dans ce cadre, un terme de la forme suivante:

let 𝑦⊝be (let 𝑥+ be 𝑡+ in 𝑢⊝) in 𝑣

commence par évaluer 𝑣, tandis que le suivant:

let 𝑥+ be 𝑡+ in let 𝑦⊝be 𝑢⊝ in 𝑣

commence par évaluer 𝑡+. Ces deux termes dénotent les deux fa-
çons de composer des termes 𝑡+, 𝑢⊝ et 𝑣. Cette différence d’ordre
d’évaluation illustre pourquoi la polarisation peut être décrite néga-
tivement comme le rejet, direct ou indirect, de l’hypothèse que la
composition est associative a priori.

Les duploïdes, modèles d’une composition
non-associative
Dans le Chapitre II, on introduit une description positive et directe
de la polarisation. On caractérise l’ordre d’évaluation polarisé à tra-
vers une structure catégorielle où certaines associativités ne sont
pas vérifiées. Duploïde est le nom de la structure, en référence aux
algèbres dupliciales de Loday [Lod06].

Le résultat principal relie les duploïdes aux adjonctions. Pour
mieux comprendre ce lien, rappelons tout d’abord la correspon-
dance entre les modèles directs de l’appel par valeur et les modèles
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indirects de Moggi.

Modèles directs
Dans un modèle dénotationnel direct, il doit y avoir une correspon-
dance précise entre les opérations du modèle et les constructions du
langage. Les opérations sur les types et sur les programmes doivent
essentiellement correspondre aux opérations sur les objets et sur les
morphismes d’une catégorie. En particulier, il doit être possible
de raisonner sur une instance du modèle au sein du langage.3 Un
exemple de modèle direct du λ-calcul simplement typé est donné
par les catégories cartésiennes fermées.

Dans un modèle tel que le λC de Moggi [Mog89], ou le modèle en
appel par nom de Lafont, Reus et Streicher [LRS93], cependant, le lan-
gage n’est pas interprété directement mais à travers la construction
de Kleisli d’une monade ou d’une co-monade. Führmann [Füh99] a
décrit précisément le lien qui existe entre les modèles directs et les
modèles indirects. Les catégories qui modélisent l’appel par valeur
directement sont caractérisées par la présence d’un thunk, la struc-
ture bien connue qui permet d’implémenter la paresse en appel par
valeur [HD97].

La caractérisation prend la forme suivante: tout modèle direct
s’obtient par la construction de Kleisli à partir d’un λC modèle. Ce-
pendant, en partant d’un modèle direct on ne peut retrouver qu’un
λC modèle spécifique: il est fait de valeurs sémantiques consistant
en toutes les expressions pures. Plus précisément, la construction de
Kleisli est une réflexion qui réunit toute paire de valeurs identifiées
du point de vue de la monade, et donne le statut de valeur à toute ex-
pression thunkable. Une expression est thunkable si elle se comporte
similairement à une valeur en un sens déterminé par la monade.

Selinger [Sel01] a démontré un lien similaire entre les modèles
directs du λµ-calcul en appel par nom et les modèles de Lafont, Reus
et Streicher [LRS93].

3Führmann [Füh99], Selinger [Sel99].
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Ordre
d’évaluation

Par valeur Par nom Polarisé

Modèle direct Thunk Monade
exécutable

Duploïde

Modèle
indirect

Monade 𝑇 Co-monade 𝐿 Adjonction
𝐹 ⊣ 𝐺

Programmes Morphisme
de Kleisli
𝑃 → 𝑇𝑄

Morphisme
de co-Kleisli
𝐿𝑁 → 𝑀

Morphisme
oblique
𝐹𝑃 → 𝑁
≃ 𝑃 → 𝐺𝑁

Données
syntaxiques

Valeurs Piles Les deux

Complétées en Expressions
thunkables

Contextes
d’évaluation
linéaires

Les deux

Table 4: Comparaison des structures sous-jacentes à divers modèles
directs du calcul

Modèles à base d’adjonction
Le chapitre traite des structures algébriques sous-jacentes de ces
modèles: une monade sur une catégorie de valeurs pour l’appel par
valeur, une co-monade sur une catégorie de piles pour l’appel par
nom. Les duploïdes généralisent cette structure sous-jacente à une
adjonction entre une catégorie de valeurs et une catégorie de piles.
(Voir le Tableau 4.)

La relation avec les polarités est donnée par la traduction polari-
sée de la logique classique de Girard [Gir91, DJS97, Lau02]. Notre
construction de duploïde étend (le squelette de) la traduction po-
larisée à toute adjonction. (Essentiellement, on n’a pas besoin de
supposer qu’il existe une opération de négation involutive sur les
formules.)

Il est connu qu’il y a un intérêt pratique à décomposer les mo-
nades, lorsqu’elles sont vues comme des notions de calcul, en ad-
jonctions, grâce à Levy [Lev99, Lev04, Lev05]. Les adjonctions de Levy
englobent les modèles de l’appel par valeur et de l’appel par nom.
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Cependant le modèle est indirect, et manque encore d’une notion
correspondante de modèle direct.

La construction de duploïde
Avec la construction de duploïde, on définit, en partant d’une ad-
jonction 𝐹 ⊣ 𝐺 ∶ 𝒞1 → 𝒞2, des morphismes 𝐴 → 𝐵 pour 𝐴 et 𝐵 des
objets de n’importe laquelle des catégories 𝒞1 and 𝒞2.

On définit tout d’abord les morphismes obliques 𝑃 → 𝑁, avec
𝑃 ∈ |𝒞2| et 𝑁 ∈ |𝒞1|, de façon équivalente comme des morphismes
𝑃 → 𝐺𝑁 ou 𝐹𝑃 → 𝑁. Considérons maintenant ∙ la composition dans
𝒞1 et ∘ la composition dans 𝒞2. On observe que les morphismes
obliques peuvent être composés ou bien dans 𝒞1:

𝑓 ∶ 𝑃 → 𝐹𝑄—(≃)
𝑓 ∶ 𝐹𝑃 → 𝐹𝑄

𝑔 ∶ 𝑄 → 𝑁—(≃)𝑔 ∶ 𝐹𝑄 → 𝑁—(∙)
𝑔 ∙ 𝑓 ∶ 𝐹𝑃 → 𝑁—(≃)
𝑔 ∙ 𝑓 ∶ 𝑃 → 𝑁

ou bien dans 𝒞2:

𝑓 ∶ 𝑃 → 𝑁—(≃)
𝑓 ∶ 𝑃 → 𝐺𝑁

𝑔 ∶ 𝐺𝑁 → 𝑀—(≃)𝑔 ∶ 𝐺𝑁 → 𝐺𝑀—(∘)
𝑔 ∘ 𝑓 ∶ 𝑃 → 𝐺𝑀—(≃)
𝑔 ∘ 𝑓 ∶ 𝑃 → 𝑀

On définit donc un morphisme 𝐴 → 𝐵 comme un morphisme
oblique: �� ��𝐴+ → 𝐵⊝ ,

où:

𝑃+ ≝ 𝑃 𝑃⊝ ≝ 𝐹𝑃
𝑁+ ≝ 𝐺𝑁 𝑁⊝ ≝ 𝑁

La raison pour laquelle cela ne définit pas forcément une catégorie
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est qu’on peut avoir:

𝑓 ∘ (𝑔 ∙ ℎ) ≠ (𝑓 ∘ 𝑔) ∙ ℎ

lorsque l’adjonction n’est pas idempotente.

Contribution
Dans Chapter II, on démontre qu’il existe une réflexion:

Dupl◁Adj

où Dupl est une catégorie des duploïdes et des foncteurs de du-
ploïdes, et où Adj est la catégorie des adjonctions et des preudo-
morphismes d’adjonctions. En d’autres termes, la construction de
duploïde ci-dessus se prolonge en un foncteur Adj → Dupl qui ad-
met un adjoint à droite plein et fidèle. En particulier, tout duploïde
est obtenu à partir d’une adjonction.

En conséquence, les duploïdes rendent compte de beaucoup de
modèles de calcul, comme on le verra dans divers exemples de sé-
mantique dénotationnelle. Cela suggère que les différents biais de
la sémantique dénotationnelle: indirect, appel par valeur, appel par
nom… sont des façons de cacher le fait que la composition n’est pas
toujours associative.

Par ailleurs, en raison de la réflexion, Dupl est équivalent à une
sous-catégorie pleine de Adj, ce qui signifie que l’adjonction as-
sociée à un duploïde possède des propriétés additionnelles. On
caractérise lesquelles. On montre qu’il existe une équivalence de
catégories:

Dupl ≃ Adjeq
où Adjeq est la sous-catégorie pleine des adjonctions satisfaisant la
condition d’égalisation: l’unité et la co-unité de l’adjonction sont res-
pectivement des égalisateurs et des co-égalisateurs. Cette condition
signifie que:

• la catégorie des valeurs est complétée avec toutes les expressions
thunkables;
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𝑥† ≝ 𝜆𝑘.(𝑘 𝑥)
(𝜆𝑥.𝑡)† ≝ 𝜆𝑘.(𝑘 𝜆𝑥.𝑡†)
(𝑡 𝑢)† ≝ 𝜆𝑘.(𝑡† 𝜆𝑥.(𝑢† 𝜆𝑦.(𝑥 𝑦 𝑘)))
(a) Appel par valeur (Plotkin [Plo75])

𝑥‡ ≝ 𝑥
(𝜆𝑥.𝑡)‡ ≝ 𝜆𝑦.(𝑡‡[𝜋1(𝑦)/𝑥]𝜋2(𝑦))
(𝑡 𝑢)‡ ≝ 𝜆𝑘.(𝑡‡ (𝑢‡, 𝑘))

(b) Appel par nom (Lafont, Reus et
Streicher [LRS93])

Figure 5: Traductions par passage de continuation dans le λ-calcul

• la catégorie des piles est complétée avec tous les contextes
d’évaluation linéaires;

• toute paire de valeurs et toute paire de piles qui ne sont pas
distinguables dans le modèle de calcul sont identifiées.

En d’autres termes, le duploïde exprime le point de vue interne du
modèle de calcul défini par l’adjonction.

Le chapitre introduit le calcul Ldup qui est un langage interne pour
les duploïdes. On explique avec lui le contenu calculatoire de ces
derniers.

Une décomposition des traductions CPS
délimitées
La polarisation et le calcul L permettent d’expliquer la structure
des continuations de première classe et des traductions par passage
de continuation (continuation-passing style ou CPS) à travers une
décomposition en trois étapes. C’est l’objet du Chapitre III.

Traductions CPS et polarités
Grâce à l’étude de la théorie de la démonstration classique [Gir91,
DJS95, DJS97, Lau02], nous savons que la traduction CPS en appel
par valeur standard (voir Figure 5) correspond à une polarisation
positive des formules tandis que la traduction en appel par nom de
Lafont, Reus et Streicher correspond à une polarisation négative.
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λµ𝑣/𝑛

cpsv/n⟦⋅⟧
�� ��

(1)
//// LC

(2)
��

λ LLP
(3)

oo

Figure 6: La décomposition polarisée des traductions CPS en trois
étapes

(On considère les variantes qui prennent en compte l’opérateur 𝒞 .)
La symétrie entre les polarités se traduit en une dualité catégorielle
décrite par Selinger [Sel01] et Curien et Herbelin [CH00].

Le chapitre est pour commencer une description de comment,
grâce aux outils fournis par la notion de polarité, par la focalisation
et par le calcul des séquents, on peut décomposer en trois étapes les
traductions CPS en appel par nom et en appel par valeur (Figure 6).
Ce faisant, on reformule des traductions existantes et bien connues
pour le λµ calcul [Lau02].

L’étape (1) encode le λµ-calcul en appel par valeur ou en appel par
nom avec des dérivations entièrement positives ou négatives dans les
logiques classiques polarisées LC [Gir91] ou LK𝜂

𝑝 [DJS97]; on choisit
ainsi une polarisation des formules.

L’étape (2) est la traduction de Laurent de LC vers la « lo-
gique linéaire polarisée » LLP [Lau02]. Cette traduction est un
cas particulier de la construction de duploïde du Chapitre II, et par
conséquent l’étape (2) est celle où on perd le style direct. LLP
se comprend comme le fragment ∧,∨, ¬ de LJ, rendu symétrique
par l’introduction d’une opération de négation involutive sur les for-
mules. En conséquence, la négation:

Γ, 𝑃 ⊢—(⊢ ¬)Γ ⊢ ¬𝑃
Γ ⊢ 𝑃—(¬ ⊢)Γ, ¬𝑃 ⊢
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est dédoublée en deux modalités covariantes duales notées ! et ?:

⊢ 𝑁, 𝒩—(prom)⊢ !𝑁, 𝒩
⊢ 𝒩 , 𝑃—(der)⊢ 𝒩 , ?𝑃

où 𝒩 ne contient que des formules négatives. Ces modalités re-
flètent les changements de polarité; pour cette raison elles dis-
tinguent la formule pour la flèche en appel par valeur (!(𝑃 ⊸ ?𝑄))
de celle en appel par nom (!𝑁 ⊸ 𝑀).

L’étape (3) traduit la logique précédente dans le λ-calcul avec uni-
quement des appels terminaux, c’est-à-dire dans un calcul de conti-
nuations. Elle procède comme suit:

• Les séquents sont formatés de sorte à n’avoir qu’une seule conclu-
sion, par exemple ⊢ 𝒩 , 𝑃 est transformé en 𝒩 ⊥ ⊢ 𝑃. C’est là que
les polarités disparaissent.

• Le calcul de séquents est converti en déduction naturelle: en
termes de calcul L, un contexte Γ ∣ 𝐸 ∶ 𝐴 ⊢ ⋆ ∶ 𝐵 est transformé en
le λ-terme Γ, 𝑘 ∶ 𝐴 ⊢ 𝐸∗ ∶ 𝐵 où 𝑘 est linéaire dans 𝐸∗. C’est là que
les réductions administratives doivent être traitées, comme on le
verra.

En d’autres termes, cette étape cache ce qu’il y a d’intéressant dans la
structure pour rentrer dans le moule du λ-calcul.

Remarquons que les étapes (2) et (3) sont les mêmes indépen-
damment du calcul de départ.

Contribution
Notre contribution est en deux parties: on souligne les différences
entre les étapes (1) et (2) grâce à un calcul L qui prend la place dans
l’angle supérieur droit de la Figure 6, et on étend la décomposition
en trois étapes aux opérateurs de contrôle délimité shift et reset de
Danvy et Filinski [DF90]. Notre approche permet la reconstruction
rationnelle en style direct de quatre variantes en appel par nom de
shift et reset, l’une étant nouvelle.
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Calcul Réf. Stratégie Style Réd. & Éq.
Lpol,t̂p+ Fig. III.2 Polarisée Calc. seq. ⊳R𝑝

, ≃RE𝑝

λ×v Fig. III.3 Indirecte Déd. nat. ⊳R𝜆
, ≃RE𝜆

λµt̂p𝑣 Fig. III.5 Par valeur Déd. nat. ⊳R𝑣
, ≃RE𝑣

[AHS04]
λµt̂p𝑛 Fig. III.7 Par nom Déd. nat. ⊳R𝑛

, ≃RE𝑛
[HG08]

Lexp Fig. III.11 Indirecte Calc. seq. ⊳R𝑒
, ≃RE𝑒

Table 7: Récapitulatif des calculs considérés dans le Chapitre III

Sur l’interprétation constructive d’une
négation involutive
Dans le Chapitre IV, on retourne à la source de la polarisation en
théorie de la démonstration, que l’on souhaite expliquer: la descrip-
tion par Girard [Gir91] d’une négation involutive en logique classique.
Cependant on ne suppose pas le lecteur familier avec les travaux
de Girard et on adopte une approche différente. Notre but est
d’étudier l’interprétation constructive d’une négation involutive, ou
de façon équivalente du raisonnement par contraposée, en donnant
à ces mots un sens spécifique.

Hypothèse 1. Par constructif, on entend une interprétation qui suit
le principe de la formule comme type, dans laquelle les formules sont
traduites en les types d’un langage de programmation.

Cette notion de construction n’est pas basée sur une limitation a
priori des techniques de démonstration, telles que le rejet du prin-
cipe du tiers exclu ∀𝐴 (𝐴 ∨ ¬𝐴). Ainsi, Griffin a montré que la
variante 𝒞 de Felleisen [FFKD87] de l’opérateur de contrôle call/cc
de Scheme pouvait être typée par l’élimination de la double néga-
tion [Gri90], et par conséquent peut être utilisée pour dériver le tiers
exclu. Mais la démonstration ne fournit pas de procédure de déci-
sion pour 𝐴 quelconque: le comportement dépend en général du
contexte dans lequel le principe est invoqué. En d’autres termes, cela
ne doit pas être vu comme une contradiction de l’intuitionnisme:
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celui-ci suppose que le comportement des preuves est référentielle-
ment transparent, hypothèse que nous ne faisons pas.

Cette notion de construction ne doit pas non plus être vue comme
une restriction à des calculs typés a la Church. De la même façon
que les systèmes de types approximent la notion de programme cor-
rect, les systèmes logiques sont vus comme une approximation de la
notion de construction. Il s’agit du point de vue de la réalisabilité
de Krivine [Kri09], par exemple. C’est pourquoi cela ne contredit pas
notre intérêt premier pour les calculs non typés.

Dans ce contexte, le caractère constructif s’observe en particulier
pour des formules héréditairement positives (Girard [Gir91]). En
arithmétique, la notion recouvre les formules Σ0

1 . Les formules pu-
rement positives doivent satisfaire le même critère que la logique
intuitionniste: la propriété de la disjonction, de l’existence… En
conséquence, les démonstrations d’une formule ∀ ⃗𝑥(𝑃0( ⃗𝑥) → 𝑄0( ⃗𝑥))
où 𝑃0, 𝑄0 sont purement positives (c’est à dire des formules Π0

2 en
arithmétique) correspondent à des algorithmes (Murthy [Mur91]).

Une telle notion de construction peut se comprendre dans une
comparaison avec les langages de programmation: en présence
d’effets de bord (opérateurs de contrôle, états, entrées-sorties…),
certains types sont opaques lors de l’exécution.

Hypothèse 2. Par involutif, on entend une négation qui vérifie un
isomorphismes de types entre ¬¬𝐴 et 𝐴.

La raison pour demander davantage qu’une simple équivalence
entre 𝐴 et ¬¬𝐴 est qu’il y a trop de choix possibles pour la contrapo-
sée d’une formule comme la suivante:

∀x, y ∈ 𝐴, (𝑃(x)∨𝑄(y)) → (∀x ∈ 𝐴, 𝑃(x))∨(∀y ∈ 𝐴, 𝑄(y))

par exemple:

¬((∀x ∈ 𝐴, 𝑃(x)) ∨ (∀y ∈ 𝐴, 𝑄(y))) → ¬∀x, y ∈ 𝐴, (𝑃(x) ∨ 𝑄(y))
(¬∀x ∈ 𝐴, 𝑃(x)) ∨ (¬∀y ∈ 𝐴, 𝑄(y)) → ∃x, y ∈ 𝐴, ¬(𝑃(x) ∨ 𝑄(y))
(∃x ∈ 𝐴, ¬𝑃(x)) ∧ (∃y ∈ 𝐴, ¬𝑄(y)) → ∃x, y ∈ 𝐴, (¬𝑃(x) ∧¬𝑄(y))
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L’embarras du choix disparaît lorsque les loi de De Morgan sont des
isomorphismes de types: s’il y a trop de démonstrations, alors il faut
être capable d’en choisir une canonique, qui préserve la signification.

En l’absence de tels isomorphismes, on suppose que la contrapo-
sée est obtenue en poussant les négations au plus proche des feuilles.
Dans l’exemple ci-dessus il s’agit de la troisième proposition. Des
travaux comme ceux de Krivine [Kri09] montrent d’un point de vue
technique l’importance d’un tel raisonnement par contraposée; par
exemple l’axiome du choix dénombrable n’est réalisé qu’à travers
sa contraposée. Pourtant, raisonner par contraposée n’est pas trivial
dans le contexte du λC-calcul employé par l’auteur, comme le montre
l’exemple suivant:

Exemple 1. On se place dans le cadre du λC-calcul de la Figure
1, étendu au second ordre.4 Cela nous permet de définir les quan-
tificateurs de la façon standard: ∀𝑋 ∈ 𝐴, 𝐵 ≝ ∀𝑋(𝐴[𝑋] → 𝐵) et
∃𝑋 ∈ 𝐴, 𝐵 ≝ ∀𝑌(∀𝑋 (𝐴[𝑋] → 𝐵 → 𝑌) → 𝑌), et similairement pour
le premier ordre.

Considérons maintenant les formules suivantes, qui ont la même
complexité que l’axiome du choix dénombrable et que de sa contra-
posée:

[𝐶] ∶ ∀x ∈ ℕ, ∃y ∈ 𝐸, 𝐴1(x, y) → ∃𝑌 ∈ 𝐹, ∀x ∈ ℕ, 𝐴2(x, 𝑌)
[ ̄𝐶] ∶ ∀𝑌 ∈ 𝐹, ∃x ∈ ℕ, ¬𝐴2(x, 𝑌) → ∃x ∈ ℕ, ∀y ∈ 𝐸, ¬𝐴1(x, y)

On peut démontrer [𝐶] ↔ [ ̄𝐶], et en le faisant directement, on
obtient le terme suivant de type [𝐶] → [ ̄𝐶]:

𝜆𝑎𝑥𝑦.(𝒞𝜆𝑘.(𝑎 𝜆𝑒.(𝒞 𝜆𝑧.(𝑘 (𝑦 𝑒 𝜆𝑛𝑝.(𝑧 𝜆𝑘.(𝑘 𝑛 𝑝))))) 𝜆𝑛𝑝.(𝑥 𝑛 𝜆𝑒𝑧.(𝑧 (𝑝 𝑒)))))

4Les formules sont étendues avec des quantifications sur les atomes (∀𝑋 𝑁),
et les deux règles suivantes sont ajoutées:

Γ ⊢ 𝑡 ∶ 𝑁—(𝑋 ∉ fv(Γ))Γ ⊢ 𝑡 ∶ ∀𝑋 𝑁
Γ ⊢ 𝑡 ∶ ∀𝑋 𝑁—

Γ ⊢ 𝑡 ∶ 𝑁[𝑀/𝑋x1…x𝑛]
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Chacune des quatre lois de De Morgan reliant ∀ et ∃ sont utilisées
dans la démonstration. Parmi elles, seul le principe suivant n’est pas
intuitionniste, et est responsable des deux occurrences de 𝒞:

¬∀x ∈ ℕ,𝑃 → ∃y ∈ ℕ, ¬𝑃 .

Le squelette de sa démonstration est le suivant:�� ��⊢ 𝜆𝑥𝑦.(𝒞 𝜆𝑘.(𝑥 𝜆𝑒.(𝒞 𝜆𝑙.(𝑘 (𝑦 𝑒 𝑙))))) ∶ ¬∀x ∈ ℕ, 𝑃(x) → ∃x ∈ ℕ, ¬𝑃(x)

Bien qu’il s’agisse d’une tautologie classique élémentaire, le rôle cal-
culatoire du terme n’est pas immédiat, en particulier en raison de la
présence des deux 𝒞 .
Dans l’exemple ci-dessus, le caractère illisible est une idiosyncrasie
du λC-calcul qui reflète l’absence, comme on le verra, d’une invo-
lution ¬¬𝑁 ≃ 𝑁 et par conséquent d’un isomorphisme de types
¬∀x 𝑁 ≃ ∃x ¬𝑁.

La négation involutive à travers le principe de la formule
comme type
Girard interprète une négation involutive en lui faisant changer la
polarité de la formule [Gir91]. On montre dans le chapitre comment
une notion de négation involutive inspirée de Girard correspond
à l’idée d’exposer une interface de haut niveau aux piles capturées,
similairement à la suggestion de Felleisen [AH08, Note] et comme
mis en œuvre par Clements [Cle06]. Dans notre cadre, cela se tra-
duit par la présence d’un type positif ∼𝐴 des piles inspectables et de
constantes 𝐷 qui permettent d’accéder au contenu de ces piles. Le
type ∼𝐴 est donc distinct du type négatif 𝐴 → ⊥ des continuations.
Cette distinction n’a de sens que dans un cadre où les deux polarités
sont prises en compte.

La polarisation explique une technique de Krivine qui allège
la complexité du raisonnement dans le λC-calcul en permettant à
gauche des flèches certains pseudo-types de saveur positive [Kri09,
Kri08]. La polarisation donne à ces pseudo-types un statut de pre-
mière classe, car elle les définit également à droite des implications.
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Fig. Style Stratégie 𝐴 ≃ ¬¬𝐴 Réd. & Éq.
λC I.12 Déd. nat. Par _nom Non ≻𝑛, ≈𝑛 [HS02]
λℓ IV.1 Déd. nat. _Polarisée Oui ≻𝑝, ≈𝑝
Ln I.10 Seq. Calc. Par _nom Non ⊳R𝑛

, ≃RE𝑛
[CH00]

Lpol,t̂p⊝ IV.4 Seq. Calc. _Polarisée Oui ⊳R𝑝
, ≃RE𝑝

Table 8: Une comparaison des calculs apparaissant dans le Cha-
pitre IV

Par ailleurs, le pseudo-type le plus important dans le travail de Kri-
vine est 𝒳−, defini comme l’ensemble {k𝜋 ∣ 𝜋 ∈ 𝒳}. Cela correspond
à distinguer les piles capturées des continuations, comme on le fait
de façon plus directe dans le chapitre.5

Dans le chapitre, les délimiteurs du contrôle fournissent une inter-
prétation pour l’unité ⊥, étendant ainsi l’interprétation en théorie de
la démonstration du contrôle délimité par Herbelin et d’autres [HG08,
AHS09, Her10, Ili10] qui généralise le principe de la A-traduction de
Friedman [Fri78]. Ainsi, bien que le contrôle délimité ne prouve pas
de nouvelle formule dans le cadre typé sans annotations par rap-
port au contrôle non-délimité, notre résultat montre qu’il donne de
meilleures démonstrations sur le plan constructif.

Contributions
Dans le Chapitre IV, on introduit les calculs extensionnels et non-
typés λℓ et Lpol,t̂p⊝ , dans lesquels la négation définie comme suit est
involutive:

¬𝑃 ≝ 𝑃 → ⊥
¬𝑁 ≝ ∼𝑁

5Remarquons par ailleurs que le cadre de Krivine n’est pas constructif selon
notre définition, car une étape externe est nécessaire pour convertir les
réaliseurs en algorithmes (Krivine [Kri09], voir aussi Miquel [Miq09]). La
polarisation enlève cette étape externe, puisque les termes qui calculent les
témoins peuvent être identifiés avec des réaliseurs positifs.
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Le calcul λℓ définit la notion de programme, ou terme quasi-preuve,
et le calcul Lpol,t̂p⊝ décompose λℓ pour permettre le raisonnement
extensionnel. Les calculs contiennent le Λµ-calcul de De Groote-
Saurin [dG94, Sau05] et (une variante) des opérateurs shift0/reset0
[DF90, Sha07, MB12].





Introduction

The polarisation hypothesis

The λ calculus is now the cornerstone of a celebrated corres-
pondence between some of category theory, functional pro-

gramming, and intuitionistic proof theory. At the turn of the 1990’s,
further links have emerged between:

• the categorical modelling of effects;
• the continuation-based modelling of evaluation order and con-

trol in programming languages;
• the proof theory of classical logic.

Since then, these three domains have provided an interactive view
on computation, and we are waiting to discover the principles that
extend the correspondence to this interactive point of view.

Polarities, which distinguish negative connectives (∀, →…) from
positive ones (∃, ∨…), are an empirical legacy of intuitionism. Re-
cognising the importance of these polarities is already one fruit of
the interactive turn, both for the theory of programming languages
and for proof theory.

Polarisation corresponds to the hypothesis that polarities have to
be taken into account formally:

• in terms of categorical models, polarisation amounts to relaxing
the hypothesis that composition is a priori associative on certain
polarities;
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• in continuation-based models of programming languages, polar-
ities determine whether a continuation is meant to be applied or
meant to be passed;

• in the proof theory of classical logic, polarities determine cut-
elimination.

Thus, polarities are responsible for evaluation order in programs,
and constructiveness of proofs. Polarities appear behind many phe-
nomena:

• the Blass problem in game semantics described by Abramsky
[Abr03] and Melliès [Mel05];

• the presence of laziness in call by value described Hatcliff and
Danvy [HD97] and Führmann [Füh99];

• the unsoundness of unrestricted polymorphism in call by value
in the presence of effects (Harper and Lillibridge [HL91]);

• the arithmetical hierarchy in the study of Peano arithmetic;
• focalisation in proof search (Andreoli [And92]);
• orthogonality-based logical relations (see Girard [Gir87], Kriv-

ine [Kri09], Pitts [Pit05], and M.-M. [Mun09] in relationship with
polarisation);

and probably more.
The thesis is a contribution to the understanding of the nature,

role, and mechanisms of polarisation in the three domains. The
cornerstone of our approach is an interactive term-based represent-
ation of proofs and programs which exposes the structure of polar-
ities. By interactive we mean that the novelty compared to the λ
calculus is the explicit role given to the evaluation context (for pro-
grams) or to the opponent (for proofs). It is based on binders 𝜇
and ̃𝜇 and on the correspondence between abstract machines and
sequent calculi, introduced by Curien and Herbelin with the 𝜆̄𝜇 ̃𝜇
calculus [CH00]. In honour of Gentzen [Gen35] who introduced the
sequent calculi LJ and LK, and following a suggestion of Herbelin,
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we refer to calculi that are based on the binders 𝜇 and ̃𝜇 with the
letter “L”6.

The scope of the syntax is both the investigation of the struc-
ture of proofs, after Gentzen, and the modelling of higher-order
programming languages, after Landin [Lan64, Lan65]. Its goal is to
provide means of unification for recent trends in category theory,
proof theory and the theory of programming languages: the mod-
elling of effects after Moggi [Mog89], the quest for a relationship
between categorical duality and continuations in computer science
after Filinski [Fil89], and the interactive notion of construction after
Girard [Gir87, Gir91, Gir01] and Krivine [Kri09].

In each of the following three contributions, each corresponding
to a chapter, we found that L calculi provided the canonical repres-
entation for an interesting structure:

• In Chapter II, we positively characterise polarisation through a
categorical structure where we relax the assumption that compos-
ition is associative. The characterisation proves, and details, how
polarisation is to adjunctions what call by value in programming
is to monads. An internal language is provided by the calculus
Ldup.

• In Chapter III, we decompose continuation-passing-style trans-
lations for delimited control operators into three steps: 1) the
implementation of the operations of the language as solutions of
equations in an abstract direct-style calculus; 2) the translation
from direct to indirect style; 3) a translation back into the λ calcu-
lus, which flattens the structure and makes continuation-passing
style hard to understand. The calculi Lpol,t̂p+ and Lexp are used as
the intermediate steps in the decomposition.

• In Chapter IV, we describe a formulae-as-types correspondence
for an involutive negation in classical logic by introducing the λℓ
calculus in natural deduction. The involution is due to the ℓ con-
trol operator, which implements the idea that captured contexts,

6Not to be confused with Lindenmayer’s L-systems.
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unlike continuations, have accessors. Extensional reasoning is
provided in the calculus Lpol,t̂p⊝ and a corresponding sequent cal-
culus.

Simplifying hypotheses would make polarities less salient. Our
investigation let the interesting phenomena appear because we
sought a description of computation through untyped (Curry-style),
extensional and direct calculi. The direct approach to programs and
proofs emphasises that, when a system is studied by means of a trans-
lation into a simpler system, understanding the translation is equally
important as understanding its target. These three constraints save
us from the pitfalls of the following hypotheses:
• Looking for a categorical model where a single category is in-

volved — for instance, if the goal is to seek a categorical general-
isation of boolean algebras, why should we keep the associativity
of composition?

• Looking for an a priori strongly-normalising setting — for in-
stance, many good properties of System F [Gir72], such as ex-
tensionality properties and therefore isomorphisms, follow from
strong normalisation [GSS92]. But, in addition to tying us to a
particular logic, normalisation depolarises the system, that is to
say the order of evaluation no longer matters.

• Assuming that referential transparency is essential for construct-
iveness — for instance, this hypothesis does not hold for direct
interpretations of classical logic with control operators. In the
presence of such operators, the order of evaluation matters for
constructiveness, even when the setting is strongly normalising.

• Assuming that we may a priori restrict to certain shapes of proofs
— for instance, the study of classical predicate calculus is simpli-
fied if we restrict to proofs in η-long forms. But it is known that
the trick is limited to the first order and moreover amounts to a
Gödel-Gentzen translation (Laurent [Lau02]).

As a result of our investigations, we realised that such hypotheses are
not innocuous.
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An introductory chapter follows. We introduce L calculi, start-
ing from the ground up and assuming from the reader only ele-
mentary knowledge of simply-typed λ calculus and rewriting. The
contributions of the other three chapters, alluded to above, are sum-
marized in more detail at the end of the chapter.





Notations and pre-requisites

The following terms are introduced with their specific meaning.

abstract machine, 51
call by name, 72
call by value, 73
classical logic, 77
constructiveness, 95
context, 51, 62
continuation, 93

direct model, 86
focalisation, 68
interaction, 40
involutive negation, 95
linearity, 63
polarisation, 39, 71
shifts of polarity, 115, 116

We assume familiarity with elementary notions from rewriting. If ⊳
is a rewriting relation, then:

• ⊳∗ denotes the reflexive and transitive closure of ⊳;
• ⊳+ denotes the transitive closure of ⊳;
• → denotes the compatible closure of ⊳, that is to say the extension

by application to a sub-term or a sub-command (when applic-
able);

• ≃ denotes the compatible equivalence relation (← ∪ →)∗.

If ⊳A𝑝
and ⊳B𝑝

are two relations on a calculus p, then ⊳AB𝑝
denotes

⊳A𝑝
∪ ⊳B𝑝

, etc.

Chapter II assumes familiarity with elementary notions from cat-
egory theory (for instance Mac Lane [ML71], chapters i-vi). When
𝒞 is a category, |𝒞 | denotes its set of objects. 1𝒞 denotes the identity
functor on 𝒞 . The notation 𝜏 ∶ 𝐹 .→ 𝐺 is for a natural transformation.
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We use the notation 𝐹 ⊣(𝜂,𝜀) 𝐺 ∶ 𝒞 → 𝒟 to denote an adjunction
with 𝐺 ∶ 𝒞 → 𝒟 , unit 𝜂 and co-unit 𝜀. Sometimes we use the nota-
tion 𝐹 ⊣(♯,♭) 𝐺 ∶ 𝒞 → 𝒟 to denote an adjunction with the natural
isomorphism:

𝒞 (𝐹−, =)
♯
⇄
♭

𝒟(−,𝐺=) .

We assume that we are given a first-order language whose terms are
written t, u and whose variables are written x, y.



Chapter I

The “L” approach
to programs and proofs

In this introduction to L calculi, we start from a λ calculus with
pairs and sums, for which we define an abstract machine leading to
the intuitionistic calculus Li. This allows us to introduce in a novel
way the necessary concepts and techniques, which are not specific
to L but which the L approach synthesises. Then we introduce
polarities, and finally we recall the interpretation of classical logic
with control operators. In the last section, we present the context for
the remaining chapters as well as their respective contributions.
This exposition is adapted from the notes1 of two courses given on Oc-
tober 24th 2011 and February 9th 2012 at the Groupe de Travail Logique
organised by the graduate students of ENS Ulm. They are inspired by
earlier published work (M.-M. [Mun09], Curien and M.-M. [CM10]).

I.1 NJ and the λ calculus
Gerhard Gentzen’s system NJ is introduced in Figure I.1 on page 49.
In Gentzen’s naming scheme, J stands for intuitionistic and N stands
for natural deduction.

An untyped λ calculus with pairs and sums, together with typing
rules based on NJ, is introduced in Figure I.2 on page 50. It is based
1Available from my web page [Mun11, Mun12].
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on the following grammar of expressions, or terms:

𝑡, 𝑢, 𝑣 ⩴ 𝑥 ∣ (𝑡, 𝑢) ∣ 𝜄1(𝑡) ∣ 𝜄2(𝑡) ∣ 𝜆𝑥.𝑡 ∣
fst(𝑡) ∣ snd(𝑡) ∣ match 𝑡 with (𝑢|𝑣) ∣ 𝑡 𝑢

The goal is for now to reduce terms according to the following naive
call-by-name reduction relation:

(𝜆𝑥.𝑡) 𝑢 ≻ 𝑡[𝑢/𝑥]
fst(𝑡, 𝑢) ≻ 𝑡
snd(𝑡, 𝑢) ≻ 𝑢
match 𝜄1(𝑡)with (𝑢|𝑣) ≻ 𝑢 𝑡
match 𝜄2(𝑡)with (𝑢|𝑣) ≻ 𝑣 𝑡

Three questions that arise in this setting are:

1. How can we define the evaluation of a term of the following
form?

match (𝜆𝑥.𝜄1(𝑡))𝑢with (𝑣|𝑤)

2. How can we model the fact that the following term:

(match 𝑥 with (𝜆𝑦𝜆𝑧.𝑡|𝜆𝑦𝜆𝑧.𝑢)) 𝑧

denotes the same proof or program as the following one?

match 𝑥 with (𝜆𝑦.𝑡|𝜆𝑦.𝑢)

3. How can we model the fact that the following term:

match 𝑡 with (𝜆𝑦.𝑢[𝜄1(𝑦)/𝑥]|𝜆𝑧.𝑢[𝜄2(𝑧)/𝑥])

denotes the same proof or program as the following one?

𝑢[𝑡/𝑥]
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𝐴, 𝐵 ⩴ 𝑋(x1,… , x𝑛) ∣ 𝐴 → 𝐵 ∣ 𝐴 ∧ 𝐵 ∣ 𝐴 ∨ 𝐵 ∣ ∀x𝐴 ∣ ∃x𝐴 ∣ ⊥
(a) Formulae

𝐴 𝐵—𝐴 ∧ 𝐵
𝐴 ∧ 𝐵—𝐴

𝐴 ∧ 𝐵—𝐵

𝐴—𝐴 ∨ 𝐵
𝐵—𝐴 ∨ 𝐵

𝐴 ∨ 𝐵 𝐴 → 𝐶 𝐵 → 𝐶—𝐶
𝐴—∗∀x 𝐴

∀x 𝐴(x)—𝐴(t)
𝐴(t)—∃x 𝐴(x)

∃y 𝐴(y) 𝐴(x) → 𝐵—∗𝐵
[𝐴]
𝐵—𝐴 → 𝐵

𝐴 → 𝐵 𝐴—𝐵

⊥—𝐴
∗: the variable x must not be free in the hypotheses.

(b) Rules
Figure I.1: Gentzen’s NJ [Gen35, Gen69]

Almost 80 years ago, Gentzen embedded his “Natural” proof struc-
tures into “Logistic” ones to carry out the proof of consistency of
arithmetic by means of reduction [Gen35]. We could say that the L
calculi answer the above questions by extending Gentzen’s insight
to term calculi. (This would not, however, do justice to computer
science and to its role in their discovery.)
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𝑡, 𝑢, 𝑣 ⩴ 𝑥 ∣ (𝑡, 𝑢) ∣ 𝜄1(𝑡) ∣ 𝜄2(𝑡) ∣ 𝜆𝑥.𝑡 ∣
fst(𝑡) ∣ snd(𝑡) ∣ match 𝑡 with (𝑢|𝑣) ∣ 𝑡 𝑢

(a) Syntax

𝑡 ∶ 𝐴 𝑢 ∶ 𝐵—(𝑡, 𝑢) ∶ 𝐴 ∧ 𝐵
𝑡 ∶ 𝐴 ∧ 𝐵—
fst(𝑡) ∶ 𝐴

𝑡 ∶ 𝐴 ∧ 𝐵—
snd(𝑡) ∶ 𝐵

𝑡 ∶ 𝐴—𝜄1(𝑡) ∶ 𝐴 ∨ 𝐵
𝑡 ∶ 𝐵—𝜄2(𝑡) ∶ 𝐴 ∨ 𝐵

𝑡 ∶ 𝐴 ∨ 𝐵 𝑢 ∶ 𝐴 → 𝐶 𝑣 ∶ 𝐵 → 𝐶—
match 𝑡 with (𝑢|𝑣) ∶ 𝐶

𝑡 ∶ 𝐴(x)—∗
𝑡 ∶ ∀x 𝐴(x)

𝑡 ∶ ∀x 𝐴(x)—𝑡 ∶ 𝐴(t)
𝑡 ∶ 𝐴(t)—𝑡 ∶ ∃x 𝐴(x)

𝑡 ∶ ∃y 𝐴(y) 𝑢 ∶ 𝐴(x) → 𝐵—∗𝑢 𝑡 ∶ 𝐵
[𝑥∶𝐴]
𝑡 ∶ 𝐵—𝜆𝑥.𝑡 ∶ 𝐴 → 𝐵

𝑡 ∶ 𝐴 → 𝐵 𝑢 ∶ 𝐴—𝑡 𝑢 ∶ 𝐵

𝑡 ∶ ⊥—𝑡 ∶ 𝐴
∗: the variable x must not be free in the hypotheses.

(b) Rules

(𝜆𝑥.𝑡) 𝑢 ≻ 𝑡[𝑢/𝑥]
fst(𝑡, 𝑢) ≻ 𝑡
snd(𝑡, 𝑢) ≻ 𝑢
match 𝜄1(𝑡)with (𝑢|𝑣) ≻ 𝑢 𝑡
match 𝜄2(𝑡)with (𝑢|𝑣) ≻ 𝑣 𝑡
(c) Naive reduction relation

Figure I.2: λ calculus with pairs and sums
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I.2 Abstract machines

In order to reduce “match (𝜆𝑥.𝜄1(𝑡))𝑢with (𝑣|𝑤)”, it is necessary to first
reduce (𝜆𝑥.𝜄1(𝑡))𝑢 — reduction must therefore happen in certain
reduction contexts, here match□with (𝑣|𝑤).

For our purposes, an abstract machine is given by a grammar of
expressions 𝑡, a grammar of contexts 𝑒, which are given a formal
status2, and rewriting rules on pairs ⟨𝑡 ‖ 𝑒 ⟩ (commands) that extend
reduction to contexts.

Let us define an abstract machine for our λ calculus. First we
define contexts as follows:

𝑒 ⩴ ⋆ ∣ fst⋅𝑒 ∣ snd⋅𝑒 ∣ (𝑢|𝑣)⋅𝑒 ∣ 𝑢⋅𝑒

In particular, ⋆ is a symbol that represents the empty context. Com-
mands are defined with:

𝑐 ⩴ ⟨𝑡 ‖𝑒⟩

We now define the reduction relation ⊳R on commands.

Main reductions Variables are substituted, pairs are projected,
branches are chosen:

⟨𝜆𝑥.𝑡 ‖𝑢⋅𝑒⟩ ⊳R ⟨𝑡[𝑢/𝑥]‖𝑒⟩
⟨(𝑡, 𝑢)‖ fst⋅𝑒⟩ ⊳R ⟨𝑡 ‖𝑒⟩

⟨(𝑡, 𝑢)‖ snd⋅𝑒⟩ ⊳R ⟨𝑢‖𝑒⟩
⟨𝜄1(𝑡)‖(𝑢|𝑣)⋅𝑒⟩ ⊳R ⟨𝑢‖𝑡⋅𝑒⟩
⟨𝜄2(𝑡)‖(𝑢|𝑣)⋅𝑒⟩ ⊳R ⟨𝑣‖𝑡⋅𝑒⟩

2Throughout the thesis we use the terminology reduction context or evaluation
context to refer to terms 𝑡 with a hole □ (a distinguished variable that ap-
pears exactly once), and context alone to refer to the formal object 𝑒.
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Adjoint reductions Projections, branches and function application
build up the context.

⟨fst(𝑢)‖𝑒⟩ ⊳R ⟨𝑢‖ fst⋅𝑒⟩
⟨snd(𝑢)‖𝑒⟩ ⊳R ⟨𝑢‖ snd⋅𝑒⟩

⟨match 𝑡 with (𝑢|𝑣)‖𝑒⟩ ⊳R ⟨𝑡 ‖(𝑢|𝑣)⋅𝑒⟩
⟨𝑡 𝑢‖𝑒⟩ ⊳R ⟨𝑡 ‖𝑢⋅𝑒⟩

We called adjoint reductions as such because they are all of the form:

“⟨𝜏∗(𝑡)‖𝑒⟩ ⊳R ⟨𝑡 ‖𝜏(𝑒)⟩” .

In other words, adjoint reductions state that the destructive opera-
tions of the λ calculus are, by analogy with linear algebra, adjoint to
the constructions on contexts.

Main reductions and adjoint reductions define ⊳R as a determin-
istic relation: if 𝑐 ⊳R 𝑐′ and 𝑐 ⊳R 𝑐″ then 𝑐′ = 𝑐″.

Example I.1. The term “match (𝜆𝑥.𝜄1(𝑡))𝑢with (𝑣|𝑤)” reduces as fol-
lows:

⟨match (𝜆𝑥.𝜄1(𝑡))𝑢with (𝑣|𝑤)‖𝑒⟩
⊳R ⟨(𝜆𝑥.𝜄1(𝑡))𝑢‖(𝑣|𝑤)⋅𝑒⟩
⊳R ⟨𝜆𝑥.𝜄1(𝑡)‖𝑢⋅(𝑣|𝑤)⋅𝑒⟩
⊳R ⟨𝜄1(𝑡[𝑢/𝑥])‖(𝑣|𝑤)⋅𝑒⟩
⊳R ⟨𝑣‖𝑡[𝑢/𝑥]⋅𝑒⟩

In particular, the original term is equivalent to 𝑣 𝑡[𝑢/𝑥].
In an informal way, and despite the absence of ambiguity in the

grammar, we find useful to write |𝑒⟩ to indicate that 𝑒 is a context and
⟨𝑡 | to indicate that 𝑡 is an expression.3 (The convention is important
3We will see in Section IV.4.2 that the bracket notation is justified by an

analogy with distributions and test functions in mathematics.
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in Chapter III.)

Formal adjoints
In Figure I.3 on the following page we summarise the machine,
where we add one more ingredient. In Figure I.3 we removed projec-
tion, branching and application, and we replaced them with a formal
adjoint operation:

𝑡, 𝑢 ⩴ 𝑥 ∣ (𝑡, 𝑢) ∣ 𝜄1(𝑡) ∣ 𝜄2(𝑡) ∣ 𝜆𝑥.𝑡 ∣ 𝑐∗.

The adjoint has the following reduction rule:�� ��⟨𝑐∗ ‖𝑒⟩ ⊳R 𝑐[𝑒/⋆] .

With 𝑐[𝑒/⋆] we replace with 𝑒 any free ⋆ in 𝑐. Free occurrences of ⋆
are the ones that are not under ⋅∗, that is, we consider ⋆ to be bound
in 𝑐∗.

Solving equations
The adjoint can now be used to solve the rules of adjoint reductions.
For instance we consider the following rule:

⟨𝑡 𝑢‖𝑒⟩ ⊳R ⟨𝑡 ‖𝑢⋅𝑒⟩

as an (in)equation where the unknown is 𝑡 𝑢. Since we have:

⟨⟨𝑡 ‖𝑢⋅⋆⟩∗ ∥𝑒⟩ ⊳R ⟨𝑡 ‖𝑢⋅𝑒⟩ ,

we can define: �� ��𝑡 𝑢 ≝ ⟨𝑡 ‖𝑢⋅⋆⟩∗ .

We may also define similarly:

fst(𝑡) ≝ ⟨𝑡 ‖ fst⋅⋆⟩∗

snd(𝑡) ≝ ⟨𝑡 ‖ snd⋅⋆⟩∗

match 𝑡 with (𝑢|𝑣) ≝ ⟨𝑡 ‖(𝑢|𝑣)⋅⋆⟩∗
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𝑡, 𝑢 ⩴ 𝑥 ∣ (𝑡, 𝑢) ∣ 𝜄1(𝑡) ∣ 𝜄2(𝑡) ∣ 𝜆𝑥.𝑡 ∣ 𝑐∗

𝑒 ⩴ ⋆ ∣ fst⋅𝑒 ∣ snd⋅𝑒 ∣ (𝑢|𝑣)⋅𝑒 ∣ 𝑢⋅𝑒
𝑐 ⩴ ⟨𝑡 ‖𝑒⟩
(a) Terms, contexts, and commands

⟨𝜆𝑥.𝑡 ‖𝑢⋅𝑒⟩ ⊳R ⟨𝑡[𝑢/𝑥]‖𝑒⟩
⟨(𝑡, 𝑢)‖ fst⋅𝑒⟩ ⊳R ⟨𝑡 ‖𝑒⟩
⟨(𝑡, 𝑢)‖ snd⋅𝑒⟩ ⊳R ⟨𝑢‖𝑒⟩
⟨𝜄1(𝑡)‖(𝑢|𝑣)⋅𝑒⟩ ⊳R ⟨𝑢‖𝑡⋅𝑒⟩
⟨𝜄2(𝑡)‖(𝑢|𝑣)⋅𝑒⟩ ⊳R ⟨𝑣‖𝑡⋅𝑒⟩
⟨𝑐∗ ‖𝑒⟩ ⊳R 𝑐[𝑒/⋆]

(b) Reduction rules

fst(𝑡) ≝ ⟨𝑡 ‖ fst⋅⋆⟩∗

snd(𝑡) ≝ ⟨𝑡 ‖ snd⋅⋆⟩∗

match 𝑡 with (𝑢|𝑣) ≝ ⟨𝑡 ‖(𝑢|𝑣)⋅⋆⟩∗

𝑡 𝑢 ≝ ⟨𝑡 ‖𝑢⋅⋆⟩∗

(c) Definition of destructive operations
Figure I.3: An abstract machine for the λ calculus

To sum up, the basic operations have a symmetry: some construct
the terms, others construct the contexts. This brings to mind the
symmetry of Gentzen’s sequent calculus, which we recall in the next
section.

I.3 The sequent calculus LJ
We introduce Gentzen’s intuitionistic sequent calculus LJ on Fig-
ure I.4 on page 56. Lmeant logistic for Gentzen, that is to say easy to
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manipulate formally — as opposed to natural to reason in.
An intuitionistic sequent is of the form:

Γ ⊢ 𝐵

where Γ = 𝐴1,… , 𝐴𝑛 is an unordered list of hypotheses.4 The se-
quent corresponds to the proposition:

(𝐴1 ∧…∧ 𝐴𝑛) → 𝐵

Example I.2. The elimination of implication is derived as follows:

Γ ⊢ 𝐴 → 𝐵
Γ ⊢ 𝐴 —Γ, 𝐵 ⊢ 𝐵—Γ, 𝐴 → 𝐵 ⊢ 𝐵—Γ ⊢ 𝐵

I.4 Typing of machines
We introduce in Figure I.5 on page 59 the type system for the ab-
stract machines. The connection between abstract machines and the
sequent calculus comes up when we try to match Gentzen’s cut rule:

Γ ⊢ 𝐴 Γ, 𝐴 ⊢ 𝐵—Γ ⊢ 𝐵

with the following typing rule for commands:�
�

�
�

Γ ⊢ 𝑡 ∶ 𝐴 Γ ∣ 𝑒 ∶ 𝐴 ⊢ ⋆ ∶ 𝐵—
⟨𝑡 ‖𝑒⟩ ∶ (Γ ⊢ ⋆ ∶ 𝐵)

4We formulated Gentzen’s system with implicit structural rules (otherwise
known as the additive style) because in the technical part of the thesis, the
use of variables will provide the proper control over the typing contexts.
Without variables, explicit structural rules and reordering of the hypotheses
are crucial in Gentzen’s main result [Gen35].
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—Γ, 𝐴 ⊢ 𝐴
Γ ⊢ 𝐴 Γ, 𝐴 ⊢ 𝐵—Γ ⊢ 𝐵

Γ ⊢ 𝐴 Γ ⊢ 𝐵—Γ ⊢ 𝐴 ∧ 𝐵
Γ, 𝐴 ⊢ 𝐶—Γ, 𝐴 ∧ 𝐵 ⊢ 𝐶

Γ, 𝐵 ⊢ 𝐶—Γ, 𝐴 ∧ 𝐵 ⊢ 𝐶
Γ ⊢ 𝐴—Γ ⊢ 𝐴 ∨ 𝐵

Γ ⊢ 𝐵—Γ ⊢ 𝐴 ∨ 𝐵
Γ, 𝐴 ⊢ 𝐶 Γ, 𝐵 ⊢ 𝐶—Γ, 𝐴 ∨ 𝐵 ⊢ 𝐶

Γ ⊢ 𝐴—∗
Γ ⊢ ∀x 𝐴

Γ, 𝐴(t) ⊢ 𝐵—Γ, ∀x 𝐴(x) ⊢ 𝐵
Γ ⊢ 𝐴(t)—Γ ⊢ ∃x 𝐴(x)

Γ, 𝐴 ⊢ 𝐵—∗
Γ, ∃x 𝐴 ⊢ 𝐵

Γ, 𝐴 ⊢ 𝐵—Γ ⊢ 𝐴 → 𝐵
Γ ⊢ 𝐴 Γ, 𝐵 ⊢ 𝐶—Γ, 𝐴 → 𝐵 ⊢ 𝐶

—Γ, ⊥ ⊢ 𝐴
∗: the variable x must not be free in Γ, 𝐵
Figure I.4: Gentzen’s LJ [Gen35, Gen69]

where Γ becomes a function from a finite set of variables to formulae
𝑥1 ∶ 𝐴1,… , 𝑥𝑛 ∶ 𝐴𝑛.

There are now three judgements. The first one is similar to the one
from natural deduction:

Γ ⊢ 𝑡 ∶ 𝐴
It reads “𝑡 is a proof of 𝐴 under hypotheses Γ” or “𝑡 has type 𝐴 under the
typing context Γ”. The next one is:

Γ ∣ 𝑒 ∶ 𝐴 ⊢ ⋆ ∶ 𝐵

It reads “𝑒 is a refutation of 𝐴, or we have 𝐵” or “𝑒 expects a program of
type 𝐴 and returns 𝐵”. This corresponds to a sequent Γ, 𝐴 ⊢ 𝐵, with
the vertical separation ∣ between the context 𝑒 and the hypotheses Γ
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being added for more legibility. In a sequent, the formula that types
𝑡 on the right or 𝑒 on the left is calledmain.

The third judgement deals with commands:

⟨𝑡 ‖𝑒⟩ ∶ (Γ ⊢ ⋆ ∶ 𝐵)

In other words, ⟨ 𝑡 ‖ 𝑒 ⟩ does not have a type on its own, and the
sequent has no main formula.

There are two novelties compared to LJ. First, the axiom rule:

—Γ, 𝐴 ⊢ 𝐴

is split in two:

—Γ, 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴—Γ ∣ ⋆ ∶ 𝐴 ⊢ ⋆ ∶ 𝐴

Second, if we want to type ⟨ 𝑐∗ ‖ 𝑒 ⟩ , say with a cut rule involving a
formula 𝐴, then according to the reduction rule ⟨ 𝑐∗ ‖ 𝑒 ⟩ ⊳R 𝑐[𝑒/⋆],
the command 𝑐 must be typable with conclusion ⋆ ∶ 𝐴. Thus we
introduce a new rule:

𝑐 ∶ (Γ ⊢ ⋆ ∶ 𝐴)—Γ ⊢ 𝑐∗ ∶ 𝐴

Notice that the underlying sequent calculus rule:

Γ ⊢ 𝐴—Γ ⊢ 𝐴

is superfluous in LJ.

Example I.3. The defining equation for 𝑡 𝑢 can be retrieved through
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the derivation of the elimination of implication from example I.2:

Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵
Γ ⊢ 𝑢 ∶ 𝐴 —Γ ∣ ⋆ ∶ 𝐵 ⊢ ⋆ ∶ 𝐵—Γ ∣ 𝑢⋅⋆ ∶ 𝐴 → 𝐵 ⊢ ⋆ ∶ 𝐵—

⟨𝑡 ‖𝑢⋅⋆⟩ ∶ (Γ ⊢ ⋆ ∶ 𝐵)—Γ ⊢ ⟨𝑡 ‖𝑢⋅⋆⟩∗ ∶ 𝐵

Issues with abstract machines
There are two issues that prevent us so far from having a correspond-
ence between abstract machines and sequent calculus; and therefore
we still have more to discover.

1. It is not possible to perform an introduction rule on an arbitrary
formula on the left. Indeed, our left-introduction rules are so far
restricted to proofs obtained starting from ⋆ and applying only
left-introduction rules on the distinguished spot in the sequent.

2. The rules for the introduction of ∨ and ∃ on the left are incredibly
remote from the rules of sequent calculus.

The symmetry of sequent calculus, and in particular the one between
conjunction and disjunction, suggests the following rule for the in-
troduction of ∨ on the left:

Γ ∣ 𝑒 ∶ 𝐴 ⊢ ⋆ ∶ 𝐷 Γ ∣ 𝑒′ ∶ 𝐵 ⊢ ⋆ ∶ 𝐷—Γ ∣ (𝑒|𝑒′) ∶ 𝐴 ∨ 𝐵 ⊢ ⋆ ∶ 𝐷

This suggests that we add a new constructor for contexts:

(𝑒|𝑒′)

with new reductions that we guess by symmetry:

⟨𝜄1(𝑡)‖(𝑒1|𝑒2)⟩ ⊳R ⟨𝑡 ‖𝑒1⟩
⟨𝜄2(𝑢)‖(𝑒1|𝑒2)⟩ ⊳R ⟨𝑡 ‖𝑒2⟩
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Γ ⊢ 𝑡 ∶ 𝐴 Γ ∣ 𝑒 ∶ 𝐴 ⊢ ⋆ ∶ 𝐵 ⟨𝑡 ‖𝑒⟩ ∶ (Γ ⊢ ⋆ ∶ 𝐵)
(a) Judgements

—Γ, 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴
—Γ ∣ ⋆ ∶ 𝐴 ⊢ ⋆ ∶ 𝐴

𝑐 ∶ (Γ ⊢ ⋆ ∶ 𝐴)—Γ ⊢ 𝑐∗ ∶ 𝐴
Γ ⊢ 𝑡 ∶ 𝐴 Γ ∣ 𝑒 ∶ 𝐴 ⊢ ⋆ ∶ 𝐵—

⟨𝑡 ‖𝑒⟩ ∶ (Γ ⊢ ⋆ ∶ 𝐵)
Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑢 ∶ 𝐵—Γ ⊢ (𝑡, 𝑢) ∶ 𝐴 ∧ 𝐵

Γ ∣ 𝑒 ∶ 𝐴 ⊢ 𝐶—Γ ∣ fst⋅𝑒 ∶ 𝐴 ∧ 𝐵 ⊢ 𝐶
Γ ∣ 𝑒 ∶ 𝐵 ⊢ 𝐶—Γ ∣ snd⋅𝑒 ∶ 𝐴 ∧ 𝐵 ⊢ 𝐶

Γ ⊢ 𝑡 ∶ 𝐴—Γ ⊢ 𝜄1(𝑡) ∶ 𝐴 ∨ 𝐵
Γ ⊢ 𝑡 ∶ 𝐵—Γ ⊢ 𝜄2(𝑡) ∶ 𝐴 ∨ 𝐵

†

Γ ⊢ 𝑡 ∶ 𝐴—§Γ ⊢ 𝑡 ∶ ∀x 𝐴
Γ ∣ 𝑒 ∶ 𝐴(t) ⊢ 𝐵—Γ ∣ 𝑒 ∶ ∀x 𝐴(x) ⊢ 𝐵

Γ ⊢ 𝑡 ∶ 𝐴(t)—Γ ⊢ 𝑡 ∶ ∃x 𝐴(x)
‡

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵—Γ ⊢ 𝜆𝑥.𝑡 ∶ 𝐴 → 𝐵
Γ ⊢ 𝑡 ∶ 𝐴 Γ ∣ 𝑒 ∶ 𝐵 ⊢ ⋆ ∶ 𝐶—Γ ∣ 𝑡⋅𝑒 ∶ 𝐴 → 𝐵 ⊢ ⋆ ∶ 𝐶

—Γ ∣ ⋆ ∶ ⊥ ⊢ ⋆ ∶ 𝐴

(b) Rules

† ∶ Γ ∣ 𝑒 ∶ 𝐶 ⊢ ⋆ ∶ 𝐷 Γ ⊢ 𝑡 ∶ 𝐴 → 𝐶 Γ ⊢ 𝑢 ∶ 𝐵 → 𝐶—Γ ∣ (𝑡|𝑢)⋅𝑒 ∶ 𝐴 ∨ 𝐵 ⊢ ⋆ ∶ 𝐷

‡ ∶ Γ ⊢ 𝑡 ∶ ∃y 𝐴(y) Γ ∣ 𝑒 ∶ 𝐵 ⊢ ⋆ ∶ 𝐶—§Γ ∣ 𝑡⋅𝑒 ∶ 𝐴(x) → 𝐵 ⊢ ⋆ ∶ 𝐶
(c)Wrong rules

§: the variable x must not be free in Γ, 𝐶
Figure I.5: Typing of machines in LJ (wrong)
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However, we still miss an ingredient in order to simulate the oper-
ation match 𝑡 with (𝑢|𝑣) in a context 𝑒′, in other words to simulate the
corresponding context (𝑢|𝑣)⋅𝑒′. Indeed, the constructor (𝑒|𝑒′) above
lets us model the selection of a branch, but now we need to find
contexts 𝑒1 and 𝑒2 that push 𝑡 onto the stack as match 𝑡 with (𝑢|𝑣) does.
In other words we are looking for contexts 𝑒1 and 𝑒2 such that:

⟨𝑡 ‖𝑒1⟩ ⊳R ⟨𝑢‖𝑡⋅𝑒′⟩
⟨𝑡 ‖𝑒2⟩ ⊳R ⟨𝑣‖𝑡⋅𝑒′⟩

We need a context constructor that is symmetric to the adjoint oper-
ation ⋅∗.

I.5 Enter μ̃

We are looking for two contexts 𝑒1 and 𝑒2 that associate to whatever
term ⟨ 𝑡 | the commands ⟨ 𝑢 ‖ 𝑡⋅𝑒′ ⟩ and ⟨ 𝑣 ‖ 𝑡⋅𝑒′ ⟩ — in an informal
notation:

| 𝑒1⟩ ∶ 𝑥 ↦ ⟨𝑢‖𝑥⋅𝑒′⟩
|𝑒2⟩ ∶ 𝑥 ↦ ⟨𝑣‖𝑥⋅𝑒′⟩

We introduce the binder ̃𝜇 in order to define such contexts. We write
| ̃𝜇𝑥.𝑐 ⟩ , with 𝑥 bound in 𝑐 by ̃𝜇, the context that associates to each
term ⟨𝑡 | the command 𝑐[𝑡/𝑥]:�� ��⟨𝑡 ‖ ̃𝜇𝑥.𝑐⟩ ⊳R 𝑐[𝑡/𝑥] .

This suggests that we take:

| 𝑒1⟩ = ∣ ̃𝜇𝑥.⟨𝑢‖𝑥⋅𝑒′⟩⟩
|𝑒2⟩ = ∣ ̃𝜇𝑥.⟨𝑣‖𝑥⋅𝑒′⟩⟩
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A generic motivation for introducing | ̃𝜇𝑥.𝑐 ⟩ is that its presence
implies the completeness of the grammar of contexts with respect
to the reduction contexts that we can already express as terms with
a hole. The contexts we are looking for can indeed already be ex-
pressed as terms with a hole:

⟨𝑢□‖𝑒′⟩∗ and ⟨𝑣□‖𝑒′⟩∗.

We were only missing a notation to assert their presence in the
grammar 𝑒. With the binder ̃𝜇, however, we can represent any term
with a hole 𝐸□ as:

̃𝜇𝑥.⟨𝐸[𝑥]‖⋆⟩

(Conversely, the context ∣ ̃𝜇𝑥.⟨𝑡 ‖𝑒⟩⟩ corresponds to the following
reduction context:

(𝜆𝑥.𝐸[𝑡])□
if 𝐸□ is a reduction context that corresponds to 𝑒. In particular,
defining a term with a hole that corresponds to a context is more
tedious since it requires an induction.)

I.5.1 Stacks vs. contexts

The problem is that the reduction rule for ̃𝜇:

⟨𝑡 ‖ ̃𝜇𝑥.𝑐⟩ ⊳R 𝑐[𝑡/𝑥]

conflicts with the one we gave so far for 𝑐∗:

⟨𝑐∗ ‖𝑒⟩ ⊳R 𝑐[𝑒/⋆]

Therefore, if we admit ̃𝜇𝑥.𝑐 in the grammar of 𝑒 then the reduction
is no longer deterministic. Consider for instance the following com-
mand:

𝑐 ≝ ⟨𝑡 𝑢∥ ̃𝜇𝑥.⟨𝑣‖⋆⟩⟩
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(it corresponds to the program let 𝑥 = 𝑡 𝑢 in 𝑣). If we want to stick
with the call-by-name reductions that we considered so far, then we
must allow the following reduction:

𝑐 ⊳R ⟨𝑣[𝑡 𝑢/𝑥]‖⋆⟩

and forbid the reduction into the following command:

⟨𝑡 ∥𝑢⋅ ̃𝜇𝑥.⟨𝑣‖⋆⟩⟩

Indeed, the latter computes 𝑡 before 𝑣, which is not what we want
— for the moment. This shows that we must not treat ̃𝜇𝑥.𝑐 like any
other context.

Let us denote a new grammar for contexts that excludes ̃𝜇𝑥.𝑐 that
we call stacks, and which we write 𝜋5 following Krivine [Kri09].

𝜋 ⩴ ⋆ ∣ fst⋅𝜋 ∣ snd⋅𝜋 ∣ (𝑒|𝑒) ∣ 𝑢⋅𝜋

Contexts 𝑒 are now either 𝜋 or ̃𝜇𝑥.𝑐 (thus, a context is not necessarily
a stack). �� ��𝑒 ⩴ 𝜋 ∣ ̃𝜇𝑥.𝑐

Notice that we added contexts of the form (𝑒|𝑒′) and consider them
as stacks.

With this distinction we can now restrict the reduction of 𝑐∗ to the
following rule:

⟨𝑐∗ ‖𝜋⟩ ⊳R 𝑐[𝜋/⋆]

We summarise our development so far with the calculus Li (Fig-
ure I.7 on page 64; i stands for intuitionistic, or introductory).

5for “pile” (stack in French).
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Linear for In sequent calculus
Context 𝑒 Rewriting Main formula
Stack 𝜋 Denotational semantics Stoup (see IV.6 and III.2.8)

Table I.6: Two notions of linearity

I.5.2 The two notions of linearity

We just uncovered with contexts and stacks a fundamental differ-
ence between two notions of linearity (Table I.6 on this page):

• A context 𝑒 is syntactically linear, in the sense that it denotes a
term with a hole □ where □ occurs exactly once. This notion
belongs to rewriting theory and underlies the confluence of the
compatible closure of ⊳R , for instance.

• A stack 𝜋 denotes a context that is linear according to (a syntactic
approximation of) operational linearity. By operational linearity
we mean that the opposing term is evaluated at most and at least
once. This notion of linearity is visible notably in denotational
semantics (Girard [Gir87]).

I.5.3 The solution

We are now trying to reproduce the following reductions:

⟨match 𝑡 with (𝑢|𝑣)‖𝜋⟩ ⊳R ⟨𝑡 ‖(𝑢|𝑣)⋅𝜋⟩
⟨𝜄1(𝑡)‖(𝑢|𝑣)⋅𝜋⟩ ⊳R ⟨𝑢‖𝑡⋅𝜋⟩
⟨𝜄2(𝑡)‖(𝑢|𝑣)⋅𝜋⟩ ⊳R ⟨𝑣‖𝑡⋅𝜋⟩
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𝑡, 𝑢 ⩴ 𝑥 ∣ (𝑡, 𝑢) ∣ 𝜄1(𝑡) ∣ 𝜄2(𝑡) ∣ 𝜆𝑥.𝑡 ∣ 𝑐∗

𝑒 ⩴ 𝜋 ∣ ̃𝜇𝑥.𝑐
𝜋 ⩴ ⋆ ∣ fst⋅𝜋 ∣ snd⋅𝜋 ∣ (𝑒|𝑒) ∣ 𝑢⋅𝜋
𝑐 ⩴ ⟨𝑡 ‖𝑒⟩

(a) Terms, contexts, stacks andmachines

⟨𝜆𝑥.𝑡 ‖𝑢⋅𝜋⟩ ⊳R ⟨𝑡[𝑢/𝑥]‖𝜋⟩
⟨(𝑡, 𝑢)‖ fst⋅𝜋⟩ ⊳R ⟨𝑡 ‖𝜋⟩
⟨(𝑡, 𝑢)‖ snd⋅𝜋⟩ ⊳R ⟨𝑢‖𝜋⟩
⟨𝜄1(𝑡)‖(𝑒1|𝑒2)⟩ ⊳R ⟨𝑡 ‖𝑒1⟩
⟨𝜄2(𝑡)‖(𝑒1|𝑒2)⟩ ⊳R ⟨𝑡 ‖𝑒2⟩
⟨𝑐∗ ‖𝜋⟩ ⊳R 𝑐[𝜋/⋆]
⟨𝑡 ‖ ̃𝜇𝑥.𝑐⟩ ⊳R 𝑐[𝑡/𝑥]

(b) Reduction rules

fst(𝑡) ≝ ⟨𝑡 ‖ fst⋅⋆⟩∗

snd(𝑡) ≝ ⟨𝑡 ‖ snd⋅⋆⟩∗

match 𝑡 with (𝑢|𝑣) ≝ ⟨𝑡 ∥( ̃𝜇𝑥.⟨𝑢‖𝑥⋅⋆⟩| ̃𝜇𝑥.⟨𝑣‖𝑥⋅⋆⟩)⟩∗

𝑡 𝑢 ≝ ⟨𝑡 ‖𝑢⋅⋆⟩∗

(c) Definition of destructive operations
Figure I.7: Li: the calculus
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First we define (𝑢|𝑣)⋅𝜋 as (𝑒1|𝑒2) where 𝑒1 and 𝑒2 are solutions of the
following equations:

⟨𝑡 ‖𝑒1⟩ ⊳R ⟨𝑢‖𝑡⋅𝜋⟩
⟨𝑡 ‖𝑒2⟩ ⊳R ⟨𝑣‖𝑡⋅𝜋⟩

In other words we take:

| 𝑒1⟩ ≝ ∣ ̃𝜇𝑥.⟨𝑢‖𝑥⋅𝜋⟩⟩
|𝑒2⟩ ≝ ∣ ̃𝜇𝑥.⟨𝑣‖𝑥⋅𝜋⟩⟩

And finally we take:�� ��⟨match 𝑡 with (𝑢|𝑣) | ≝ ⟨𝑡 ∥( ̃𝜇𝑥.⟨𝑢‖𝑥⋅⋆⟩| ̃𝜇𝑥.⟨𝑣‖𝑥⋅⋆⟩)⟩∗ .

I.6 Benefits of μ̃

I.6.1 Disappearance of commutative cuts
One goal was to identify the following term:

(match 𝑥 with (𝜆𝑦𝜆𝑧.𝑡|𝜆𝑦𝜆𝑧.𝑢)) 𝑧

with the following one:

match 𝑥 with (𝜆𝑦.𝑡|𝜆𝑦.𝑢)

With our new definition, we have:

⟨(match 𝑥 with (𝜆𝑦𝜆𝑧.𝑡|𝜆𝑦𝜆𝑧.𝑢)) 𝑧‖𝜋⟩
⊳R ⟨match 𝑥 with (𝜆𝑦𝜆𝑧.𝑡|𝜆𝑦𝜆𝑧.𝑢)‖𝑧⋅𝜋⟩
⊳R ⟨𝑥∥( ̃𝜇𝑦.⟨𝜆𝑦𝜆𝑧.𝑡 ‖𝑦⋅𝑧⋅𝜋⟩| ̃𝜇𝑦.⟨𝜆𝑦𝜆𝑧.𝑢‖𝑦⋅𝑧⋅𝜋⟩)⟩
→∗

R⟨𝑥∥( ̃𝜇𝑦.⟨𝑡 ‖𝜋⟩| ̃𝜇𝑦.⟨𝑢‖𝜋⟩)⟩
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⟨match 𝑥 with (𝜆𝑦.𝑡|𝜆𝑦.𝑢)‖𝜋⟩
⊳R ⟨𝑥∥( ̃𝜇𝑦.⟨𝜆𝑦.𝑡 ‖𝑦⋅𝜋⟩| ̃𝜇𝑦.⟨𝜆𝑦.𝑢‖𝑦⋅𝜋⟩)⟩
→∗

R ⟨𝑥∥( ̃𝜇𝑦.⟨𝑡 ‖𝜋⟩| ̃𝜇𝑦.⟨𝑢‖𝜋⟩)⟩

In other words, the reduction in the calculus Li ensures:�� ��⟨match 𝑥 with (𝜆𝑦𝜆𝑧.𝑡|𝜆𝑦𝜆𝑧.𝑢) 𝑧‖𝜋⟩ ≃R ⟨match 𝑥 with (𝜆𝑦.𝑡|𝜆𝑦.𝑢)‖𝜋⟩

Notice that in order to establish the equivalence we only used reduc-
tion: we did not need to introduce extensionality equations.
Commutative cuts are sequences of elimination rules in natural de-

duction where a local reduction rule move one elimination rule to
the leaves of the proof. These reductions essentially implement iden-
tifications of the above kind. For instance, the following derivation
ofNJ:

⋮
𝐶

𝐴 ∨ 𝐵
[𝐴]
⋮

𝐶 → 𝐷

[𝐵]
⋮

𝐶 → 𝐷
—𝐶 → 𝐷

—𝐷
corresponds to (match 𝑥 with (𝜆𝑦𝜆𝑧.𝑡|𝜆𝑦𝜆𝑧.𝑢)) 𝑧 and is reduced to the
following one:

𝐴 ∨ 𝐵

⋮
𝐶

[𝐴]
⋮

𝐶 → 𝐷
—𝐷

⋮
𝐶

[𝐵]
⋮

𝐶 → 𝐷
—𝐷—𝐷

which corresponds to match 𝑥 with (𝜆𝑦.𝑡|𝜆𝑦.𝑢).
There are many variants, where 𝐶 → 𝐷 is replaced by other con-

nectives. They are tedious to list, but absolutely necessary in the
presence of positive connectives such as disjunction and conjunc-
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tion. Without them, natural deduction does not have the sub-
formula property [Gir06]. All these rules follow naturally from the
reduction rules in the L calculi.

I.6.2 A correspondence with sequent calculus

We present in Figure I.8 on page 69 the typing rules of the calculus
Li inspired by LJ. We have now the correct rules for ∨ and ∃:

Γ ∣ 𝑒 ∶ 𝐴 ⊢ ⋆ ∶ 𝐶 Γ ∣ 𝑒′ ∶ 𝐵 ⊢ ⋆ ∶ 𝐶—Γ ∣ (𝑒|𝑒′) ∶ 𝐴 ∨ 𝐵 ⊢ ⋆ ∶ 𝐶
Γ ∣ 𝑒 ∶ 𝐴 ⊢ 𝐵—§Γ ∣ 𝑒 ∶ ∃x 𝐴(x) ⊢ 𝐵

The new construct ̃𝜇𝑥 is typed symmetrically to the adjoint 𝑐∗:

𝑐 ∶ (Γ, 𝑥 ∶ 𝐴 ⊢ ⋆ ∶ 𝐵)—Γ ∣ ̃𝜇𝑥.𝑐 ∶ 𝐴 ⊢ ⋆ ∶ 𝐵

This rule is called activation; it has an inverse operation that we call
deactivation. It is derived using a variable and a cut:

Γ ∣ 𝑒 ∶ 𝐴 ⊢ ⋆ ∶ 𝐵
——

⟨𝑥 ‖𝑒⟩ ∶ (Γ, 𝑥 ∶ 𝐴 ⊢ ⋆ ∶ 𝐵)

Like for the adjoint and activation, deactivation corresponds to the
identity on the underlying sequent:

Γ, 𝐴 ⊢ 𝐵—Γ, 𝐴 ⊢ 𝐵

With activation and deactivation, the rules on the left are no
longer constrained. For instance, there is a derivation:

Γ ∣ 𝑒 ∶ 𝐴 ⊢ 𝐶
——Γ ∣ fst⋅𝑒 ∶ 𝐴 ∧ 𝐵 ⊢ 𝐶
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where we define: �� ��fst⋅𝑒 ≝ ̃𝜇𝑥.⟨⟨𝑥‖ fst⋅⋆⟩∗ ∥𝑒⟩ .

This means that there exist unconstrained evaluation contexts,

fst⋅𝑒, snd⋅𝑒, 𝑢⋅𝑒,

that are defined by the following reduction rules that we call 𝜍6:

⟨𝑡 ‖ fst⋅𝑒⟩ ⊳R ⟨⟨𝑡 ‖ fst⋅⋆⟩∗ ∥𝑒⟩
⟨𝑡 ‖ snd⋅𝑒⟩ ⊳R ⟨⟨𝑡 ‖ snd⋅⋆⟩∗ ∥𝑒⟩

⟨𝑡 ‖𝑢⋅𝑒⟩ ⊳R ⟨⟨𝑡 ‖𝑢⋅⋆⟩∗ ∥𝑒⟩

The phenomenon by which certain introduction rules hide cuts is
called focalisation.

As an off-hand remark, we we will see in Section IV.6 that the
L calculi have better properties if we explicitly include the 𝜍 rules,
rather than letting generalised contexts being defined “by hand” as
above.

Gentzen eliminated cuts in sequent calculus in order to prove the
consistency of arithmetic. We can establish the following corres-
pondence:7

eliminating cuts ⟺ reducing commands

6We follow the terminology of Wadler [Wad03].
7With the convention that a command ⟨𝑥 ‖𝑒⟩ or ⟨𝑡 ‖𝛼⟩ is not a cut, as suggested

by Wadler [Wad03]. The cut-elimination procedure is different however from
the one considered by Gentzen.
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—Γ, 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴
—Γ ∣ ⋆ ∶ 𝐴 ⊢ ⋆ ∶ 𝐴

𝑐 ∶ (Γ ⊢ ⋆ ∶ 𝐴)—Γ ⊢ 𝑐∗ ∶ 𝐴
𝑐 ∶ (Γ, 𝑥 ∶ 𝐴 ⊢ ⋆ ∶ 𝐵)—Γ ∣ ̃𝜇𝑥.𝑐 ∶ 𝐴 ⊢ ⋆ ∶ 𝐵

Γ ⊢ 𝑡 ∶ 𝐴 Γ ∣ 𝑒 ∶ 𝐴 ⊢ ⋆ ∶ 𝐵—
⟨𝑡 ‖𝑒⟩ ∶ (Γ ⊢ ⋆ ∶ 𝐵)

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑢 ∶ 𝐵—Γ ⊢ (𝑡, 𝑢) ∶ 𝐴 ∧ 𝐵
Γ ∣ 𝜋 ∶ 𝐴 ⊢ 𝐶—Γ ∣ fst⋅𝜋 ∶ 𝐴 ∧ 𝐵 ⊢ 𝐶

Γ ∣ 𝜋 ∶ 𝐵 ⊢ 𝐶—Γ ∣ snd⋅𝜋 ∶ 𝐴 ∧ 𝐵 ⊢ 𝐶
Γ ⊢ 𝑡 ∶ 𝐴—Γ ⊢ 𝜄1(𝑡) ∶ 𝐴∨𝐵

Γ ⊢ 𝑡 ∶ 𝐵—Γ ⊢ 𝜄2(𝑡) ∶ 𝐴∨𝐵
Γ ∣ 𝑒 ∶ 𝐴 ⊢ ⋆ ∶ 𝐶 Γ ∣ 𝑒′ ∶ 𝐵 ⊢ ⋆ ∶ 𝐶—

Γ ∣ (𝑒|𝑒′) ∶ 𝐴∨𝐵 ⊢ ⋆ ∶ 𝐶
Γ ⊢ 𝑡 ∶ 𝐴—§Γ ⊢ 𝑡 ∶ ∀x 𝐴

Γ ∣ 𝜋 ∶ 𝐴(t) ⊢ 𝐵—Γ ∣ 𝜋 ∶ ∀x 𝐴(x) ⊢ 𝐵
Γ ⊢ 𝑡 ∶ 𝐴(t)—Γ ⊢ 𝑡 ∶ ∃x 𝐴(x)

Γ ∣ 𝑒 ∶ 𝐴 ⊢ 𝐵—§Γ ∣ 𝑒 ∶ ∃x 𝐴(x) ⊢ 𝐵
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵—Γ ⊢ 𝜆𝑥.𝑡 ∶ 𝐴 → 𝐵

Γ ⊢ 𝑡 ∶ 𝐴 Γ ∣ 𝜋 ∶ 𝐵 ⊢ ⋆ ∶ 𝐶—Γ ∣ 𝑡⋅𝜋 ∶ 𝐴 → 𝐵 ⊢ ⋆ ∶ 𝐶

—Γ ∣ ⋆ ∶ ⊥ ⊢ ⋆ ∶ 𝐴

§: the variable x must not be free in Γ, 𝐶
(a) Rules

Figure I.8: Li: typing rules
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I.6.3 Other improvements

Confluence
Since ⊳R is left-linear and has no critical pair, we have that →R is
confluent (see e.g. Nipkow [Nip91]). We will use this argument for
all the L calculi in the thesis.

Suitability for orthogonality-based logical relations
Thanks to the presence of explicit contexts and to the detailed de-
composition of constructs, the definition of orthogonality-based
logical relations is simplified (see M.-M. [Mun09], Brunel [Bru12]).
Such logical relations can be used for proving properties like type
soundness or (strong) normalisation, among others.

In this context, considering orthogonality with respect to a set
of stacks (as in Krivine [Kri09]) is sometimes preferable over con-
sidering bi-orthogonality with respect to a set of values (as in Gir-
ard [Gir87], Pitts [Pit05]), and conversely. This is a trace of polarisa-
tion as we introduce next (see M.-M. [Mun09]).

I.7 Polarisation
We are left with one question that we rephrase. How can we identify
the following term:

match 𝑡 with (𝜆𝑦.𝐸[𝜄1(𝑦)]|𝜆𝑧.𝐸[𝜄2(𝑧)])

with the following one:
𝐸[𝑡]

where 𝐸□ is whatever term with a hole? In other words, we want to
enable extensional reasoning.

Let us rephrase again the question by considering the context
𝑒 ≝ ̃𝜇𝑥.⟨𝐸[𝑥]‖⋆⟩, which corresponds to 𝐸□. The goal is to identify:

⟨match 𝑡 with (𝜆𝑦.⟨𝜄1(𝑦)‖𝑒⟩∗|𝜆𝑧.⟨𝜄2(𝑧)‖𝑒⟩∗)∥⋆⟩



I.7 Polarisation 71

with:
⟨𝑡 ‖𝑒⟩ .

Now one has:

⟨match 𝑡 with (𝜆𝑦.⟨𝜄1(𝑦)‖𝑒⟩∗|𝜆𝑧.⟨𝜄2(𝑧)‖𝑒⟩∗)∥⋆⟩
⊳R ⟨𝑡 ∥( ̃𝜇𝑦.⟨𝜆𝑦.⟨𝜄1(𝑦)‖𝑒⟩∗ ∥𝑦⋅⋆⟩| ̃𝜇𝑧.⟨𝜆𝑧.⟨𝜄2(𝑧)‖𝑒⟩∗ ∥𝑧⋅⋆⟩)⟩

→∗
R ⟨𝑡 ∥( ̃𝜇𝑦.⟨⟨𝜄1(𝑦)‖𝑒⟩∗ ∥⋆⟩| ̃𝜇𝑧.⟨⟨𝜄2(𝑧)‖𝑒⟩∗ ∥⋆⟩)⟩

→∗
R ⟨𝑡 ∥( ̃𝜇𝑦.⟨𝜄1(𝑦)‖𝑒⟩| ̃𝜇𝑧.⟨𝜄2(𝑧)‖𝑒⟩)⟩

Therefore the identification follows from the one between 𝑒 and:

( ̃𝜇𝑦.⟨𝜄1(𝑦)‖𝑒⟩| ̃𝜇𝑧.⟨𝜄2(𝑧)‖𝑒⟩)

The issue with this identification arises when we take 𝐸□≝ (𝜆𝑥.𝑦)□
and 𝑡 = Ω where Ω ≝ 𝜆𝑥.(𝑥 𝑥) 𝜆𝑥.(𝑥 𝑥). One has:

⟨Ω‖𝑒⟩ ⊳R𝑝
⟨𝑦 ‖⋆⟩ ⋫R𝑝

but:
⟨Ω∥( ̃𝜇𝑦.⟨𝜄1(𝑦)‖𝑒⟩| ̃𝜇𝑧.⟨𝜄2(𝑧)‖𝑒⟩)⟩
⊳R ⟨𝜆𝑥.(𝑥 𝑥)∥𝜆𝑥.(𝑥 𝑥)⋅( ̃𝜇𝑦.⟨𝜄1(𝑦)‖𝑒⟩| ̃𝜇𝑧.⟨𝜄2(𝑧)‖𝑒⟩)⟩
⊳R ⟨Ω ∥( ̃𝜇𝑦.⟨𝜄1(𝑦)‖𝑒⟩| ̃𝜇𝑧.⟨𝜄2(𝑧)‖𝑒⟩)⟩ ⊳R𝑝

…

The problem comes from the fact that our calculus so far does not
take into account the strict evaluation that match 𝑡 with … imposes
on 𝑡. We see two solutions:
• If we are interested in typed approximations of computation, one

can consider a strongly normalising system. For instance, System
F [Gir72] has very good properties.

• Or, we can decide that we shall treat differently certain expres-
sions that require a strict evaluation, from ones that require a
lazy evaluation. (A completely strict evaluation is not desir-
able, because then we lose other extensionality axioms such as
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𝜆𝑥.(𝑡 𝑥) ≃ 𝑡.)
The latter solution corresponds to polarisation.

I.7.1 Polarities
In the L calculi, polarisation is reflected at the level of variables,
which are split in two as follows:

𝑥+, 𝑥⊝

In turn, the syntactic categories for terms and contexts are split in
two as well:

𝑡+, 𝑡⊝

𝑒+, 𝑒⊝

The empty context ⋆ is both positive and negative.
In particular, there are now a positive adjoint operation and a

negative one:
𝑐∗

+, 𝑐∗
⊝

Then, commands 𝑐 are either ⟨𝑡+ ‖ 𝑒+ ⟩ or ⟨𝑡⊝ ‖ 𝑒⊝ ⟩ (the polarity of a
command does not appear from the outside). We now describe how
reduction takes polarities into account.

Negative polarity A negative term is called by name, that is, its eval-
uation is delayed until it comes in head position, in the terminology
of the λ calculus. The head position corresponds to being against a
stack. The reduction of the adjoint is therefore restricted to contexts
that are stacks:

⟨𝑡⊝ ‖ ̃𝜇𝑥⊝.𝑐⟩ ⊳R 𝑐[𝑡⊝/𝑥⊝]
⟨𝑐∗

⊝ ‖𝜋⊝⟩ ⊳R 𝑐[𝜋⊝/⋆] if substitution is defined

(The substitution and the reduction are defined if and only if no free
occurrence of ⋆ is of the form ⟨𝑡+ ‖⋆⟩.)
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Positive polarity The reduction of positive polarity is symmetric to
the one of negative polarity. The reduction of ̃𝜇 is restricted to terms
that are values, in other words a positive term is called by value. We
need to introduce a category of values 𝑉+, and then we take:

𝑡+ ⩴ 𝑉+ ∣ 𝑐∗
+

The adjoint reduction is performed immediately:

⟨𝑐∗
+ ‖𝑒+⟩ ⊳R 𝑐[𝑒+/⋆] if substitution is defined

⟨𝑉+ ‖ ̃𝜇𝑥+.𝑐⟩ ⊳R 𝑐[𝑉+/𝑥+] .

(The substitution and the reduction are defined if and only if no free
occurrence of ⋆ is of the form ⟨𝑡⊝ ‖⋆⟩.)

We can shorten the description of the polarised evaluation order
with the convention that any negative term is a value, and any posit-
ive context is a stack.

𝑉 ⩴ 𝑉+ ∣ 𝑡⊝

𝜋 ⩴ 𝜋⊝ ∣ 𝑒+

Then the reduction is entirely defined for both polarities with:�
�

�
�

⟨𝑉 ‖ ̃𝜇𝑥.𝑐⟩ ⊳R 𝑐[𝑉/𝑥]
⟨𝑐∗ ‖𝜋⟩ ⊳R 𝑐[𝜋/⋆] if substitution is defined

We can also describe the polarised reduction in terms of the critical
pair:

𝑐[ ̃𝜇𝑥.𝑐′/⋆] ?⊲R ⟨𝑐∗ ‖ ̃𝜇𝑥.𝑐′⟩ ?⊳R 𝑐′[𝑐∗/𝑥]
With the positive polarity, the left-hand reduction is chosen over the
right-hand one, while the converse holds with the negative polarity.

Last, in this section we are concerned about extensional reasoning.
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Thus, we add the following expansion rules with 𝜀 ∈ {+, ⊝}:�
�

�
�

𝑡𝜀 ⊳E ⟨𝑡𝜀 ‖⋆⟩∗
𝜀

𝑒𝜀 ⊳R ̃𝜇𝑥𝜀.⟨𝑥𝜀 ‖𝑒𝜀⟩

The consequence is that in order to prove an equivalence of terms or
contexts, it is sufficient to prove an equivalence of commands.

I.7.2 Extensional branching
We consider values defined as follows:

𝑉+ ⩴ 𝑥+ ∣ 𝜄1(𝑉) ∣ 𝜄2(𝑉)
𝑉 ⩴ 𝑡⊝ ∣ 𝑉+

Positive contexts are defined as follows:

𝑒+ ⩴ ⋆ ∣ ̃𝜇𝑥+.𝑐 ∣ ̃𝜇(𝜄1(𝑥).𝑐∣𝜄2(𝑦).𝑐′)

Reduction for the branching operation is defined as follows:

⟨𝜄1(𝑉)‖ ̃𝜇(𝜄1(𝑥).𝑐∣𝜄2(𝑦).𝑐′)⟩ ⊳R 𝑐[𝑉/𝑥]
⟨𝜄2(𝑉)‖ ̃𝜇(𝜄1(𝑥).𝑐∣𝜄2(𝑦).𝑐′)⟩ ⊳R 𝑐′[𝑉/𝑦]

Let 𝑡+, 𝑢, and 𝑣 be terms. We define branching by solving the
following equation:

⟨match 𝑡+ with (𝜄1(𝑥).𝑢|𝜄2(𝑦).𝑣)‖𝑒⟩ ⊳R ⟨𝑡+ ∥ ̃𝜇(𝜄1(𝑥).⟨𝑢‖𝑒⟩∣𝜄2(𝑦).⟨𝑣‖𝑒⟩)⟩

There are two solutions, in other words we have to consider two
distinct terms for match … with .

• If 𝑢 and 𝑣 are both positive, we define:

match 𝑡+ with (𝜄1(𝑥).𝑢|𝜄2(𝑦).𝑣)+≝⟨𝑡+ ∥ ̃𝜇(𝜄1(𝑥).⟨𝑢‖⋆⟩∣𝜄2(𝑦).⟨𝑣‖⋆⟩)⟩∗
+
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• If 𝑢 and 𝑣 are both negative, we define:

match 𝑡+ with (𝜄1(𝑥).𝑢|𝜄2(𝑦).𝑣)⊝ ≝⟨𝑡+ ∥ ̃𝜇(𝜄1(𝑥).⟨𝑢‖⋆⟩∣𝜄2(𝑦).⟨𝑣‖⋆⟩)⟩∗
⊝

Now let us consider for all 𝑒+ the following expansion:

𝑒+ ⊳E ̃𝜇(𝜄1(𝑥).⟨𝜄1(𝑥)‖𝑒+⟩∣𝜄2(𝑦).⟨𝜄2(𝑥)‖𝑒+⟩)

(In the thesis, we will use the notation ⊳R for reductions and ⊳E for
expansions.)

Let 𝐸□ be a term of any polarity with a positive hole, and let 𝑉+
be a positive value. Obviating polarities than can be omitted, we
have:

⟨match𝑉+ with (𝜄1(𝑦).𝐸[𝜄1(𝑦)]|𝜄2(𝑧).𝐸[𝜄2(𝑧)])‖⋆⟩
⊳R ⟨𝑉+ ∥ ̃𝜇(𝜄1(𝑦).⟨𝐸[𝜄1(𝑦)]‖⋆⟩∣𝜄2(𝑧).⟨𝐸[𝜄2(𝑧)]‖⋆⟩)⟩

←∗
R ⟨𝑉+ ∥ ̃𝜇(𝜄1(𝑦).⟨𝜄1(𝑦)∥ ̃𝜇𝑥+.⟨𝐸[𝑥+]‖⋆⟩⟩∣𝜄2(𝑧).⟨𝜄1(𝑧)∥ ̃𝜇𝑥+.⟨𝐸[𝑥+]‖⋆⟩⟩)⟩

←E ⟨𝑉+ ∥ ̃𝜇𝑥+.⟨𝐸[𝑥+]‖⋆⟩⟩
⊳R ⟨𝐸[𝑉+]‖⋆⟩

Thus, by applying 𝜇⋆ on the above equations, we obtain by exten-
sionality:�� ��match𝑉+ with (𝜄1(𝑦).𝐸[𝜄1(𝑦)]|𝜄2(𝑧).𝐸[𝜄2(𝑧)]) ≃RE 𝐸[𝑉+] ,

In other words, we have a standard extensionality axiom which,
though it is restricted to values, it imposes no restriction on 𝐸□.
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I.7.3 Composition is not associative
Two terms compose using a let … in … binder. We obtain the
binding let 𝑥 be 𝑡 in 𝑢 by solving the following equation:

⟨let 𝑥 be 𝑡 in 𝑢‖𝜋⟩ ⊳R ⟨𝑡 ∥ ̃𝜇𝑥.⟨𝑢‖𝜋⟩⟩

There are two possibilities:

• 𝑢 is positive. Then let 𝑥 be 𝑡 in 𝑢 is defined as the positive term:

let 𝑥 be 𝑡 in 𝑢+ ≝ ⟨𝑡 ∥ ̃𝜇𝑥.⟨𝑢‖⋆+⟩⟩∗
+

• 𝑢 is negative. Then let 𝑥 be 𝑡 in 𝑢 is defined as the negative term:

let 𝑥 be 𝑡 in 𝑢⊝ ≝ ⟨𝑡 ∥ ̃𝜇𝑥.⟨𝑢‖⋆⊝⟩⟩∗
⊝

In particular, the polarity of let 𝑥 be 𝑡 in 𝑢 is always the same as the
polarity of 𝑢.

In terms of categorical models, polarisation amounts to relaxing
the hypothesis that composition is associative. Indeed, with po-
larisation there is a difference between the following two ways of
composing 𝑡+, 𝑢⊝and 𝑣:

𝑇1 ≝ let 𝑦⊝be (let 𝑥+ be 𝑡+ in 𝑢⊝) in 𝑣
𝑇2 ≝ let 𝑥+ be 𝑡+ in let 𝑦⊝be 𝑢⊝ in 𝑣

One has indeed:

⟨𝑇1 ‖𝜋⟩ ⊳∗
R ⟨⟨𝑡+ ∥ ̃𝜇𝑥+.⟨𝑢⊝ ‖⋆⊝⟩⟩∗

⊝ ∥ ̃𝜇𝑦⊝.⟨𝑣‖⋆⟩⟩
⟨𝑇2 ‖𝜋⟩ ⊳∗

R ⟨𝑡+ ∥ ̃𝜇𝑥+.⟨𝑢⊝ ∥ ̃𝜇𝑦⊝.⟨𝑣‖⋆⟩⟩⟩

If the evaluation of 𝑡+ loops in all contexts, and if 𝑦⊝ does not appear
in 𝑣, then the top command reduces into ⟨𝑣‖⋆⟩ while the bottom one
loops. Therefore, in general 𝑇1 is different from 𝑇2.
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I.8 The sequent calculus LK
The setting we have just seen is intuitionistic. Yet, everything is in
place to model proofs of classical logic. By classical logic, we mean
a system with enough symmetry to reason by contrapositive and
where hypotheses can be used arbitrarily many times.

We recall the ∀, →, ⊥ fragment of Gentzen’s LK [Gen35] in Fig-
ure I.9. (K, as opposed to J, means classical in Gentzen’s naming
scheme.)

In LK, negation is defined with ¬𝑁 ≝ 𝑁 → ⊥. Classical means
here that any formula 𝑁 is equivalent to ¬¬𝑁, using the following
derivation of the elimination of double negation:

—Γ,𝐴 ⊢ 𝐴,Δ
——(⊢ ¬)

Γ ⊢ ¬𝐴,𝐴,Δ
——(¬ ⊢)

Γ, ¬¬𝐴 ⊢ 𝐴,Δ
The derivation crucially uses the fact that sequents can have multiple
conclusions. In this context, a sequent:

𝐴1,… , 𝐴𝑛 ⊢ 𝐵1,… , 𝐵𝑚

corresponds to the following proposition:

𝐴1 ∧…∧ 𝐴𝑛 → 𝐵1 ∨…∨ 𝐵𝑚 .

I.8.1 The calculus Ln
Curien and Herbelin’s calculus 𝜆̄𝜇 ̃𝜇𝑇 (renamed Ln for internal con-
sistency reasons) is introduced in Figure I.10 on page 79. The letter
n evokes the fact that it corresponds to a call-by-name interpretation
of the ∀, →, ⊥ fragment of LK.

Classical logic is obtained in Ln by adding co-variables, which
we write 𝛼, 𝛽… While variables denote inputs, co-variables denote
named outputs. Co-variables replace ⋆ in the syntax of contexts.
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𝑁, 𝑀 ⩴ 𝑋(t1,… , t𝑛) ∣ 𝑁 → 𝑀 ∣ ∀x 𝑁 ∣ ⊥
(a) Formulae

—(ax)Γ, 𝑁 ⊢ 𝑁,Δ
Γ ⊢ 𝑁,Δ Γ, 𝑁 ⊢ Δ—(cut)Γ ⊢ Δ

(b) Identity and Structure

Γ,𝑁 ⊢ 𝑀,Δ—(⊢→)Γ ⊢ 𝑁 → 𝑀,Δ
Γ ⊢ 𝑁,Δ Γ, 𝑀 ⊢ Δ—(→ ⊢)Γ, 𝑁 → 𝑀 ⊢ Δ

Γ ⊢ 𝑁,Δ—(⊢ ∀1)∗
Γ ⊢ ∀x 𝑁,Δ

Γ,𝑁[t/x] ⊢ Δ—(∀1 ⊢)Γ,∀x 𝑁 ⊢ Δ

—(⊥ ⊢)Γ, ⊥ ⊢ Δ
∗: 𝑥 not free in Γ,Δ.

(c) Logic
Figure I.9: The ∀, →, ⊥ fragment of Gentzen’s LK

The judgement of commands is generalised into the following:

𝑐 ∶ (𝑥1 ∶ 𝐴1,… , 𝑥𝑛 ∶ 𝐴𝑛 ⊢ 𝛼1 ∶ 𝐵1,… , 𝛼𝑚 ∶ 𝐵𝑚),

which echoes the symmetry of the sequents of LK. In the next
chapters, co-variables will be given a polarity like variables, but not
in Ln. The judgements for expressions and contexts are the follow-
ing:

Γ ⊢ 𝑡 ∶ 𝐴 ∣ Δ Γ ∣ 𝑒 ∶ 𝐴 ⊢ Δ

with Γ = 𝑥1 ∶ 𝐴1,… , 𝑥𝑛 ∶ 𝐴𝑛 and Δ = 𝛼1 ∶ 𝐵1,… , 𝛼𝑚 ∶ 𝐵𝑚. The binder
⟨𝜇𝛼.𝑐 | generalises the adjoint operation 𝑐∗:�� ��⟨𝜇𝛼.𝑐‖𝐸⟩ ≻ 𝑐[𝐸/𝛼]
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𝑡 = 𝑡⊝ ⩴ 𝑥 ∣ 𝜇𝛼.𝑐 ∣ 𝜆𝑥.𝑡
𝑒 = 𝑒⊝ ⩴ 𝜋 ∣ ̃𝜇𝑥.𝑐

𝑒⊝ ⊇ 𝜋 ⩴ 𝛼 ∣ stop ∣ 𝑡⋅𝜋
𝑐 ⩴ ⟨𝑡 ‖𝑒⟩

(a) Terms, contexts and commands

⟨𝑡 ‖ ̃𝜇𝑥.𝑐⟩ ⊳R𝑛
𝑐[𝑡/𝑥]

⟨𝜇𝛼.𝑐‖𝜋⟩ ⊳R𝑛
𝑐[𝜋/𝛼]

⟨𝜆𝑥.𝑡 ‖𝑢⋅𝜋⟩ ⊳R𝑛
⟨𝑡[𝑢/𝑥]‖𝜋⟩

(b) Reduction rules

𝑒 ⊳E𝑛
̃𝜇𝑥.⟨𝑥‖𝑒⟩

𝑡 ⊳E𝑛
𝜇𝛼.⟨𝑡 ‖𝛼⟩

𝑡 ⊳E𝑛
𝜆𝑥.𝜇𝛼.⟨𝑡 ‖𝑥⋅𝛼⟩

(c) Expansion rules
Figure I.10: Ln: the calculus

Thus, 𝑐∗ corresponds to 𝜇⋆.𝑐. In other words, we can see ⟨𝜇𝛼.𝑐 | as a
function of its context:

⟨𝜇𝛼.𝑐 | ∶ 𝛼 ↦ 𝑐

Completeness of typing rules with respect to provability in the →, ∀,
⊥ fragment of LK requires the rule (→ ⊢) which is derived from the
restricted rule (→ ⊢𝑓 ) by focalisation (Figure I.11d).

I.8.2 The λC calculus

Let us consider the λC calculus in call by name introduced by Lafont,
Reus and Streicher [LRS93], a setting made popular by the works
of Krivine [Kri09]. A variant of the Krivine machine with the 𝒞
operator, described by Streicher and Reus [SR98, p. 21], is displayed
in Figure I.12 on page 81. Following Griffin [Gri90], we type 𝒞 with
double negation elimination:

𝒞 ∶ ¬¬𝐴 → 𝐴 .
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Γ = ⃗𝑥𝑖 ∶ 𝑁⃗𝑖 Δ = ⃗𝛼𝑗 ∶ 𝑀⃗𝑗

Γ ⊢ 𝑡 ∶ 𝑁 ∣ Δ Γ ∣ 𝑒 ∶ 𝑁 ⊢ Δ
𝑐 ∶ (Γ ⊢ Δ)

(a) Judgements

—(⊢ ax)Γ, 𝑥 ∶ 𝑁 ⊢ 𝑥 ∶ 𝑁 ∣ Δ —(ax ⊢)Γ ∣ 𝛼 ∶ 𝑁 ⊢ 𝛼 ∶ 𝑁,Δ

𝑐 ∶ (Γ, 𝑥 ∶ 𝑁 ⊢ Δ)—( ̃𝜇 ⊢)Γ ∣ ̃𝜇𝑥.𝑐 ∶ 𝑁 ⊢ Δ
𝑐 ∶ (Γ ⊢ 𝛼 ∶ 𝑁, Δ)—(⊢ 𝜇)Γ ⊢ 𝜇𝛼.𝑐 ∶ 𝑁 ∣ Δ

Γ ⊢ 𝑡 ∶ 𝑁 ∣ Δ Γ ∣ 𝑒 ∶ 𝑁 ⊢ Δ—(cut)⟨𝑡 ‖𝑒⟩ ∶ (Γ ⊢ Δ)
(b) Identity and Structure

Γ, 𝑥 ∶ 𝑁 ⊢ 𝑡 ∶ 𝑀 ∣ Δ—(⊢→)Γ ⊢ 𝜆𝑥.𝑡 ∶ 𝑁 → 𝑀 ∣ Δ
Γ ⊢ 𝑡 ∶ 𝑁 ∣ Δ Γ ∣ 𝜋 ∶ 𝑀 ⊢ Δ—(→ ⊢𝑓 )Γ ∣ 𝑡⋅𝜋 ∶ 𝑁 → 𝑀 ⊢ Δ

Γ ⊢ 𝑡 ∶ 𝑁 ∣ Δ—(⊢ ∀)∗
Γ ⊢ 𝑡 ∶ ∀x 𝑁 ∣ Δ

Γ ∣ 𝑒 ∶ 𝑁[t/x] ⊢ Δ—(∀ ⊢)Γ ∣ 𝑒 ∶ ∀x 𝑁 ⊢ Δ

—(⊥ ⊢)Γ ∣ stop ∶ ⊥ ⊢ Δ
∗: 𝑥 not free in Γ,Δ

(c) Logic

Γ ⊢ 𝑡 ∶ 𝑁 ∣ Δ Γ ∣ 𝑒 ∶ 𝑀 ⊢ Δ
——(→ ⊢)

Γ ∣ ̃𝜇𝑥.⟨𝜇𝛼.⟨𝑥‖𝑡⋅𝛼⟩∥𝑒⟩ ∶ 𝑁 → 𝑀 ⊢ Δ
(d) Derivability of the rule (→ ⊢)

Figure I.11: Ln: typing rules
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𝑡, 𝑢 ⩴ 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡 𝑢 ∣ 𝒞
(a) Quasi-proof terms

—Γ, 𝑥 ∶ 𝑁 ⊢ 𝑥 ∶ 𝑁 —Γ ⊢ 𝒞 ∶ ¬¬𝑁 → 𝑁
Γ, 𝑥 ∶ 𝑁 ⊢ 𝑡 ∶ 𝑀—Γ ⊢ 𝜆𝑥.𝑡 ∶ 𝑁 → 𝑀

Γ ⊢ 𝑡 ∶ 𝑁 → 𝑀 Γ ⊢ 𝑢 ∶ 𝑁—Γ ⊢ 𝑡 𝑢 ∶ 𝑀
Γ ⊢ 𝑡 ∶ 𝑁—∗

Γ ⊢ 𝑡 ∶ ∀x 𝑁
Γ ⊢ 𝑡 ∶ ∀x 𝑁—Γ ⊢ 𝑡 ∶ 𝑁[u/x]

∗: 𝑥 not free in Γ
(b) Second order predicate calculus

Figure I.12: The λC calculus

Krivine’s abstract machine introduced in Figure I.13 on the follow-
ing page is the simplest way to perform weak head reduction of λC
terms. One insight is to enrich the set of terms with an operation
k𝜋 that appears during reduction. We introduce, following Krivine,
the notion of quasi-proof term in order to distinguish the original
terms from terms with k𝜋 . Let us mention that the notion of quasi-
proof term is of technical importance in the construction of models
starting from classical realisability [Kri12].

The operations of the λC calculus satisfies the following reduc-
tions:

⟨𝒞 ‖𝑡⋅𝜋⟩ ≻𝑛 ⟨𝑡 ‖k𝜋⋅stop⟩
⟨k𝜋 ‖𝑡⋅𝜋 ′⟩ ≻𝑛 ⟨𝑡 ‖𝜋⟩

Thanks to the binder 𝜇, we can solve these equations in Ln. Indeed,
we can see k𝜋 as a function of its context:

⟨k𝜋 | ∶ 𝑥 𝜆↦ (𝛼
𝜇
↦ ⟨𝑥‖𝐸⟩)
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𝑐 ⩴ ⟨𝑡 ‖𝜋⟩ 𝑡, 𝑢 ⩴ … ∣ k𝜋 𝜋 ⩴ stop ∣ 𝑡⋅𝜋
(a)Machines, terms and stacks

⟨𝑡 𝑢‖𝜋⟩ ≻𝑛 ⟨𝑡 ‖𝑢⋅𝜋⟩
⟨𝜆𝑥.𝑡 ‖𝑢⋅𝜋⟩ ≻𝑛 ⟨𝑡[𝑢/𝑥]‖𝜋⟩
⟨𝒞 ‖𝑡⋅𝜋⟩ ≻𝑛 ⟨𝑡 ‖k𝜋⋅stop⟩
⟨k𝜋 ‖𝑡⋅𝜋 ′⟩ ≻𝑛 ⟨𝑡 ‖𝜋⟩

(b) Reduction rules

𝑡 𝑢 ≝ 𝜇𝛼.⟨𝑡 ‖𝑢⋅𝛼⟩
k𝑒 ≝ 𝜆𝑥.𝜇𝛼.⟨𝑥‖𝑒⟩
𝒞 ≝ 𝜆𝑥.𝜇𝛼.⟨𝑥‖k𝛼⋅stop⟩
(c) Implementation in Ln

Figure I.13: The Krivine abstract machine

therefore we take: �� ��k𝜋 ≝ 𝜆𝑥.𝜇𝛼.⟨𝑥‖𝜋⟩

Similarly for 𝒞 we take:�� ��𝒞 ≝ 𝜆𝑥.𝜇𝛼.⟨𝑥‖k𝛼⋅stop⟩ .

These definitions induce a translation from the λC calculus into the
calculus Ln that simulates reduction. We identify machines of the
λC calculus with commands of the calculus Ln. As an immediate
consequence of having defined the constructs of the λC by solving
equations, we have:
Proposition I.4 (Simulation). If 𝑐 ≻𝑛 𝑐′ then 𝑐 ⊳+

R𝑛
𝑐′.

The purpose of embedding the λC calculus into Ln is that it in-
herits from the latter a compatible equivalence relation which is
extensional.
Definition I.5. For 𝑡 and 𝑢 be two quasi-proof terms of λC, we define
𝑡 ≈𝑛 𝑢 as 𝑡 ≃RE𝑛

𝑢.
One point of this definition is that it encompasses the observa-

tional equivalence defined by Krivine machines:
Proposition I.6. Let 𝑡 and 𝑢 be two quasi-proof terms of λC. If for all
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stacks 𝜋 one has ⟨𝑡 ‖𝜋⟩ (≺𝑛 ∪ ≻𝑛)∗ ⟨𝑢‖𝜋⟩, then one has 𝑡 ≈𝑛 𝑢.

Proof. By extending the category of stacks of λC with some variable 𝛼 of
Ln it is easy to see that one has ⟨ 𝑡 ‖ 𝛼⟩ (≺𝑛 ∪ ≻𝑛)∗ ⟨𝑢 ‖ 𝛼 ⟩ . Thus by (the
extension of) Proposition I.4 one has ⟨𝑡 ‖𝛼⟩ ≃RE𝑛

⟨𝑢 ‖𝛼⟩. Thus 𝑡 ≃RE𝑛
𝑢 by

extensionality in Ln. ∎

The definitions in Ln are also the middlemen of the systematic
reconstruction of types from reduction rules. For instance, we can
reconstruct the type of 𝒞 , first by noticing that k𝜋 has the following
rule:

Γ ∣ 𝜋 ∶ 𝐴 ⊢ Δ
——Γ ⊢ k𝜋 ∶ 𝐴 → 𝐵 ∣ Δ

Indeed:
Γ, 𝑥 ∶ 𝐴 ∣ 𝜋 ∶ 𝐴 ⊢ 𝛼 ∶ 𝐵,Δ
——

⟨𝑥 ‖𝜋⟩ ∶ (Γ, 𝑥 ∶ 𝐴 ⊢ 𝛼 ∶ 𝐵, Δ)—Γ, 𝑥 ∶ 𝐴 ⊢ 𝜇𝛼.⟨𝑥‖𝜋⟩ ∶ 𝐵 ∣ Δ—Γ ⊢ k𝜋 ∶ 𝐴 → 𝐵 ∣ Δ
Then we can derive:

——Γ ⊢ 𝒞 ∶ ((𝐴 → ⊥) → ⊥) → 𝐴 ∣ Δ

Indeed:
—Γ, 𝑥 ∶ 𝐴 ∣ 𝛼 ∶ 𝐴 ⊢ 𝛼 ∶ 𝐴,Δ
——Γ, 𝑥 ∶ 𝐴 ⊢ k𝛼 ∶ 𝐴 → ⊥ ∣ 𝛼 ∶ 𝐴,Δ—Γ, 𝑥 ∶ 𝐴 ∣ stop ∶ ⊥ ⊢ 𝛼 ∶ 𝐵,Δ—Γ, 𝑥 ∶ 𝐴 ∣ k𝛼⋅stop ∶ (𝐴 → ⊥) → ⊥ ⊢ 𝛼 ∶ 𝐴,Δ
——

⟨𝑥 ‖k𝛼⋅stop⟩ ∶ (Γ, 𝑥 ∶ (𝐴 → ⊥) → ⊥ ⊢ 𝛼 ∶ 𝐴, Δ)—Γ, 𝑥 ∶ (𝐴 → ⊥) → ⊥ ⊢ 𝜇𝛼.⟨𝑥‖k𝛼⋅stop⟩ ∶ 𝐴 ∣ Δ—Γ ⊢ 𝒞 ∶ ((𝐴 → ⊥) → ⊥) → 𝐴 ∣ Δ

Notice that the distinction between quasi-proof terms and terms is
akin to the one between sequent calculus and natural deduction, in
the sense terms that are not quasi-proofs can only be typed in the
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sequent calculus (see for instance the typing rule for k𝜋 which does
not make sense in natural deduction).

I.9 Historical remarks and contributions
Landin pioneered the use of the λ calculus to model programming lan-
guages [Lan65], the use of abstract machines to model reduction [Lan64]
and the use of first-class continuations to model control [Lan98]. As
Danvy and his collaborators have shown [ABDM03, BD07, Dan08], build-
ing on earlier works of Reynolds [Rey72], there are systematic transforma-
tions between abstract machines and other techniques (“structural opera-
tional semantics, reduction semantics, […] big-step abstract machines, nat-
ural semantics, and denotational semantics”). We will see in Section I.10.2
that L calculi can themselves be understood as fine-grained accounts of
continuation-based denotational semantics, not only for reductions but
also at the level of extensionality.
Girard modernised and made popular the ideas of Gentzen. He intro-

duced polarisation [Gir91] after the discovery of focalisation by Andre-
oli [And92]. We also owe him the terminology “adjoint” inspired from lin-
ear algebra to denote a construction 𝜏∗ that satisfies ⟨𝜏∗(𝑡)‖𝜋⟩≃⟨𝑡‖𝜏(𝜋)⟩
in the context of computation [Gir01, Gir06]. Danos, Joinet and Schellinx
explained — among other contributions — how polarisation and focal-
isation are a necessary consequence of extensionality in the setting of
classical logic [DJS97].
Griffin was the first to show that Felleisen’s variant C [FFKD87] of

Landin’s operator J (via Reynold’s escape [Rey72]) could be typed with
the elimination of double negation [Gri90].

Parigot introduced the binder 𝜇 with the λµ calculus [Par92]. The sym-
metric binder ̃𝜇was introduced by Curien and Herbelin [CH00], along with
the relationship between sequent calculus and abstract machines (in call
by value and in call by name) as well as the one between evaluation
strategies and the ways of solving the critical pair. Herbelin introduced
in an unpublished note [Her08] the terminology “system L” for a syntax
for LK proofs based on 𝜇 and ̃𝜇. The importance of having an explicit
let … in … binding in call by value was recognised earlier, with Moggi’s
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monad-based models [Mog89]. Ariola and Herbelin [AH08] described the
advantages of treating the context explicitly in a λ calculus with control,
compared to previous operational semantics of Felleisen and his collabor-
ators [FFKD87, FH92].
Besides Curien and Herbelin, the link between values and focalisation

was implied by Ogata [Oga02]. It was explicitly stated by Dyckhoff and
Lengrand [DL06, DL07]. Also, the observation that certain rules of the se-
quent calculus could be explained as pattern-matching is due to Cerrito
and Kesner [CK99, CK04]. A unified setting in which values and pattern-
matching continuations interact was proposed as the computational ex-
planation of Andreoli’s proof search discipline by Zeilberger [Zei08, Zei09].
The interpretation is based on mixing connectives of different “polarities”
defined by their focalisation properties, one consequence being that
“evaluation order is explicitly reflected at the level of types”. This inter-
pretation is also related to Levy’s decomposition call by value and call by
name [Lev99, Lev04, Lev05].
Aside from Girard’s polarisation, loss of associativity of composition

was noticed in game semantics with Blass’s games [Bla92], as described
by Abramsky [Abr03] and analysed by Melliès [Mel05]. We will come back
on this phenomenon in Chapter II.
The untyped, interactive approach to proof theory was initiated with

Girard’s ludics [Gir01] and Krivine’s classical realisability [Kri09].
The account of this section is inspired from [Mun09] where I intro-

duced, following Krivine’s approach, the direct account of focalisation
and polarities in a variant of Curien and Herbelin’s calculus. Using po-
larities inspired by Girard and Danos, Joinet and Schellinx, we associate
positiveness to strictness and negativeness to laziness. The difference
with Zeilberger’s polarities is that we do not assume that the polarity
of a connective is defined by its focalisation properties. In [Mun09] this
allowed us to describe the complex polarisations of modal connectives
such as classical logic’s ∀ and linear logic’s !.8 The differences and the re-
lationship of our notion of polarities compared to Zeilberger’s are further
described in Sections II.2.4 and III.3.
The account is also inspired from [CM10]where with Curien we showed
8In the context of [Mun09], we may define positive connectives

∀

and ¡ restricted to
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how the sequent calculus could have arisen from the desire to type ab-
stract machines for the call-by-value λ calculus. We introduced in particu-
lar the idea that the definition of application can be read off its reduction
rule. Here we refine this idea by presenting transition rules as equations
and L calculi as spaces of solutions.
In addition, we contribute in this chapter a summary of most of the

above in a coherent presentation. For this purpose we also expose the
distinction between syntactic and operational linearity, as well as bene-
fits of ̃𝜇: making commutative cuts obsolete and simplifying the defini-
tion of orthogonality-based logical relations.

I.10 Contributions

I.10.1 Polarisation in categorical models
Polarisation can be negatively described as rejecting, either directly
or indirectly, the hypothesis that composition is a priori associative.
In Chapter II, we introduce a positive and direct description of po-
larisation. We characterise the polarised evaluation order through a
category-like structure where not all composites associate. Duploid
is the name of the structure, as a reference to Jean-Louis Loday’s
duplicial algebras [Lod06].

The main result relates duploids to adjunctions. To help under-
stand this relation, let us first recall the correspondence between

values as follows:

Γ ⊢ 𝑉+ ∶ 𝑃
—(𝑋 ∉ fv(Γ))Γ ⊢ 𝑉+ ∶ ∀𝑋.𝑃

¡Γ ⊢ 𝑉+ ∶ 𝑃
—

¡Γ ⊢ 𝑉+ ∶ ¡𝑃

But the respective restrictions on the typing contexts prevent us from deducing the
same rules for non-value positive terms using focalisation (introducing a cut). The
simplest workaround is to introduce polarity coercions ⇓ from negative to positive,
yielding the equations ∀ = ∀⇓ and ! = ¡⇓. The proto-quantification

∀

describes
polymorphism with value restriction (see [Mun09]). The proto-exponential ¡ is re-
miniscent of Melliès and Tabareau’s decomposition of exponentials with ressource
modalities in tensor logic [MT10].
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direct models of call by value and indirect models à laMoggi.

Direct models
In a direct denotational model, there should be a close match
between the given operations in the model and the constructions
in the language. Essentially, type and program constructors should
respectively correspond to operations on objects and on morphisms
in a category. In particular, it should be possible to reason about an
instance of the model within the language.9 An example of direct
models for the simply-typed λ calculus is given by cartesian-closed
categories.

In a model such as Moggi’s λC models [Mog89], or Lafont, Reus
and Streicher’s model of call by name [LRS93], however, the lan-
guage is not interpreted directly but through a Kleisli construction
for a monad or a co-monad. We have a precise description of the
link between direct models and indirect models thanks to Führ-
mann [Füh99]. Categories that model call by value directly are
characterised by the presence of a thunk, a formal account of the
well-known structure used to implement laziness in call-by-value lan-
guages [HD97].

The characterisation takes the following form: any direct model
arises from the Kleisli construction starting from a λC model. How-
ever, from the direct model we can only recover a specific λC model:
it is made of semantic values consisting of all the pure expressions.
More precisely, the Kleisli construction is a reflection that conflates
any two values equalised by the monad, and turns into a value any
thunkable expression. An expression is thunkable if it behaves simil-
arly to a value in a sense determined by the monad.

Selinger [Sel01] proves a similar relationship between direct mod-
els of the call-by-name λµ calculus and Lafont, Reus and Streicher’s
models [LRS93].

9Führmann [Füh99], Selinger [Sel99].
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Evaluation order By value By name Polarised

Direct model Thunk Runnable
monad

Duploid

Indirect model Monad 𝑇 Co-monad 𝐿 Adjunction
𝐹 ⊣ 𝐺

Programs Kleisli maps
𝑃 → 𝑇𝑄

co-Kleisli maps
𝐿𝑁 → 𝑀

Oblique maps
𝐹𝑃 → 𝑁
≃ 𝑃 → 𝐺𝑁

Syntactic data Values Stacks Both
Completion into Thunkable

expressions
Linear evalua-
tion contexts

Both

Table I.14: Comparison of the structures underlying various direct-
style models of computation.

Adjunction-basedmodels
The chapter deals with the underlying algebraic structure in these
models: a monad over a category of values for call by value, a co-
monad over a category of stacks for call by name. Duploids general-
ise the underlying structure to an adjunction between a category of
values and a category of stacks. (See Table I.14.)

Relationship with polarities comes from Girard’s polarised transla-
tion of classical logic [Gir91, DJS97, Lau02]. Our duploid construction
extends the (skeleton of the) polarised translation to any adjunc-
tion. (Essentially, we do not need the assumption that there is an
involutive negation operation on formulae.)

We know that there is a practical relevance of decomposing mon-
ads, when seen as notions of computation, into adjunctions, thanks
to Levy [Lev99, Lev04, Lev05]. Levy’s adjunctions subsume models of
call by value and call by name. However the model is indirect, and
still lacks a corresponding notion of direct model.

The duploid construction
With the duploid construction, we define, starting from an adjunc-
tion 𝐹 ⊣ 𝐺 ∶ 𝒞1 → 𝒞2, morphisms 𝐴 → 𝐵 for 𝐴 and 𝐵 objects of either
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category 𝒞1 and 𝒞2.
We first define oblique morphisms 𝑃 → 𝑁, with 𝑃 ∈ |𝒞2| and 𝑁 ∈

|𝒞1|, equivalently as maps 𝑃 → 𝐺𝑁 or 𝐹𝑃 → 𝑁. Now consider ∙ the
composition in 𝒞1 and ∘ the composition in 𝒞2. We observe that
oblique morphisms compose either in 𝒞1:

𝑓 ∶ 𝑃 → 𝐹𝑄—(≃)
𝑓 ∶ 𝐹𝑃 → 𝐹𝑄

𝑔 ∶ 𝑄 → 𝑁—(≃)𝑔 ∶ 𝐹𝑄 → 𝑁—(∙)
𝑔 ∙ 𝑓 ∶ 𝐹𝑃 → 𝑁—(≃)
𝑔 ∙ 𝑓 ∶ 𝑃 → 𝑁

or in 𝒞2:
𝑓 ∶ 𝑃 → 𝑁—(≃)

𝑓 ∶ 𝑃 → 𝐺𝑁
𝑔 ∶ 𝐺𝑁 → 𝑀—(≃)𝑔 ∶ 𝐺𝑁 → 𝐺𝑀—(∘)

𝑔 ∘ 𝑓 ∶ 𝑃 → 𝐺𝑀—(≃)
𝑔 ∘ 𝑓 ∶ 𝑃 → 𝑀

Thus we define a morphism 𝐴 → 𝐵 as an oblique morphism:�� ��𝐴+ → 𝐵⊝ ,

where:

𝑃+ ≝ 𝑃 𝑃⊝ ≝ 𝐹𝑃
𝑁+ ≝ 𝐺𝑁 𝑁⊝ ≝ 𝑁

The reason why this does not necessarily define a category is that we
can have:

𝑓 ∘ (𝑔 ∙ ℎ) ≠ (𝑓 ∘ 𝑔) ∙ ℎ
when the adjunction is not idempotent, as we will see.

Contribution
In Chapter II, we prove that there exists a reflection:

Dupl◁Adj
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where Dupl is a category of duploids and duploid functors, and
where Adj is the category of adjunctions and pseudo maps of ad-
junctions. In other words, the duploid construction above extends
to a functorAdj → Dupl that admits a full and faithful right adjoint.
In particular, any duploid is obtained from an adjunction.

As a consequence of the main result, duploids account for a wide
range of computational models, as we will see in various examples
from denotational semantics. It suggests that the various biases in
denotational semantics: indirect, call-by-value, call-by-name… are
ways of hiding the fact that composition is not always associative.

Also, because of the reflection, Dupl is equivalent to a full sub-
category of Adj, which means that the adjunction associated to a
duploid has additional properties. We characterise which exactly.
We show that there is an equivalence of categories:

Dupl ≃ Adjeq

where Adjeq is the full subcategory of adjunctions that satisfies the
equalising requirement: the unit and the co-unit of the adjunction are
respectively equalisers and co-equalisers. This requirement means
that:

• the category of values is completed with all thunkable expres-
sions;

• the category of stacks is completed with all evaluation contexts
that are linear;

• two values and any two stacks that are not distinguished by the
model of computation are identified.

In other words, the duploid expresses the point of view from inside
the model of computation defined by the adjunction.

The chapter introduces the calculus Ldup which is an internal lan-
guage for duploids. With it we explain the operational contents of
duploids.
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𝑥† ≝ 𝜆𝑘.(𝑘 𝑥)
(𝜆𝑥.𝑡)† ≝ 𝜆𝑘.(𝑘 𝜆𝑥.𝑡†)
(𝑡 𝑢)† ≝ 𝜆𝑘.(𝑡† 𝜆𝑥.(𝑢† 𝜆𝑦.(𝑥 𝑦 𝑘)))

(a) A call-by-value translation
(Plotkin [Plo75])

𝑥‡ ≝ 𝑥
(𝜆𝑥.𝑡)‡ ≝ 𝜆𝑦.(𝑡‡[fst(𝑦)/𝑥] snd(𝑦))
(𝑡 𝑢)‡ ≝ 𝜆𝑘.(𝑡‡ (𝑢‡, 𝑘))

(b) A call-by-name translation (Lafont,
Reus and Streicher [LRS93])

Figure I.15: Continuation-passing translations into the λ calculus

λµ𝑣/𝑛

cpsv/n⟦⋅⟧
�� ��

(1)
//// LC

(2)
��

λ LLP
(3)

oo

Figure I.16: The polarised decomposition of CPS in three steps

I.10.2 Polarisation in programming languages
Polarisation, and the L calculi, allow us to explain the structure
of first-class continuations and continuation-passing style (CPS)
through a decomposition in three steps. This is the subject of
Chapter III.

A polarised decomposition of CPS translations
Thanks to the proof-theoretic study of classical logic [Gir91, DJS95,
DJS97, Lau02], we know that the standard call-by-value continuation-
passing translation (see Figure I.15 on the current page) corres-
ponds to a positive polarisation of formulae while Lafont, Reus and
Streicher’s call-by-name translation corresponds to a negative polar-
isation of formulae. (We consider the variants that take into account
the 𝒞 operator.) The symmetry between polarities translates into a
categorical duality that we can find exposed in Selinger [Sel01] and
Curien and Herbelin [CH00].

The chapter is to begin with an account of how, thanks to notions
of polarities, focalisation and sequent calculus, we can decompose
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in three steps call-by-name and call-by-value continuation-passing-
style translations (Figure I.16 on the preceding page). In doing so we
reformulate existing and well-known translations for simply-typed
typed λµ calculus [Lau02].

Step (1) encodes derivations within the λµ calculus as all-positive
or all-negative derivations in the polarised classical logics LC [Gir91]
or LK𝜂

𝑝 [DJS97]; thereby choosing a way to polarise formulae.
Step (2) is Laurent’s translation from LC to the so-called polar-

ised linear logic LLP [Lau02]. This translation is a particular case
of the duploid construction of Chapter II, and therefore step (2) is
where the direct style is lost. LLP can be thought of as the ∧,∨, ¬
fragment of LJ, which has been made symmetric by introducing an
involutive negation operation ⋅⊥ on formulae. As a consequence,
negation:

Γ, 𝑃 ⊢—(⊢ ¬)Γ ⊢ ¬𝑃
Γ ⊢ 𝑃—(¬ ⊢)Γ, ¬𝑃 ⊢

is split into two covariant modalities written ! and ?:

⊢ 𝑁, 𝒩—(prom)⊢ !𝑁, 𝒩
⊢ 𝒩 , 𝑃—(der)⊢ 𝒩 , ?𝑃

where 𝒩 contains only negative formulae. The modalities reflect
changes of polarities; as such they distinguish the formula for the
call-by-value arrow (!(𝑃 ⊸ ?𝑄)) from the formula for the call-by-
name one (!𝑁 ⊸ 𝑀).

Step (3) translates the previous logic into the λ calculus with only
tail calls, in other words it translates it into a calculus of continu-
ations. This is done as follows:

• Sequents are flattened into single-conclusion ones, i.e. ⊢ 𝒩 , 𝑃
is mapped into 𝒩 ⊥ ⊢ 𝑃. This is where the explicit polarities
disappear.

• Sequent calculus is cast into natural deduction: in terms of an L
calculus, a context Γ ∣ 𝐸 ∶ 𝐴 ⊢ ⋆ ∶ 𝐵 is mapped into a λ-term Γ, 𝑘 ∶
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Calculus Ref Eval. strat. Style Red. & Eq.
Lpol,t̂p+ Fig. III.2 Polarised Seq. calc. ⊳R𝑝

, ≃RE𝑝

λ×v Fig. III.3 Indirect Nat. ded. ⊳R𝜆
, ≃RE𝜆

λµt̂p𝑣 Fig. III.5 By value Nat. ded. ⊳R𝑣
, ≃RE𝑣

[AHS04]
λµt̂p𝑛 Fig. III.7 By name Nat. ded. ⊳R𝑛

, ≃RE𝑛
[HG08]

Lexp Fig. III.11 Indirect Seq. calc. ⊳R𝑒
, ≃RE𝑒

Table I.17: Summary of the calculi considered in Chapter III

𝐴 ⊢𝐸∗ ∶𝐵 where 𝑘 is linear inside 𝐸∗. This is where administrative
reductions need to be taken care of, as we will see.

In other words, this step essentially erases an interesting structure in
order to fit the mould of the λ calculus.

Notice that steps (2) and (3) are the same regardless of the source
calculus.

Contribution: a polarised decomposition of delimited CPS
translations
Our contribution is two-fold: we underline the difference between
steps (1) and (2) thanks to an L calculus that takes place in the
upper-right-hand corner of Figure I.16, and we extend the decom-
position in three steps to Danvy and Filinski’s shift and reset control
operators [DF90]. Our approach allows us to rationally reconstruct in
direct style four distinct call-by-name variants of shift and reset, one
of which appears to be new.

Historical remarks
The use of first-class continuations to model control features in ALGOL
60 [BBG+63] goes back to Landin [Lan65, Lan98, DM08]. Many people
were involved in the recognition the following years of the concept of con-
tinuation, meaning the functional abstraction of the remainder of a com-
putation — notably van Wijngaarden, Mazurkiewicz, Morris, Wadsworth,
Fischer, Reynolds and Abdali (see Reynolds’s historical account [Rey93]).
Continuation-passing style has been used to provide both implementa-

tions (Sussman and Steele [SS75]) and denotational semantics (Strachey
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and Wadsworth [SW74]) to higher-order programming languages.
The qualities of continuation-passing style used in intermediate rep-

resentations of compilers have long been recognised (Steele [Ste78],
Shivers [Shi91]). Such intermediate representations are widely used in
contemporary compilers, along with other representations. This is ex-
plained by the fact that the structure of continuation-passing style makes
the intermediate representation amenable to optimisations and analyses
(Demange [Dem12]). Continuation-based representations are also es-
sential in accounting for control in the conception of verified compilers.
There, the representation of the context “inside-out” is reminiscent of
focalisation and abstract machines like the ones we find in this thesis.
(Leroy [Ler12])

First-class continuations and continuation-passing style have been
used to model both evaluation order and control. In both aspects
they also led to discoveries. Danvy and Filinski introduced the delim-
ited control operators shift and reset [DF90] in order to model in direct
style the fact that continuations can return and be composed, as used
in functional backtracking with success and failure continuations. The
expressiveness of delimited control operators has been demonstrated
by Filinski [Fil96, Fil94, Fil99]: they can express in direct style any mon-
adic effect, as long as the laws of the monad can be expressed as pure
functional terms. Their use goes beyond programming: for instance,
they are used in linguistics to model phenomena of natural languages
(Shan [Sha04]), and in logic to derive principles that are ordinarily only
admissible (Herbelin [Her10], Ilik [Ili10]).
In a work independent from delimited control operators, Lafont, Reus

and Streicher introduced a continuation-passing translation for the call-
by-name λ calculus [LRS93]. Its originality, with hindsight, is to return
continuations instead of passing them, and to emphasise the value-like
nature of stacks. Its quality is to satisfy η equivalence, thus leading
to a cartesian-closed category, in contrast with Plotkin’s earlier call-by-
name translation [Plo75]. This new translation is an input from proof-
theory: it is inspired from double-negation translations of Krivine and
Girard [Kri90, Gir91].
The point of view of the chapter is that the structures at work in conti-
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nuation-passing style can be explained by decomposing the continuation-
passing-style translations. The first such decomposition was the one of
Danvy and Hatcliff [HD97]: they showed that the call-by-name translation
of Plotkin can be explained as the implementation of call by name into
call by value using thunks, followed by the call-by-value translation.

I.10.3 Polarisation in proof theory
In Chapter IV, we go back to the proof-theoretic roots of polarisa-
tion: to Girard’s account [Gir91] of an involutive negation in classical
logic, which we seek to explain. However we do not assume the
reader to be familiar with Girard’s work and take a different angle.
Our goal is to investigate the constructive interpretation of an in-
volutive negation, or equivalently of reasoning by contrapositive,
assuming that these words take a specific meaning.

Assumption I.7. By constructive, we mean an interpretation that
follows the formulae-as-types notion of construction, in which formulae
are mapped into the types of a programming language.

This notion of constructiveness is not based on an a priori lim-
itation of proof techniques, such as the refusal of the principle of
excluded middle ∀𝐴 (𝐴 ∨¬𝐴). Thus, Griffin showed that Felleisen’s
𝒞 [FFKD87] could be typed with the elimination of double nega-
tion [Gri90], and therefore it can be used to derive the principle of
excluded middle. But the proof provides by no means a decision
procedure for any 𝐴: the behaviour depends in general on the con-
text in which the principle is invoked. In other words, it should not
be seen as a contradiction to intuitionism: the latter assumes that
the behaviour of proofs is referentially transparent, while we do not.

Neither should this notion of constructiveness be seen as a restric-
tion to Church-style typed calculi. Just like type systems are an
approximation of correct programs, logical systems are seen as an ap-
proximation of constructive behaviours. This is the point of view of
Krivine’s classical realizability [Kri09], for instance. This is why there
is no contradiction with our primary interest in untyped calculi.
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In this context, the constructive nature is observed in particu-
lar for purely positive formulae (Girard [Gir91]). In arithmetic,
the notion encompasses Σ0

1 formulae. Purely positive formulae
must satisfy the same criterion as in intuitionistic logic: disjunc-
tion property, property of existence… As a consequence, proofs
of a formula ∀ ⃗𝑥(𝑃0( ⃗𝑥) → 𝑄0( ⃗𝑥)) where 𝑃0, 𝑄0 are purely positive
(that is to say Π0

2 formulae in arithmetic) correspond to algorithms
(Murthy [Mur91]).

Such a notion of constructiveness can be understood through a
comparison with programming languages: in the presence of side-
effecting operations (control operators, state, input/output…), cer-
tain types are opaque at runtime.

Assumption I.8. By involutive, we mean a negation that satisfies a
type isomorphism between ¬¬𝐴 and 𝐴.

The reason for asking more than a mere equivalence between 𝐴
and ¬¬𝐴 is that there are too many choices for the contrapositive of
a proposition such as the following:

∀x, y ∈ 𝐴, (𝑃(x)∨𝑄(y)) → (∀x ∈ 𝐴, 𝑃(x))∨(∀y ∈ 𝐴, 𝑄(y))

for instance:

¬((∀x ∈ 𝐴, 𝑃(x)) ∨ (∀y ∈ 𝐴, 𝑄(y))) → ¬∀x, y ∈ 𝐴, (𝑃(x) ∨ 𝑄(y))
(¬∀x ∈ 𝐴, 𝑃(x)) ∨ (¬∀y ∈ 𝐴, 𝑄(y)) → ∃x, y ∈ 𝐴, ¬(𝑃(x) ∨ 𝑄(y))
(∃x ∈ 𝐴, ¬𝑃(x)) ∧ (∃y ∈ 𝐴, ¬𝑄(y)) → ∃x, y ∈ 𝐴, (¬𝑃(x) ∧¬𝑄(y))

We are no longer overwhelmed with choices once De Morgan laws
are type isomorphisms: if there are too many proofs, then we must
be able to choose a canonical one, one that preserves meaning.

In the absence of such isomorphisms, we take contrapositive to
mean the proposition obtained by pushing negations the closest
to the leaves, using De Morgan laws. In the above example this
corresponds to the third proposition. Works such as the one of
Krivine [Kri09] show from a technical standpoint the importance of
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such reasoning by contrapositive; for instance the axiom of count-
able choice is only realised through its contrapositive. Yet, reasoning
by contrapositive is not trivial in the context of the λC calculus used
by the author, as the following example shows.

Example I.9. We set ourselves in the λC calculus from Figure I.12 on
page 81, extended with second order quantification.10 This allows us
to define quantifiers in a standard way: ∀𝑋 ∈ 𝐴, 𝐵 ≝ ∀𝑋(𝐴[𝑋] → 𝐵)
and ∃𝑋 ∈ 𝐴, 𝐵 ≝ ∀𝑌(∀𝑋 (𝐴[𝑋] → 𝐵 → 𝑌) → 𝑌), and similarly for
first-order.

Now let us consider the following formulae, which have the same
complexity as the axiom of countable choice and its contrapositive:

[𝐶] ∶ ∀x ∈ ℕ, ∃y ∈ 𝐸, 𝐴1(x, y) → ∃𝑌 ∈ 𝐹, ∀x ∈ ℕ, 𝐴2(x, 𝑌)
[ ̄𝐶] ∶ ∀𝑌 ∈ 𝐹, ∃x ∈ ℕ, ¬𝐴2(x, 𝑌) → ∃x ∈ ℕ, ∀y ∈ 𝐸, ¬𝐴1(x, y)

We can prove [𝐶] ↔ [ ̄𝐶], and if we do so directly, then we encounter
the following term of type [𝐶] → [ ̄𝐶]:

𝜆𝑎𝑥𝑦.(𝒞𝜆𝑘.(𝑎 𝜆𝑒.(𝒞 𝜆𝑧.(𝑘 (𝑦 𝑒 𝜆𝑛𝑝.(𝑧 𝜆𝑘.(𝑘 𝑛 𝑝))))) 𝜆𝑛𝑝.(𝑥 𝑛 𝜆𝑒𝑧.(𝑧 (𝑝 𝑒)))))

All four De Morgan laws that relate ∀ and ∃ are used in the proof.
Among them, only the following principle is not intuitionistic, and
is responsible for the two occurrences of 𝒞:

¬∀x ∈ ℕ,𝑃 → ∃y ∈ ℕ, ¬𝑃 .

As a matter of fact, its proof skeleton is the following:�� ��⊢ 𝜆𝑥𝑦.(𝒞 𝜆𝑘.(𝑥 𝜆𝑒.(𝒞 𝜆𝑙.(𝑘 (𝑦 𝑒 𝑙))))) ∶ ¬∀x ∈ ℕ, 𝑃(x) → ∃x ∈ ℕ, ¬𝑃(x)
10Formulae are extended with quantification on atoms (∀𝑋 𝑁), and the follow-

ing two rules are added:

Γ ⊢ 𝑡 ∶ 𝑁—(𝑋 ∉ fv(Γ))Γ ⊢ 𝑡 ∶ ∀𝑋 𝑁
Γ ⊢ 𝑡 ∶ ∀𝑋 𝑁—

Γ ⊢ 𝑡 ∶ 𝑁[𝑀/𝑋x1…x𝑛]
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Although it is an elementary classical tautology, the computational
role of the term is not immediate, in particular due to the presence
of two 𝒞s.

In the above example, illegibility is an idiosyncrasy of the λC calcu-
lus that reflects the absence, as we will see, of an involution ¬¬𝑁 ≃ 𝑁
and therefore of an isomorphism of types ¬∀x 𝑁 ≃ ∃x ¬𝑁.

Formulae-as-types for an involutive negation
Girard gives an involutive interpretation of negation by letting it
change the polarity of formulae [Gir91]. We show in the chapter how
a notion of involutive negation inspired by Girard corresponds to
the idea of exposing a high-level interface to captured stacks, as sug-
gested by Felleisen [AH08, Note] and formalised by Clements [Cle06].
In our setting, this translates into the presence of a positive type
∼𝐴 of inspectable stacks and constants 𝐷 that provides an access to
the components of these stacks. The type ∼𝐴 is therefore distinct
from the negative type 𝐴 → ⊥ of continuations. The distinction
only makes sense in a setting where both polarities are taken into
account.

Polarisation explains a technique of Krivine that alleviates the
complexity of reasoning in the λC calculus by allowing certain
pseudo-types of a positive tinge to the left-hand side of implica-
tions [Kri09, Kri08]. Polarisation makes such types first class, because
it gives a meaning also for when they are on the right-hand side
of implications. In addition, the most important pseudo-type in
Krivine’s work is 𝒳−, defined as the set {k𝜋 ∣ 𝜋 ∈ 𝒳}. This amounts
to distinguishing captured stacks from continuations, as we do in a
direct manner.11

In the chapter, control delimiters provide a constructive interpret-
ation for the unit ⊥, expanding the proof theoretic interpretation
of delimited control of Herbelin and others [HG08, AHS09, Her10,

11Note also that Krivine’s setting is not constructive in our sense: there is an
external step involved in turning realisers into algorithms (Krivine [Kri09],
see also Miquel [Miq09]). Polarisation removes the external step, since terms
that compute witnesses can be identified with realisers of a positive type.
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Fig. Style Strategy 𝐴 ≃ ¬¬𝐴 Red. & Eq.
λC I.12 Nat. ded. By _name No ≻𝑛, ≈𝑛 [HS02]
λℓ IV.1 Nat. ded. _Polarised Yes ≻𝑝, ≈𝑝
Ln I.10 Seq. calc. By _name No ⊳R𝑛

, ≃RE𝑛
[CH00]

Lpol,t̂p⊝ IV.4 Seq. calc. _Polarised Yes ⊳R𝑝
, ≃RE𝑝

Table I.18: A comparison of calculi appearing in Chapter IV

Ili10] which is meant to generalise the principle of Friedman’s A-
translation [Fri78]. Thus our result shows how although delimited
control, when typed without annotations, does not prove new for-
mulae compared to non-delimited control, it does give better proofs
from a constructive standpoint.

Contributions
In Chapter IV, we introduce the extensional and untyped calculi λℓ
and Lpol,t̂p⊝ , in which the negation defined as follows is involutive:

¬𝑃 ≝ 𝑃 → ⊥
¬𝑁 ≝ ∼𝑁

The calculus λℓ provides the notion of program, or quasi-proof
terms, and the calculus Lpol,t̂p⊝ decomposes λℓ to allow extensional
reasoning. The calculi contain De Groote-Saurin’s Λµ calculus [dG94,
Sau05] and (a variant of) the operators shift0/reset0 [DF90, Sha07,
MB12].

Historical remarks
The first non-trivial interpretation of an involutive negation was given
by linear logic [Gir87]. Girard extended this interpretation to proposi-
tional classical sequent calculus with the logic LC [Gir91]. The logic and
its double negation translations have been thoroughly studied [Mur92,
LRS93, DJS95, DJS97, QTDF96, Lau02, LR03, LQTdF05, Lau05, Lau11]. We
notably owe to Murthy [Mur92] an early attempt at explaining LC in terms
closer to programming languages. Also, Danos, Joinet and Schellinx pro-
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posed to reconstruct LC though a detailed analysis of cut elimination in
LK based on a translation into linear logic (the system LK𝜂

𝑝, [DJS97]).
The involution brings along a duality between the positive and negat-

ive fragments of LC. It is now well-understood that the positive polarisa-
tion corresponds to a strict evaluation strategy whereas the negative po-
larisation corresponds to a lazy one [Mur92, DJS95, DJS97, CH00, Lau02,
Lau11]. Thus, polarisationmeets a line of research that sought, since Filin-
ski’s Masters thesis [Fil89], to relate continuations in computer science to
categorical duality [Fil89, LRS93, Thi97, SR98, Lev99, CH00, Sel01, MT10].
The question of the involutive negation is part of this line of work too,

as witnessed by Thielecke in the conclusion of his thesis [Thi97, p. 156]:

The duality aspects of CPS may become clearer if addressed in
a setting where there actually is a duality functor.

The possibility of understanding the involutive negation in a constructive
context has always been discussed. Thus, according to Parigot [Par00]:

It is often claimed that computational interpretations of nega-
tion in classical logic should be involutive, that is ¬¬A = A should
be realised at the computational level. It is even sometimes
claimed that this is the distinguishing feature of classical logic.
But the real computational effect of the involutive character is
not clear.

and, according to Laurent, Quatrini and Tortora de Falco [LQTdF05],
speaking of the duality they rely on:

It is not completely clear whether or not classical negation
should be involutive in such a strong sense.

One criticism holds that identifying negation with duality has no clear
meaning in terms of a connective. But, according to Girard [Gir91, p. 9]:

Our identification of ¬¬A with A forces negation to be involutive;
but there are two obvious traps that one should avoid about this
identification.
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Trap #1: the belief that it is enough to declare ¬¬A equal to
A; […]

Trap #2: the belief that this identification is essential to our
approach; […]

The interpretation of Chapter IV seems a late perspective on this remark.
Yet, negation already appears as a connective in the works of Murthy

[Mur92] and Danos, Joinet and Schellinx [DJS97]. With hindsight, these
works already implied that polarisation corresponds to an evaluation or-
der that extends call by value and call by name. According to Laurent
[Lau05, p. 22], however:

As shown by many works [DJS95, DJS97, Lau02, Lev99] determ-
inistic classical systems can be classified into two categories:
call-by-name and call-by-value systems.

It is as if the novelty of polarisation as an evaluation strategy was over-
looked, as a consequence of equating negation with duality. This most
likely explains why, despite the idea being ambitious, the involutive nega-
tion was less endorsed than the duality it generalises.





Chapter II

Duploids: Models of a
non-associative composition

We characterise the polarised evaluation order through a categorical
structure where the hypothesis that composition is associative is
relaxed. Duploid is the name of the structure, as a reference to
Jean-Louis Loday’s duplicial algebras.

The main result is a reflection Adj → Dupl where Dupl is a
category of duploids and duploid functors, and Adj is the category
of adjunctions and pseudo maps of adjunctions. The result suggests
that the various biases in denotational semantics: indirect, call-by-
value, call-by-name... are ways of hiding the fact that composition is
not always associative.

Outline
In Section II.1, we introduce pre-duploids as categories where the
associativity of composition is deficient. In Section II.2, we define
duploids as pre-duploids with additional structure, and characterise
this additional structure. The category Dupl of duploids is intro-
duced. In Section II.3 we introduce the categoryAdj of adjunctions
and pseudo maps of adjunctions and we prove that there is a reflec-
tion:

Dupl≃Adjeq ◁Adj
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where Adjeq is the full subcategory of adjunctions that satisfy an
equalising requirement.

II.1 Pre-duploids
We define pre-duploids, which are category-like structures whose
objects have a polarity, and which miss associativity of composition
when the middle map has polarity + → ⊝.

Definition II.1. A pre-duploid 𝒟 is given by:

1. A set |𝒟 | of objects together with a polarity mapping:

𝜛 ∶ |𝒟 | → {+,⊝} .

2. For all 𝐴, 𝐵 ∈ |𝒟 |, a set ofmorphisms or hom-set 𝒟(𝐴, 𝐵).
3. For all morphisms 𝑓 ∈ 𝒟(𝐴, 𝐵) and 𝑔 ∈ 𝒟(𝐵, 𝐶), a morphism

𝑔 ◉ 𝑓 ∈ 𝒟(𝐴, 𝐶), also written as follows depending on the polarity
of 𝐵:

𝑔 ∙ 𝑓 ∈ 𝒟(𝐴, 𝐶) if 𝜛(𝐵) = + ,
𝑔 ∘ 𝑓 ∈ 𝒟(𝐴, 𝐶) if 𝜛(𝐵) = ⊝ .

The following associativities must hold for all objects 𝐴, 𝐵 ∈ |𝒟 |;
𝑃, 𝑄 ∈ 𝜛−1({+}) and 𝑁, 𝑀 ∈ 𝜛−1({⊝}):

(∙∙) For all 𝐴
𝑓

⎯→ 𝑃
𝑔

⎯→ 𝑄 ℎ⎯→ 𝐵, one has (ℎ ∙ 𝑔) ∙ 𝑓 = ℎ ∙ (𝑔 ∙ 𝑓 ) ;

(∘∘) For all 𝐴
𝑓

⎯→ 𝑁
𝑔

⎯→ 𝑀 ℎ⎯→ 𝐵, one has (ℎ ∘ 𝑔) ∘ 𝑓 = ℎ ∘ (𝑔 ∘ 𝑓 ) ;

(∙∘) For all 𝐴
𝑓

⎯→ 𝑁
𝑔

⎯→ 𝑃 ℎ⎯→ 𝐵, one has (ℎ ∙ 𝑔) ∘ 𝑓 = ℎ ∙ (𝑔 ∘ 𝑓 ).

4. For all 𝐴 ∈ |𝒟 |, a morphism id𝐴 ∈ 𝒟(𝐴, 𝐴) neutral for ◉.

The mapping 𝜛 defines a partition of |𝒟 | into the positive ob-
jects 𝑃,𝑄... in |𝒫 | ≝ 𝜛−1({+}) and the negative objects 𝑁,𝑀... in
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|𝒩 | ≝ 𝜛−1({⊝}). This partition defines categories 𝒫 (whose com-
position is given by ∙) and 𝒩 (whose composition is given by ∘) in
an obvious way.

II.1.1 Linear and thunkable morphisms
Definition II.2. Let 𝒟 be a pre-duploid. A morphism 𝑓 of 𝒟 is
linear if for all 𝑔, ℎ one has:

𝑓 ◉ (𝑔 ◉ℎ) = (𝑓 ◉𝑔) ◉ℎ .

A morphism 𝑓 of 𝒟 is thunkable1 if for all 𝑔, ℎ one has:

ℎ ◉ (𝑔 ◉ 𝑓 ) = (ℎ ◉ 𝑔) ◉ 𝑓 .

Notice that by definition any morphism 𝑓 ∶ 𝑃 → 𝐴 is linear, and any
morphism 𝑓 ∶ 𝐴 → 𝑁 is thunkable. Notice also that these notions are
closed under composition and identity. Indeed, if 𝑓1 and 𝑓2 are linear
then for all 𝑔, ℎ one has:

(𝑓1 ◉ 𝑓2) ◉ (𝑔 ◉ℎ) = 𝑓1 ◉ (𝑓2 ◉ (𝑔 ◉ℎ)) 𝑓1 linear

= 𝑓1 ◉ ((𝑓2 ◉ 𝑔) ◉ℎ) 𝑓2 linear

= (𝑓1 ◉ (𝑓2 ◉ 𝑔)) ◉ℎ 𝑓1 linear

= ((𝑓1 ◉ 𝑓2) ◉ 𝑔) ◉ℎ 𝑓1 linear

So we may define sub-categories of 𝒟 as we do below.

Definition II.3 (𝒟𝑙, 𝒟t, 𝒩 ⦁, 𝒫 ⦁). We call 𝒟𝑙 the category of linear
morphisms of 𝒟 ; i.e the sub-category of 𝒟 with all objects and
the morphisms that are linear. We call 𝒟t the category of thunkable
morphisms of 𝒟 .

Observe that 𝒩 is the full sub-category of 𝒟t with negative ob-
jects, because any 𝐴 → 𝑁 is thunkable. Symmetrically, 𝒫 is the full
1Terminology adapted from Thielecke [Thi97], Führmann [Füh99].
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sub-category of 𝒟𝑙 whose objects are positive, because any 𝑃 → 𝐵 is
linear. We define accordingly:

• The category 𝒩 ⦁ of negative linear maps as the full subcategory
of 𝒟𝑙 whose objects are negative; or equivalently the subcategory
of 𝒩 whose morphisms are linear.

• The category 𝒫 ⦁ of positive thunkable maps as the full subcat-
egory of 𝒟t whose objects are positive; or equivalently the sub-
category of 𝒫 whose morphisms are thunkable.

Proposition II.4. The hom-sets 𝒟(𝐴, 𝐵) of a pre-duploid 𝒟 extend to
a (pro-)functor: �� ��𝒟(−, =) ∶ 𝒟t

op ×𝒟𝑙 → Set

defined for 𝑓 ∈ 𝒟t(𝐴, 𝐵) and 𝑔 ∈ 𝒟𝑙(𝐶, 𝐷) with:

𝒟(𝑓 , 𝑔) ∶ 𝒟(𝐵, 𝐶) → 𝒟(𝐴, 𝐷)
ℎ ↦ 𝑔 ◉ℎ ◉ 𝑓 .

Proof. Restricting to 𝑓 thunkable and 𝑔 linear makes the definition unam-
biguous. Functoriality corresponds to the following two equations:

𝒟(id𝐴, id𝐵)(ℎ) = ℎ
𝒟 (𝑓2 ◉ 𝑓1, 𝑔1 ◉ 𝑔2)(ℎ) = ((𝑔1 ◉ 𝑔2) ◉ℎ) ◉ (𝑓2 ◉ 𝑓1)

= ((𝑔1 ◉ 𝑔2) ◉ℎ ◉ 𝑓2) ◉ 𝑓1
= (𝑔1 ◉ (𝑔2 ◉ℎ ◉ 𝑓2)) ◉ 𝑓1
= (𝒟 (𝑓1, 𝑔1) ∘ 𝒟 (𝑓2, 𝑔2))(ℎ)

The second equation uses the fact that 𝑓1 and 𝑓2 are thunkable and that 𝑔1
and 𝑔2 are linear. ∎
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II.1.2 Examples of pre-duploids

Girard’s classical logic
Girard’s correlation spaces are a denotational semantics for classical
logic. They do not form a category for lack of associativity of the
composition [Gir91, LQTdF05]. However, they form a pre-duploid.
We will see that duploids are motivated by Girard’s translation of
classical logic into intuitionistic logic.

Blass games
Blass [Bla92] gives a game semantics for linear logic, which did not
satisfy the associativity of composition. Thanks to Abramsky’s ana-
lysis of this issue [Abr03], we know that associativity fails due to
composites of the form 𝑁 ⎯→ 𝑃 ⎯→ 𝑀 ⎯→ 𝑄. According to Abramsky,
“none of the other 15 polarisations give rise to a similar problem”. There-
fore, Abramsky’s formalisation of Blass games yields a pre-duploid.
Thanks to Melliès’s analysis of this so-called “Blass problem” [Mel05],
we know that the phenomenon is essentially the same as for Girard’s
classical logic.

Direct models of call by value
Führmann [Füh99] characterises the Kleisli category of a monad via
the presence of a structure called thunk. In the contexts of models of
call by value, the thunk implements laziness.

Recall that a thunk-force category is a category (𝒫 , ∙, id) together
with a thunk (𝐿, 𝜀, 𝜗) as defined next.

Definition II.5. A thunk on 𝒫 is given by a functor 𝐿 ∶ 𝒫 → 𝒫
together with a natural transformation 𝜀 ∶ 𝐿 .→ 1 and a transformation
𝜗 ∶ 1→𝐿 such that the transformation 𝜗𝐿 ∶𝐿→𝐿2 is natural; satisfying
the following equations:

𝜀 • 𝜗 = id
𝐿𝜀 • 𝜗𝐿 = id𝐿
𝜗𝐿 • 𝜗 = 𝐿𝜗 • 𝜗
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The transformation 𝜗 is not necessarily natural, so that for 𝑓 ∈
𝒫 (𝐴, 𝐵) we may have:

𝐿𝑓 •𝜗𝐴 ≠ 𝜗𝐵 • 𝑓 .

A thunk is therefore a comonad for which any morphism has a co-
extension, with co-multiplication given by 𝜗𝐿. The co-extension of 𝑓
is ∗𝑓 ≝ 𝐿𝑓 • 𝜗𝐴.

Proposition II.6. Let (𝒫 , ∙, id, 𝐿, 𝜗, 𝜀) be a thunk-force category. The
following defines a pre-duploid.

|𝒟 | is the following disjoint union for a suitably chosen bijection ⇑ with
domain |𝒫 |:

|𝒟 | = |𝒫 | ⊎ ⇑|𝒫 | .
Let 𝜛(𝑃) = + and 𝜛(⇑𝑃) = ⊝ (in other words |𝒩 | = ⇑|𝒫 |). Now we
define: �

�

�

�

𝒟(𝑃, 𝑄) ≝ 𝒫 (𝑃, 𝑄)
𝒟(𝑃, ⇑𝑄) ≝ 𝒫 (𝑃, 𝑄)
𝒟(⇑𝑃, 𝑄) ≝ 𝒫 (𝐿𝑃, 𝑄)

𝒟(⇑𝑃, ⇑𝑄) ≝ 𝒫 (𝐿𝑃, 𝑄)

.

Composition ∙ and identities id𝑃 are obtained from 𝒫 . Composition ∘
and identities id𝑁 are defined with:

id𝒟
⇑𝑃 ≝ 𝜀𝑃

and for all 𝐴
𝑔

⎯→ ⇑𝑃
𝑓

⎯→ 𝐵:

𝑓 ∘ 𝑔 ≝ 𝑓 ∙ 𝐿𝑔 ∙ 𝜗𝐴 .

Proof. We indeed have ∘∘-associativity for any 𝐴 ℎ⎯→ 𝑁
𝑔

⎯→ 𝑀
𝑓

⎯⎯→ 𝐵:

𝑓 ∘ (𝑔 ∘ ℎ) = 𝑓 ∙ 𝐿𝑔 ∙ 𝐿𝐿ℎ ∙ 𝐿𝜗𝑁 ∙ 𝜗𝐴

= 𝑓 ∙ 𝐿𝑔 ∙ 𝐿𝐿ℎ ∙ 𝜗𝐿𝑁 ∙ 𝜗𝐴
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= 𝑓 ∙ 𝐿𝑔 ∙ 𝜗𝑁 ∙ 𝐿ℎ ∙ 𝜗𝐴
= (𝑓 ∘ 𝑔) ∘ ℎ

We also have ∙∘-associativity as a direct consequence of ∙∙-associativity.
We also have that id is neutral for ∘:

𝑓 ∘ id⇑𝑃 = 𝑓 ∙ 𝐿𝜀𝑃 ∙ 𝜗𝐿𝑃 = 𝑓
id⇑𝑃 ∘ 𝑓 = 𝜀𝑃 ∙ 𝐿𝑓 ∙ 𝜗𝐴 = 𝑓 ∙ 𝜀𝐴 ∙ 𝜗𝐴 = 𝑓 . ∎

In the context of λC models, this pre-duploid construction form-
alises how thunks implement laziness in call by value. In particular,
this defines 𝒩 as the Kleisli category of the thunk 𝐿 seen as a co-
monad. This Kleisli construction is the categorical counterpart of
Hatcliff and Danvy’s thunking translation [HD97] that embeds call by
name into call by value.

Proposition II.7. A morphism 𝑓 ∶ 𝑃 → 𝑄 is thunkable in the sense
of thunk-force categories if and only if it is thunkable in the sense of
pre-duploids.

Proof. Let us recall that 𝑓 ∈ 𝒫 (𝑃, 𝑄) is thunkable in the sense of Führ-
mann [Füh99] if we have:

𝐿𝑓 •𝜗𝑃 = 𝜗𝑄 • 𝑓 .

We have for any 𝐴
𝑓

⎯⎯→ 𝑃
𝑔

⎯→ 𝑀 ℎ⎯→ 𝐵:

ℎ ∘ (𝑔 ∙ 𝑓 ) = ℎ ∙ 𝐿(𝑔 ∙ 𝑓 ) ∙ 𝜗𝐴

= ℎ ∙ 𝐿𝑔 ∙ 𝐿𝑓 ∙ 𝜗𝐴
(ℎ ∘ 𝑔) ∙ 𝑓 = ℎ ∙ 𝐿𝑔 ∙ 𝜗𝐴 ∙ 𝑓

and 𝑓 is thunkable if and only if the two are equal.
It is clear that the two notions of thunkability coincide. ∎

Corollary II.8. In the above context, the transformation 𝜗 is natural if
and only if the pre-duploid is a category (i.e. statisfies ∘∙-associativity).
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Direct models of call by name
The concept dual to Führmann’s thunk is the one of runnable
monad2. Runnable monads implement strictness in call by name.
We may dualise the result of Führmann: categories with a run-
nable monad are Kleisli categories of co-monads. The result is
specialised by Selinger: control categories (direct models of the
call-by-name λµ calculus) are characterised as the Kleisli category of
the double-negation co-monad on the dual of a response category,
in the terminology of [Sel01].

Definition II.9. A runnable monad on a category 𝒞 is given by a
functor 𝑇 ∶ 𝒞 → 𝒞 together with a natural transformation 𝜂 ∶ 1 .→ 𝑇
and a transformation 𝜌 ∶ 𝑇 → 1 such that the transformation 𝜌𝑇 ∶
𝑇2 → 𝑇 is natural; satisfying the equations 𝜌 ∘ 𝜂 = id; 𝜌𝑇 ∘ 𝑇𝜂 = id𝑇
and 𝜌 ∘ 𝑇𝜌 = 𝜌 ∘ 𝜌𝑇 .

For any 𝑓 ∈ 𝒞 (𝐴, 𝐵), we may define the extension of 𝑓 as:

𝑓 ∗ = 𝜌𝐵 ∘ 𝑇𝑓 .

Let us comment on the computational significance of the struc-
ture. Models of the pure lambda-calculus are obtained through the
Kleisli construction of the co-monad ! of linear logic [Gir87]. In most
models, it is false that the induced runnable monad is trivial, that is
to say, enjoys that the transformation 𝜌 is natural. (We shall see later
that this condition corresponds to the co-monad being idempotent.)
The computational intuition of the runnable monad extending the
pure λ calculus is the following: we are given a constant 𝜂, together
with a term constructor ⋅∗. They simulate call by value as follows:
when 𝑡∗ is applied, the argument is considered in head position until
a term of the form 𝜂 𝑢 is reached. Then the evaluation proceeds with
𝑡 𝑢.
2Terminology is inspired from Erwig and Ren [ER04], who define, for the pur-

pose of studying program transformations, runnable monads as (program-
mer’s) monads enriched with a polymorphic “run” operation 𝑇𝐴 → 𝐴 with
equation 𝜌𝐴(𝜂𝐴(𝑥)) = 𝑥.
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We may define, given a runnable monad, a pre-duploid with a
bijective map ⇓ ∶ |𝒩 | → |𝒫 |. The construction is obtained by sym-
metry from the one of thunk-force categories. In particular the
positive sub-category is the Kleisli of the runnable monad.

Remark In the context of models coming from linear logic, the Kleisli
construction of the runnable monad gives a translation from call by value
to linear logic. It coincides with the translation first noticed by Gir-
ard [Gir87] (where it is called “boring”). The “boring” translation was
recognised as a monadic model of call by value by Maraist et al. and
Benton and Wadler [MOTW94, BW95]. The “boring” translation, however,
only uses the monad part and not run maps 𝜌𝑁 for 𝑁 ≠ 𝑇𝑀. It seems
that only now we recognise that the translation comes from an imple-
mentation of strictness in call by name, symmetric to the way we are
used to implementing laziness in call by value with thunks.

II.1.3 Syntactic pre-duploid
We give an example which provides the following intuition from
programming languages: positive types are evaluated eagerly, while
negative types are evaluated lazily. In particular, 𝑓 ∘ 𝑔 evaluates 𝑓
before 𝑔, whereas 𝑓 ∙ 𝑔 evaluates 𝑔 before 𝑓 . Thus, we may write
unambiguously 𝑓 ∙ 𝑔 ∘ ℎ, which means that 𝑔 computes first, and
subsequently determines if and when 𝑓 and ℎ are evaluated. But (𝑓 ∘
𝑔) ∙ ℎ can be distinct from 𝑓 ∘ (𝑔 ∙ ℎ), and then parentheses determine
whether ℎ or 𝑓 computes first.

We may observe this phenomenon in the ML and Haskell pro-
gramming languages. In ML, we may define a lazy application 𝑡 @n 𝑢
with 𝑡 (𝜆() → 𝑢). Strict application @v is the usual application. In
Haskell, we have for @v the strict application $! and we may take the
usual application for @n. Lack of associativity corresponds to the
distinction between the programs:

(𝜆𝑦.ℎ@n (𝑔 𝑦))@v (𝑓 𝑥)
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and:
ℎ@n (𝑔 @v (𝑓 𝑥)) .

In both languages, we witness the difference when 𝑓 is a function
that loops and ℎ is a function that immediately returns: the program
above loops while the one below immediately returns.

The syntactic pre-duploid formalises the intuition with abstract
machines (pairs ⟨ 𝑡 ‖ 𝑒 ⟩ of a term and an evaluation context) whose
components 𝑡 and 𝑒 are defined abstractly by their transition rules,
via the binders 𝜇 and ̃𝜇. Let us consider four sets of variables written
𝑥+, 𝛼+, 𝑥⊝, 𝛼⊝, and a grammar of the following shape:�

�

�

�

𝑡+ ⩴ 𝑉+ ∣ 𝜇𝛼+.𝑐 ∣ …
𝑉+ ⩴ 𝑥+ ∣ …
𝑡⊝ ⩴ 𝑥⊝ ∣ 𝜇𝛼⊝.𝑐 ∣ …
𝑒+ ⩴ 𝛼+ ∣ ̃𝜇𝑥+.𝑐 ∣ …
𝑒⊝ ⩴ 𝜋 ∣ ̃𝜇𝑥⊝.𝑐 ∣ …
𝜋⊝ ⩴ 𝛼⊝ ∣ …

𝑐 ⩴ ⟨𝑡+ ‖𝑒+⟩ ∣ ⟨𝑡⊝ ‖𝑒⊝⟩ ∣ …

We use the notation 𝑡 for either 𝑡+ or 𝑡⊝ and refer to +/⊝ as its
polarity, and so on.

We define the contextual equivalence relation ≃RE generated by
the following rewrite rules:

⟨𝜇𝛼⊝.𝑐‖𝜋⊝⟩ ⊳R 𝑐[𝜋⊝/𝛼⊝] 𝑡⊝ ⊳E 𝜇𝛼⊝.⟨𝑡⊝ ‖𝛼⊝⟩
⟨𝜇𝛼+.𝑐‖𝑒+⟩ ⊳R 𝑐[𝑒+/𝛼+] 𝑡+ ⊳E 𝜇𝛼+.⟨𝑡+ ‖𝛼+⟩
⟨𝑉+ ‖ ̃𝜇𝑥+.𝑐⟩ ⊳R 𝑐[𝑉/𝑥+] 𝑒+ ⊳E ̃𝜇𝑥+.⟨𝑥+‖𝑒+⟩
⟨𝑡⊝ ‖ ̃𝜇𝑥⊝.𝑐⟩ ⊳R 𝑐[𝑡⊝/𝑥⊝] 𝑒⊝ ⊳E ̃𝜇𝑥⊝.⟨𝑥⊝‖𝑒⊝⟩

Let us define, whenever the polarities of 𝑡 and 𝑥 are the same, the
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following term:

let 𝑥 be 𝑡 in 𝑢 ≝ 𝜇𝛼.⟨𝑡 ∥ ̃𝜇𝑥.⟨𝑢‖𝛼⟩⟩ (𝛼 ∉ fv(𝑡, 𝑢))

The polarities of 𝛼 and of “let 𝑥 be 𝑡 in 𝑢” are the same as the polarity
of 𝑢. The definition is designed to satisfy, for any 𝛼 that has the
polarity of 𝑢:

⟨let 𝑥+ be𝑉+ in 𝑢‖𝛼⟩ ⊳∗
R ⟨𝑢[𝑉+/𝑥+]‖𝛼⟩

⟨let 𝑥⊝be 𝑡⊝ in 𝑢‖𝛼⟩ ⊳∗
R ⟨𝑢[𝑡⊝/𝑥⊝]‖𝛼⟩

which may be abbreviated as:

⟨let 𝑥 be𝑉 in 𝑢‖𝛼⟩ ⊳∗
R ⟨𝑢[𝑉/𝑥]‖𝛼⟩

with the convention that 𝑉 is either 𝑉+ or 𝑡⊝. It also satisfies:

let 𝑥 be 𝑡 in 𝑥 ≃RE 𝑡
let 𝑦+ be (let 𝑥 be 𝑡 in 𝑢+) in 𝑣 ≃RE let 𝑥 be 𝑡 in let 𝑦+ be 𝑢+ in 𝑣
let 𝑦 be (let 𝑥⊝be 𝑡⊝ in 𝑢) in 𝑣 ≃RE let 𝑥⊝be 𝑡⊝ in let 𝑦 be 𝑢 in 𝑣

(II.1)

Proof. We have:

let 𝑥 be𝑉 in 𝑡 = 𝜇𝛼.⟨𝑉 ∥ ̃𝜇𝑥.⟨𝑡 ‖𝛼⟩⟩

→R 𝜇𝛼.⟨𝑡[𝑉/𝑥]‖𝛼⟩

⊲E 𝑡[𝑥/𝑦] since 𝛼 ∉ fv(𝑡)
let 𝑥 be 𝑡 in 𝑥 = 𝜇𝛼.⟨𝑡 ∥ ̃𝜇𝑥.⟨𝑥‖𝛼⟩⟩

⊲E 𝜇𝛼.⟨𝑡 ‖𝛼⟩

⊲E 𝑡 since 𝛼 ∉ fv(𝑡)
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and also:

let 𝑥 be 𝑡 in let 𝑦 be 𝑢 in 𝑣 = 𝜇𝛼.⟨𝑡 ∥ ̃𝜇𝑥.⟨𝑢∥ ̃𝜇𝑦.⟨𝑣‖𝛼⟩⟩⟩ (𝑦 ∉ fv(𝑣))

let 𝑦 be (let 𝑥 be 𝑡 in 𝑢) in 𝑣 = 𝜇𝛼.⟨𝜇𝛽.⟨𝑡 ∥ ̃𝜇𝑥.⟨𝑢‖𝛽⟩⟩∥ ̃𝜇𝑦.⟨𝑣‖𝛼⟩⟩

Therefore when 𝑦 = 𝑦+(is positive), we have:

let 𝑦+ be (let 𝑥 be 𝑡 in 𝑢+) in 𝑣
= 𝜇𝛼.⟨𝜇𝛽+.⟨𝑡 ∥ ̃𝜇𝑥.⟨𝑢+ ‖𝛽+⟩⟩∥ ̃𝜇𝑦+.⟨𝑣‖𝛼⟩⟩

→R 𝜇𝛼.⟨𝑡 ∥ ̃𝜇𝑥.⟨𝑢+ ∥ ̃𝜇𝑦+.⟨𝑣‖𝛼⟩⟩⟩ since 𝑥 ∉ fv(𝑣)
= let 𝑥 be 𝑡 in let 𝑦+ be 𝑢+ in 𝑣

and when 𝑥 = 𝑥⊝ (is negative), we have:

let 𝑦 be (let 𝑥⊝ be 𝑡⊝ in 𝑢) in 𝑣
= 𝜇𝛼.⟨𝜇𝛽.⟨𝑡⊝ ∥ ̃𝜇𝑥⊝.⟨𝑢‖𝛽⟩⟩∥ ̃𝜇𝑦.⟨𝑣‖𝛼⟩⟩

←R 𝜇𝛼.⟨𝑡⊝ ∥ ̃𝜇𝑥⊝.⟨𝜇𝛽.⟨𝑥⊝∥ ̃𝜇𝑥⊝.⟨𝑢‖𝛽⟩⟩∥ ̃𝜇𝑦.⟨𝑣‖𝛼⟩⟩⟩

since 𝛽 ∉ fv(𝑡) and 𝑥⊝ ∉ fv(𝑣)
→R 𝜇𝛼.⟨𝑡⊝ ∥ ̃𝜇𝑥⊝.⟨𝜇𝛽.⟨𝑢‖𝛽⟩∥ ̃𝜇𝑦.⟨𝑣‖𝛼⟩⟩⟩

←E 𝜇𝛼.⟨𝑡⊝ ∥ ̃𝜇𝑥⊝.⟨𝑢∥ ̃𝜇𝑦.⟨𝑣‖𝛼⟩⟩⟩ since 𝛽 ∉ fv(𝑢)
= let 𝑥⊝ be 𝑡⊝ in let 𝑦 be 𝑢 in 𝑣 ∎

The reduction semantics of a term 𝑡 is given by the relation ⊳R
applied to the command ⟨ 𝑡 ‖ 𝛼 ⟩ . This corresponds, for illustra-
tion purposes, to defining (the skeleton of) a contextual reduction
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semantics, in the sense of Wright and Felleisen [WF92], as follows:

𝑡⊝, 𝑢⊝ ⩴ 𝑥⊝ ∣ let 𝑥 be 𝑡 in 𝑢⊝ ∣ …
𝑡+, 𝑢+ ⩴ 𝑉+ ∣ let 𝑥 be 𝑡 in 𝑢+ ∣ …

𝑡 ⩴ 𝑡+ ∣ 𝑡⊝

𝑉+ ⩴ 𝑥+ ∣ …
𝑉 ⩴ 𝑉+ ∣ 𝑡⊝

𝐸 ⩴ [ ] ∣ let 𝑥+ be𝐸 in 𝑡 ∣ …

let 𝑥 be𝑉 in 𝑢 ⊳ 𝑢[𝑉/𝑥] 𝑡 ⊳ 𝑢—
𝐸[𝑡] ⊳ 𝐸[𝑢]

Proposition II.10. The following defines a pre-duploid.

Objects: |𝒟 | and 𝜛 are defined with |𝒫 | = {+} and |𝒩 | = {⊝} for two
objects + ≠ ⊝.

Morphisms: An element 𝑥̂.𝑡 of 𝒟(𝜀, 𝜀′) is an equivalence class of the
relation ∼ on pairs (𝑥, 𝑡) where 𝑥 is a variable of polarity 𝜀 and 𝑡 a
term of polarity 𝜀′, defined with:

𝑥̂.𝑢 ∼ 𝑦̂.𝑣 ⟺ ∀𝑧𝜀 ∉ fv(𝑢, 𝑣), 𝑢[𝑧𝜀/𝑥] ≃RE 𝑣[𝑧𝜀/𝑦] .

(In other words, 𝑥̂.𝑡 is 𝑡 considered modulo ≃RE and modulo
renaming of 𝑥.)

Identities: id𝜀 is 𝑥̂.𝑥 where 𝑥 has polarity 𝜀.
Composition: The composite of 𝑥̂.𝑡 ∶ 𝐴 → 𝐵 and 𝑦̂.𝑢 ∶ 𝐵 → 𝐶 is given

with:
𝑦̂.𝑢 ◉ 𝑥̂.𝑡 ≝ 𝑥̂.(let 𝑦 be 𝑡 in 𝑢) .

(𝑥 is assumed to be fresh in 𝑢.)
Proof. Identity is neutral for ◉ because for all morphisms 𝑦̂.𝑡 ∶ 𝐴 → 𝐵 the
equations:

𝑦̂.𝑡 ◉ id𝐴 = 𝑦̂.𝑡
id𝐵 ◉ 𝑦̂.𝑡 = 𝑦̂.𝑡
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correspond respectively to:

let 𝑦 be 𝑥 in 𝑡 ≃RE 𝑡[𝑥/𝑦]
let 𝑥 be 𝑡 in 𝑥 ≃RE 𝑡

and we have 𝑥̂.𝑡[𝑥/𝑦] = 𝑦̂.𝑡.

For all 𝐴 𝑥.𝑡⎯⎯→ 𝐵
𝑦̂.𝑢

⎯⎯→ 𝐶 𝑧̂.𝑣⎯⎯→ 𝐷, double composition is written as follows:

(𝑧̂.𝑣 ◉ 𝑦̂.𝑢) ◉ 𝑥̂.𝑡 = 𝑥̂.(let 𝑦 be 𝑡 in let 𝑧 be 𝑢 in 𝑣) (𝑦 ∉ fv(𝑣))
𝑧̂.𝑣 ◉ (𝑦̂.𝑢 ◉ 𝑥̂.𝑡) = 𝑥̂.(let 𝑧 be (let 𝑦 be 𝑡 in 𝑢) in 𝑣)

Therefore we have:

(𝑧+.𝑣 ∙ 𝑦̂.𝑢+) ◉ 𝑥̂.𝑡 = 𝑧+.𝑣 ∙ (𝑦̂.𝑢+ ◉ 𝑥̂.𝑡) (𝐶 positive)

(𝑧̂.𝑣 ◉ 𝑦⊝.𝑢) ∘ 𝑥̂.𝑡⊝ = 𝑧̂.𝑣 ◉ (𝑦⊝.𝑢 ∘ 𝑥̂.𝑡⊝) (𝐵 negative)

as a consequence of the equations (II.1). ∎

Thus we have defined a pre-duploid. However, it is not possible to
rewrite the following term:

let 𝑦⊝be (let 𝑥+ be 𝑡+ in 𝑢⊝) in 𝑣

into the following:

let 𝑥+ be 𝑡+ in let 𝑦⊝be 𝑢⊝ in 𝑣

In other words, without imposing additional equations, we have in
general:

ℎ ∘ (𝑔 ∙ 𝑓 ) ≠ (ℎ ∘ 𝑔) ∙ 𝑓 .
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II.2 Duploids
We now enrich pre-duploids with operators of polarity coercion ⇓, ⇑
called shifts.3

Definition II.11. A duploid is a pre-duploid 𝒟 given with mappings:

⇓ ∶ |𝒩 | → |𝒫 |
⇑ ∶ |𝒫 | → |𝒩 |

together with, for all 𝑃 ∈ |𝒫 | and 𝑁 ∈ |𝒩 |, morphisms:�

�

�

�
delay𝑃 ∶ 𝑃 → ⇑𝑃
force𝑃 ∶ ⇑𝑃 → 𝑃
wrap𝑁 ∶ 𝑁 → ⇓𝑁
unwrap𝑁 ∶ ⇓𝑁 → 𝑁

They must satisfy the following identities:�

�

�

�

force𝑃 ∘ (delay𝑃 ∙ 𝑓 ) = 𝑓 (∀𝑓 ∈ 𝒟(𝐴, 𝑃))
(𝑓 ∘ unwrap𝑁) ∙wrap𝑁 = 𝑓 (∀𝑓 ∈ 𝒟(𝑁, 𝐴))

delay𝑃 ∙ force𝑃 = id⇑𝑃
wrap𝑁 ∘ unwrap𝑁 = id⇓𝑁

Now notice the following:

Proposition II.12. For any 𝑁, wrap𝑁 is thunkable. Dually, for any 𝑃,
force𝑃 is linear.
Proof. For all 𝑔, ℎ, one has:

ℎ ∘ (𝑔 ∙wrap𝑁) = (ℎ ∘ (𝑔 ∙wrap𝑁) ∘ unwrap𝑁) ∙wrap𝑁

= (ℎ ∘ (𝑔 ∙wrap𝑁 ∘ unwrap𝑁)) ∙wrap𝑁

= (ℎ ∘ 𝑔) ∙wrap𝑁

3Our notation is reminiscent of Melliès [Mel05].
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Hence wrap𝑁 is linear. The other result follows by symmetry. ∎

Thus we have the following equivalent definition of a duploid:

Definition II.13. A duploid is a pre-duploid 𝒟 given with mappings:

⇓ ∶|𝒩 | → |𝒫 |
⇑ ∶|𝒫 | → |𝒩 |

together with a family of invertible linear maps force𝑃 ∶ ⇑𝑃 → 𝑃 and a
family of invertible thunkable maps wrap𝑁 ∶ 𝑁 → ⇓𝑁.

Indeed, notice that if we write delay𝑃 = force−1
𝑃 and unwrap𝑁 =wrap−1

𝑁 ,
then we have:

force𝑃 ∘ (delay𝑃 ∙ 𝑓 ) = (force𝑃 ∘ delay𝑃) ∙ 𝑓 since force𝑃 is linear
= 𝑓

(𝑓 ∘ unwrap𝑁) ∙wrap𝑁 = 𝑓 ∘ (unwrap𝑁 ∙wrap𝑁) since wrap𝑃 is thunkable
= 𝑓

II.2.1 Syntactic duploid
We concluded in Section II.1 with a language for pre-duploids. We
continue where we left, with hopes of providing computational mo-
tivations for the shifts.

The syntactic duploid Ldup is defined in Figure II.1 on the facing
page. It extends the syntactic pre-duploid with the following intu-
itions from programming: ⇑𝑃 is a type of suspended strict compu-
tations, and ⇓𝑁 is a type of lazy computations encapsulated into a
value. Then delay ∙ 𝑓 represents the suspended strict computation
𝑓 and the inverse operation force triggers the evaluation of its argu-
ment (hence it is linear in its negative argument). The morphism
wrap ∘ 𝑓 represents 𝑓 encapsulated into a value (hence it is thunkable)
and unwrap removes the encapsulation.
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𝑡+ ⩴ 𝑉+ ∣ 𝜇𝛼+.𝑐 ∣ …
𝑡⊝ ⩴ 𝑥⊝ ∣ 𝜇𝛼⊝.𝑐 ∣ 𝜇{𝛼+}.𝑐 ∣ …

𝑉+ ⩴ 𝑥+ ∣ {𝑡⊝} ∣ …
𝑉 ⩴ 𝑉+ ∣ 𝑡⊝

(a) Terms and values

𝑒+ ⩴ 𝛼+ ∣ ̃𝜇𝑥+.𝑐 ∣ ̃𝜇{𝑥⊝}.𝑐 ∣ …
𝑒⊝ ⩴ 𝜋 ∣ ̃𝜇𝑥⊝.𝑐 ∣ …
𝜋⊝ ⩴ 𝛼⊝ ∣ {𝑒+} ∣ …
𝜋 ⩴ 𝜋⊝ ∣ 𝑒+
(b) Contexts and stacks

𝑐 ⩴ ⟨𝑡+ ‖𝑒+⟩ ∣ ⟨𝑡⊝ ‖𝑒⊝⟩ ∣ …
(c) Commands

⟨𝜇𝛼.𝑐‖𝜋⟩ ⊳R 𝑐[𝜋/𝛼]
⟨𝑉 ‖ ̃𝜇𝑥.𝑐⟩ ⊳R 𝑐[𝑉/𝑥]

⟨{𝑡⊝}‖ ̃𝜇{𝑥⊝}.𝑐⟩ ⊳R 𝑐[𝑡⊝/𝑥⊝]
⟨𝜇{𝛼+}.𝑐‖{𝑒+}⟩ ⊳R 𝑐[𝑒+/𝛼+]

(d) Reductions

𝑡 ⊳E 𝜇𝛼.⟨𝑡 ‖𝛼⟩†
𝑒 ⊳E ̃𝜇𝑥.⟨𝑥‖𝑒⟩†
𝑒+ ⊳E ̃𝜇{𝑥⊝}.⟨{𝑥⊝}‖𝑒+⟩
𝑡⊝ ⊳E 𝜇{𝛼+}.⟨𝑡⊝ ‖{𝛼+}⟩

†: for a fresh (co-)variable
of the proper polarity.

(e) Expansions
Figure II.1: Ldup, the syntactic duploid

We consider a grammar of abstract machines that extends the one
of Section II.1.3 as follows:4�

�

�

�

𝑉+ ⩴ … ∣ {𝑡⊝} ∣ …
𝑡⊝ ⩴ … ∣ 𝜇{𝛼+}.𝑐 ∣ …
𝑒+ ⩴ … ∣ ̃𝜇{𝑥⊝}.𝑐 ∣ …
𝜋⊝ ⩴ … ∣ {𝑒+} ∣ …

4Thanks to Pierre-Louis Curien for suggesting that the interpretation is after
all equivalent to an earlier one.
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We extend the rewriting relations ⊳R and ⊳E with:�
�

�
�

⟨{𝑡⊝}‖ ̃𝜇{𝑥⊝}.𝑐⟩ ⊳R 𝑐[𝑡⊝/𝑥⊝] 𝑒+ ⊳E ̃𝜇{𝑥⊝}.⟨{𝑥⊝}‖𝑒+⟩
⟨𝜇{𝛼+}.𝑐‖{𝑒+}⟩ ⊳R 𝑐[𝑒+/𝛼+] 𝑡⊝ ⊳E 𝜇{𝛼+}.⟨𝑡⊝ ‖{𝛼+}⟩

(𝑥⊝ ∈ fv(𝑒+) and 𝛼+ ∉ fv(𝑡⊝)).

Let us define the following terms:

let {𝑥⊝} be 𝑡+ in 𝑢 ≝ 𝜇𝛼.⟨𝑡+ ∥ ̃𝜇{𝑥⊝}.⟨𝑢‖𝛼⟩⟩ (𝜛(𝛼) = 𝜛(𝑢))
delay(𝑡+) ≝ 𝜇{𝛼+}.⟨𝑡+ ‖𝛼+⟩
force(𝑡⊝) ≝ 𝜇𝛼+.⟨𝑡⊝ ‖{𝛼+}⟩

The binding let {𝑥⊝} be 𝑡+ in 𝑢 must be read as a pattern-matching: if
𝑡+ evaluates to some value 𝑉+, then 𝑉+ is matched against the pattern
{𝑥⊝}. If the value is some wrapped negative term, it binds 𝑥⊝ to the
unwrapped term and continues with 𝑢.

We may prove in particular:

⟨let {𝑥⊝} be {𝑡⊝} in 𝑢‖𝛼⟩ ⊳∗
R ⟨𝑢[𝑡⊝/𝑥⊝]‖𝛼⟩

let {𝑥⊝} be 𝑡+ in {𝑥⊝} ←∗
E 𝑡+ if 𝑥⊝ ∉ fv(𝑡+)

⟨force(delay(𝑡+))‖𝛼⟩ ⊳∗
R 𝑡+

delay(force(𝑡⊝)) ≃RE 𝑡⊝

The reduction relation ⊳R applied to a command ⟨ 𝑡 ‖ 𝛼 ⟩ corres-
ponds to defining, for illustration purposes, a contextual reduction
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semantics for the term 𝑡 as follows:

𝑡⊝, 𝑢⊝ ⩴ 𝑥⊝ ∣ let 𝑥 be 𝑡 in 𝑢⊝ ∣ let {𝑥⊝} be 𝑡+ in 𝑢⊝ ∣ delay(𝑡+) ∣ …
𝑡+, 𝑢+ ⩴ 𝑉+ ∣ let 𝑥 be 𝑡 in 𝑢+ ∣ let {𝑥⊝} be 𝑡+ in 𝑢+ ∣ force(𝑡⊝) ∣ …

𝑡 ⩴ 𝑡+ ∣ 𝑡⊝

𝑉+ ⩴ 𝑥+ ∣ {𝑡⊝} ∣ …
𝑉 ⩴ 𝑉+ ∣ 𝑡⊝

𝐸 ⩴ [ ] ∣ let 𝑥+ be𝐸 in 𝑡 ∣ let {𝑥⊝} be𝐸 in 𝑢 ∣ force(𝐸) ∣ …

let 𝑥 be𝑉 in 𝑢 ⊳ 𝑢[𝑉/𝑥]
let {𝑥⊝} be {𝑡⊝} in 𝑢 ⊳ 𝑢[𝑡⊝/𝑥⊝]

force(delay(𝑡+)) ⊳ 𝑡+

𝑡 ⊳ 𝑢—
𝐸[𝑡] ⊳ 𝐸[𝑢]

The pattern-matching notation suggests that shifts are in an ad-
junction ⇓ ⊣ ⇑. This structure of the shifts is described in Proposi-
tion II.24.

Proposition II.14. The syntax defines a duploid as follows:

• The pre-duploid structure is defined as in Section II.1.3.

• We necessarily take ⇓⊝ ≝ + and ⇑+ ≝ ⊝, together with:

delay ∶ + → ⊝ ≝ 𝑥+.(delay 𝑥+)
force ∶ ⊝ → + ≝ 𝑥⊝.(force 𝑥⊝)
wrap ∶ ⊝ → + ≝ 𝑥⊝.{𝑥⊝}

unwrap ∶ + → ⊝ ≝ 𝑥+.(let {𝑥⊝} be 𝑥+ in 𝑥⊝)

Proof. We have force ∘ (delay ∙ 𝑥̂.𝑡+) = 𝑥̂.𝑡+ since it is the abstraction in 𝑥 of
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the following:

let 𝑥⊝ be (let 𝑦+ be 𝑡+ in delay(𝑦+)) in force(𝑥⊝)
≃RE force(let 𝑦+ be 𝑡+ in delay(𝑦+))

= 𝜇𝛼+.⟨𝜇𝛽⊝.⟨𝑡+ ∥ ̃𝜇𝑦+.⟨𝜇{𝛼+}.⟨𝑦+‖𝛼+⟩∥𝛽⊝⟩⟩∥{𝛼+}⟩

→R 𝜇𝛼+.⟨𝑡+ ∥ ̃𝜇𝑦+.⟨𝜇{𝛼+}.⟨𝑦+‖𝛼+⟩∥{𝛼+}⟩⟩

→R 𝜇𝛼+.⟨𝑡+ ∥ ̃𝜇𝑦+.⟨𝑦+‖𝛼+⟩⟩

←E 𝜇𝛼+.⟨𝑡+ ‖𝛼+⟩

←E 𝑡+

We also have (𝑥⊝.𝑡 ∘ unwrap) ∙wrap = 𝑥⊝.𝑡 since it is the abstraction in 𝑥⊝ of
the following:

let 𝑥+ be {𝑥⊝} in let 𝑥⊝ be (let {𝑦⊝} be 𝑥+ in 𝑦⊝) in 𝑡

⊳∗
R let 𝑥⊝ be (let {𝑦⊝} be {𝑥⊝} in 𝑦⊝) in 𝑡

⊳∗
R let 𝑥⊝ be 𝑥⊝ in 𝑡

≃RE 𝑡

Last, we have regarding delay ∙ force and wrap ∘ unwrap:

delay ∙ force = 𝑥⊝.𝑥⊝

wrap ∘ unwrap = 𝑥+.𝑥+

It is established by abstracting over 𝑥⊝ and 𝑥+ in the following:

let 𝑥+ be force(𝑥⊝) in delay(𝑥+)
= 𝜇𝛼⊝.⟨force(𝑥⊝)∥ ̃𝜇𝑥+.⟨𝜇{𝛼+}.⟨𝑥+‖𝛼+⟩∥𝛼⊝⟩⟩

⊳E 𝜇{𝛼+}.⟨𝜇𝛼⊝.⟨force(𝑥⊝)∥ ̃𝜇𝑥+.⟨𝜇{𝛼+}.⟨𝑡+ ‖𝛼+⟩∥𝛼⊝⟩⟩∥{𝛼+}⟩
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→∗
R 𝜇{𝛼+}.⟨force(𝑥⊝)∥ ̃𝜇𝑥+.⟨𝑥+‖𝛼+⟩⟩

←E delay(force(𝑥⊝))
≃RE 𝑥⊝ ;

let 𝑥⊝ be let {𝑦⊝} be 𝑥+ in 𝑦⊝ in {𝑥⊝}
= 𝜇𝛼+.⟨𝜇𝛼⊝.⟨𝑥+∥ ̃𝜇{𝑦⊝}.⟨𝑦⊝‖𝛼⊝⟩⟩∥ ̃𝜇𝑥⊝.⟨{𝑥⊝}‖𝛼+⟩⟩

→∗
R 𝜇𝛼+.⟨𝑥+∥ ̃𝜇{𝑦⊝}.⟨{𝑦⊝}‖𝛼+⟩⟩

←∗
E 𝑥+

Therefore we have defined a duploid. ∎

Last, one may ask if there is a sound translation from the above
syntax to any duploid; in other words if we can reason about any
duploid in the above syntax. This is answered positively in a short
note of Curien and will likely appear somewhere.

II.2.2 Linear and thunkable morphisms in duploids
In duploids, we have the following useful characterisation of thunk-
able and linear morphisms.

Proposition II.15. In a duploid 𝒟 , let 𝑓 ∈ 𝒟(𝐴, 𝑃). The following
statements are equivalent:

1. (wrap⇑𝑃 ∘ delay𝑃) ∙ 𝑓 = wrap⇑𝑃 ∘ (delay𝑃 ∙ 𝑓 );
2. ∀ℎ ∈ 𝒟(⇑𝑃, 𝐵), (ℎ ∘ delay𝑃) ∙ 𝑓 = ℎ ∘ (delay𝑃 ∙ 𝑓 );
3. 𝑓 is thunkable.

Dually, let 𝑓 ∈ 𝒟(𝑁, 𝐵). The following statements are equivalent:

1. 𝑓 ∘ (unwrap𝑁 ∙ force⇓𝑁) = (𝑓 ∘ unwrap𝑁) ∙ force⇓𝑁;
2. ∀ℎ ∈ 𝒟(𝐴, ⇓𝑁), 𝑓 ∘ (unwrap𝑁 ∙ ℎ) = (𝑓 ∘ unwrap𝑁) ∙ ℎ.
3. 𝑓 is linear.
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Proof. We establish the equivalence between the first three statements;
the argument for the last three is obtained by symmetry.
(1.⇒2.) We have for ℎ ∈ 𝒟 (⇑𝑃, 𝐴):

(ℎ ∘ delay𝑃) ∙ 𝑓 = (ℎ ∘ unwrap⇑𝑃) ∙ (wrap⇑𝑃 ∘ delay𝑃) ∙ 𝑓
= (ℎ ∘ unwrap⇑𝑃) ∙wrap⇑𝑃 ∘ (delay𝑃 ∙ 𝑓 ) (assuming 1.)

= ℎ ∘ (delay𝑃 ∙ 𝑓 )

(2.⇒3.) We have for 𝑃
𝑔

⎯→ 𝑁 ℎ⎯→ 𝐵:

(ℎ ∘ 𝑔) ∙ 𝑓 = (ℎ ∘ (𝑔 ∙ force𝑃) ∘ delay𝑃) ∙ 𝑓
= ℎ ∘ (𝑔 ∙ force𝑃) ∘ (delay𝑃 ∙ 𝑓 ) (assuming 2.)

= ℎ ∘ ((𝑔 ∙ force𝑃 ∘ delay𝑃) ∙ 𝑓 ) (applying 2. again)

= ℎ ∘ (𝑔 ∙ 𝑓 )

(3.⇒1.) is immediate. ∎

Proposition II.16. For any 𝑃, force𝑃 is thunkable if and only if every
morphism 𝑓 ∈ 𝒟(𝐴, 𝑃) is thunkable. Dually, for any 𝑁, wrap𝑁 is linear
if and only if every morphism 𝑓 ∈ 𝒟(𝑁, 𝐵) is linear.
Proof. The argument for the second equivalence is obtained by symmetry
from the first one. The implication (⇐) is trivial. Let 𝑓 ∈ 𝒟(𝐴, 𝑃). We
have:

(wrap⇑𝑃 ∘ delay𝑃) ∙ 𝑓
= (wrap⇑𝑃 ∘ delay𝑃) ∙ force𝑃 ∘ (delay𝑃 ∙ 𝑓 )
= wrap⇑𝑃 ∘ (delay𝑃 ∙ force𝑃) ∘ (delay𝑃 ∙ 𝑓 ) (if force𝑃 is thunkable)

= wrap⇑𝑃 ∘ (delay𝑃 ∙ 𝑓 )

Thus we proved (⇒). ∎

Corollary II.17. A duploid is a category (by which we mean that
∘∙-associativity holds) if and only if for all 𝑃, force𝑃 is thunkable, or
equivalently for all 𝑁, wrap𝑁 is linear.
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II.2.3 The duploid construction
We build a duploid given two categories 𝒞1 and 𝒞2 and an adjunc-
tion 𝐹 ⊣(♯,♭) 𝐺 ∶ 𝒞1 → 𝒞2:

𝒞1(𝐹−, =)
♯
⇄
♭

𝒞2(−,𝐺=) .

Let us introduce the convention that objects of 𝒞1 are negative and
written 𝑁,𝑀 …, while the objects of 𝒞2 are positive and written
𝑃,𝑄…

Proposition II.18. Let an adjunction be given as above. The following
defines a pre-duploid 𝒟 :

|𝒟 | ≝ |𝒞1| ⊎ |𝒞2|
𝜛(|𝒞1|) ≝ {⊝}
𝜛(|𝒞2|) ≝ {+}

Hom-sets are given by:�� ��𝒟(𝐴, 𝐵) ≝ 𝒞1(𝐹𝐴+, 𝐵⊝)

where:

𝐴+ ≝ {𝐺𝐴 if 𝐴 ∈ |𝒞1|
𝐴 if 𝐴 ∈ |𝒞2|

𝐴⊝ ≝ {𝐴 if 𝐴 ∈ |𝒞1|
𝐹𝐴 if 𝐴 ∈ |𝒞2|

Identities are given by:�
�

�
�

id𝒟
𝑃 ≝ id𝒞1

𝐹𝑃 ∈ 𝒞1(𝐹𝑃, 𝐹𝑃)

id𝒟
𝑁 ≝ id𝒞2

𝐺𝑁
♭

∈ 𝒞1(𝐹𝐺𝑁, 𝑁)
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Composition is given by the obvious compositions in 𝒞1 and 𝒞2:
• If 𝑓 ∈ 𝒟(𝐴, 𝑁) = 𝒞1(𝐹𝐴+, 𝑁) and 𝑔 ∈ 𝒟(𝑁, 𝐵) = 𝒞1(𝐹𝐺𝑁, 𝐵)
then: �� ��𝑔 ∘𝒟 𝑓 ≝ (𝑔♯ ∘𝒞2 𝑓 ♯)♭ ;

• If 𝑓 ∈ 𝒟(𝐴, 𝑃) = 𝒞1(𝐹𝐴+, 𝐹𝑃) and 𝑔 ∈ 𝒟(𝑃, 𝐵) = 𝒞1(𝐹𝑃, 𝐵) then:�� ��𝑔 ∙𝒟 𝑓 = 𝑔 ∘𝒞1 𝑓 ;

Proof. That id is neutral for the composition in 𝒟 follows immediately
from the definition.

Associativity is obtained as follows:

• Let 𝐴
𝑓

⎯⎯→ 𝑃
𝑔

⎯→ 𝑄 ℎ⎯→ 𝐵, that is, 𝑓 ∈ 𝒞1(𝐹𝐴+, 𝐹𝑃); 𝑔 ∈ 𝒞1(𝐹𝑃, 𝐹𝑄) and
ℎ∈𝒞1(𝐹𝑄, 𝐵⊝). Associativity follows from the one of the composition
in 𝒞1.

• Let 𝐴
𝑓

⎯⎯→ 𝑁
𝑔

⎯→ 𝑀 ℎ⎯→ 𝐵, that is, 𝑓 ∈ 𝒞1(𝐹𝐴+, 𝑁); 𝑔 ∈ 𝒞1(𝐹𝐺𝑁, 𝑀) and
ℎ ∈ 𝒞1(𝐹𝐺𝑀, 𝐵⊝). Both composites are equal to (ℎ♯ ∘ 𝑔♯ ∘ 𝑓 ♯)♭.

• Let 𝐴
𝑓

⎯⎯→ 𝑁
𝑔

⎯→ 𝑃 ℎ⎯→ 𝐵, that is, 𝑓 ∈ 𝒞1(𝐹𝐴+, 𝑁); 𝑔 ∈ 𝒞1(𝐹𝐺𝑁, 𝐹𝑃) and
ℎ ∈ 𝒞1(𝐹𝑃, 𝐵⊝). We have:

(ℎ ∙ 𝑔) ∘ 𝑓 = ((ℎ ∘ 𝑔)♯ ∘ 𝑓 ♯)♭

ℎ ∙ (𝑔 ∘ 𝑓 ) = (ℎ ∘ (𝑔♯ ∘ 𝑓 ♯)♭)

Naturality of ♯ corresponds to the following equations for all 𝑎 ∶ 𝑃 → 𝑄,
𝑏 ∶ 𝐹𝑄 → 𝑁, 𝑐 ∶ 𝑁 → 𝑀:

(𝑐 ∘ 𝑏 ∘ 𝐹𝑎)♯ = 𝐺𝑐 ∘ 𝑏♯ ∘ 𝑎

Thus we have in particular (ℎ ∘𝑔)♯ =𝐺ℎ ∘𝑔♯ and (𝑔♯ ∘𝑓 ♯)♭ = 𝑔 ∘𝐹𝑓 ♯, and:

(ℎ ∙ 𝑔) ∘ 𝑓 = (𝐺ℎ ∘ 𝑔♯ ∘ 𝑓 ♯)♭

ℎ ∙ (𝑔 ∘ 𝑓 ) = (ℎ ∘ 𝑔 ∘ 𝐹𝑓 ♯)

The equality of the two expressions on the right-hand-side is again an
instance of the naturality of ♯. ∎
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Remark II.19. In particular 𝒫 is the Kleisli category (𝒞2)𝐺𝐹 of the
monad 𝐺𝐹 and 𝒩 is the Kleisli category (𝒞1)𝐹𝐺 of the co-monad
𝐹𝐺.

Proposition II.20. Let an adjunction as above and let 𝒟 be the
associated pre-duploid. The following defines a duploid:

�

�

�

�

⇑𝑃 ≝ 𝐹𝑃
⇓𝑁 ≝ 𝐺𝑁

𝒟(𝑃,⇑𝑃) ∋ delay𝑃 ≝ id𝒞1
𝐹𝑃 ∈ 𝒞1(𝐹𝑃, 𝐹𝑃)

𝒟(⇑𝑃,𝑃) ∋ force𝑃 ≝ (id𝐺𝐹𝑃)♭ ∈ 𝒞1(𝐹𝐺𝐹𝑃, 𝐹𝑃)
𝒟(𝑁,⇓𝑁) ∋ wrap𝑁 ≝ id𝒞1

𝐹𝐺𝑁 ∈ 𝒞1(𝐹𝐺𝑁, 𝐹𝐺𝑁)
𝒟(⇓𝑁,𝑁) ∋ unwrap𝑁 ≝ (id𝐺𝑁)♭ ∈ 𝒞1(𝐹𝐺𝑁, 𝑁)

Any apparent lack of symmetry comes from the fact that one
must choose arbitrarily between 𝒞1(𝐹𝐴+, 𝐵⊝) and 𝒞2(𝐴+, 𝐺𝐵⊝) in
the definition of 𝒟(𝐴, 𝐵).
Proof. We have the following identities:

• delay𝑃 ∙ force𝑃 = id𝒞1
𝐹𝑃 ∘ 𝜀𝐹𝑃 = 𝜀𝐹𝑃 = id𝒟

⇑𝑃;

• wrap𝑁 ∘ unwrap𝑁 = (id𝒞1
𝐹𝐺𝑁

♯
∘ 𝜀♯

𝑁)♭ = id𝒞1
𝐹𝐺𝑁 = id𝒟

⇓𝑁;

• For 𝑓 ∈ 𝒟 (𝑁, 𝐴), one has (𝑓 ∘ unwrap𝑁) ∙wrap𝑁 = (𝑓 ♯ ∘ 𝜀♯
𝑁)♭ ∘ id𝒞1

𝐹𝐺𝑁 = 𝑓 ;

• For 𝑓 ∈ 𝒟 (𝐴, 𝑃), one has force𝑃 ∘(delay𝑃 ∙𝑓 )= (𝜀♯
𝐹𝑃 ∘(id𝒞1

𝐹𝑃 ∙𝑓 )♯)♭ = 𝑓 . ∎

Proposition II.21. Let 𝐹 ⊣(𝜂,𝜀) 𝐺 ∶ 𝒞1 → 𝒞2 be an adjunction, and
consider the associated duploid 𝒟 . Then 𝑓 ∈ 𝒟(𝑁, 𝐴) is linear if and
only if:

𝑓 ∘ 𝜀𝐹𝐺𝑁 = 𝑓 ∘ 𝐹𝐺𝜀𝑁 (in 𝒞1) ,
and 𝑓 ∈ 𝒟(𝐴, 𝑃) is thunkable if and only if its transpose 𝑓 ♯ satisfies:

𝜂𝐺𝐹𝑃 ∘ 𝑓 ♯ = 𝐺𝐹𝜂𝑃 ∘ 𝑓 ♯ (in 𝒞2) .
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Proof. According to Proposition II.15, 𝑓 ∈ 𝒟 (𝑁, 𝐴) is linear if and only if
𝑓 ∘ (unwrap𝑁 ∙ force⇓𝑁) = (𝑓 ∘ unwrap𝑁) ∙ force⇓𝑁 . It is easy to see that the left-
hand side corresponds to 𝑓 ∘ 𝜀𝐹𝐺𝑁 while the right-hand side corresponds
to 𝑓 ∘ 𝐹𝐺𝜀𝑁 . The reasoning is symmetric for 𝑓 thunkable. ∎

Proposition II.22. Let 𝐹 ⊣(𝜂,𝜀) 𝐺 ∶ 𝒞1 → 𝒞2. The associated duploid
𝒟 is a category if and only if the adjunction is idempotent.

Proof. Let us recall that by definition 𝐹 ⊣ 𝐺 is idempotent if and only if
the multiplication of the associated monad is an isomorphism, or equi-
valently the co-multiplication of the associated co-monad is an isomorph-
ism.5 This is again equivalent to the equation 𝜀𝐺𝐹 = 𝐺𝐹𝜀 (and also to
𝜂𝐹𝐺 = 𝐹𝐺𝜂).

According to Corollary II.17, 𝒟 is a category if and only if wrap𝑁 is
linear for all 𝑁. According to Proposition II.21, this is equivalent to
𝜀𝐺𝐹𝑁 = 𝐺𝐹𝜀𝑁 . ∎

II.2.4 Structure of shifts

As we have seen, the Kleisli category of a co-monad is described by a
runnable monad; and the Klesli category of a monad is described by
a thunk, which is a co-monad.

We observe a similar phenomenon with duploids. We show that
there is an adjunction: �� ��⇓ ⊣ ⇑ ∶ 𝒫 → 𝒩 .

Notice that the adjunction is reversed, in the sense that the right
adjoint ⇑ is from positives to negatives, quite the converse of the
adjunction considered last section.

Actually, we state below a wider adjunction. Remark that we may

5Terminology from the nLab.

http://ncatlab.org/nlab/show/idempotent+adjunction
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extend the shifts ⇓, ⇑ to all objects in a straightforward manner:

⇓𝐴 ≝ {⇓𝑁 if 𝐴 = 𝑁
𝑃 if 𝐴 = 𝑃

⇑𝐴 ≝ {𝑁 if 𝐴 = 𝑁
⇑𝑃 if 𝐴 = 𝑃

delay𝑁 ≝ id𝑁 ∶ 𝑁 → ⇑𝑁
force𝑁 ≝ id𝑁 ∶ ⇑𝑁 → 𝑁
wrap𝑃 ≝ id𝑃 ∶ 𝑃 → ⇓𝑃

unwrap𝑃 ≝ id𝑃 ∶ ⇓𝑃 → 𝑃

By “extend”, we mean that we have for all 𝑓 , 𝑔:�

�

�

�

(𝑓 ◉ force𝐴) ∘ (delay𝐴 ◉ 𝑔) = 𝑓 ◉ 𝑔
(𝑓 ◉ unwrap𝐴) ∙ (wrap𝐴 ◉ 𝑔) = 𝑓 ◉ 𝑔

delay𝐴 ◉ force𝐴 = id𝐴
wrap𝐴 ◉ unwrap𝐴 = id𝐴

Also, extending Proposition II.12, we have, for all objects 𝐴, that
unwrap𝐴 and wrap𝐴 are thunkable whereas delay𝐴 and force𝐴 are linear.
Proposition II.23. Let 𝒟 be a duploid. Then the following:�

�
�
�

⇑𝑓 ≝ delay𝐵 ◉ 𝑓 ◉ force𝐴

⇓𝑓 ≝ wrap𝐵 ◉ 𝑓 ◉ unwrap𝐴

define functors ⇑ ∶ 𝒟𝑙 → 𝒩 ⦁ and ⇓ ∶ 𝒟t → 𝒫 ⦁ that take part in adjoint
equivalences of categories 𝐼 ⊣(delay,force) ⇑ ∶ 𝒟𝑙 → 𝒩 ⦁ and 𝐼 ⊣(wrap,unwrap) ⇓ ∶
𝒟t → 𝒫 ⦁, where 𝐼 denotes the inclusion functors.
Proof. We first prove that the statement defines functors ⇑′ ∶ 𝒟𝑙 → 𝒟𝑙
and ⇓′ ∶ 𝒟t → 𝒟t that are naturally isomorphic to the respective identity
functors.
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In a category 𝒞 , a functor 𝐹 ∶ 𝒞 → 𝒞 that is naturally isomorphic to
the identity functor is given by |𝐹| ∶ |𝒞 | → |𝒞 | together with families of
inverse morphisms 𝜏𝐴 ∶ 𝐴 → 𝐹𝐴 and 𝜏−1

𝐴 ∶ 𝐹𝐴 → 𝐴 that necessarily define
𝐹(𝑓 ∶ 𝐴 → 𝐵) as 𝜏𝐵 ∘ 𝑓 ∘ 𝜏−1

𝐴 .
The maps delay and force are such families of inverse linear morphisms

and wrap and unwrap are such families of inverse thunkable morphisms, so
the statement defines functors and we have ⇑′ ≃ 1𝒟𝑙 and ⇓′ ≃ 1𝒟t .

Now let us recall that 𝒫 ⦁ (respectively 𝒩 ⦁) is the full subcategory of
𝒟t (resp. 𝒟𝑙) whose objects are positive (resp. negative). Therefore, by
co-restricting ⇑′, ⇓′ we have functors ⇑ ∶ 𝒟𝑙 → 𝒩 ⦁ and ⇓ ∶ 𝒟t → 𝒫 ⦁; as
well as 𝐼⇑ ≃ 1𝒟𝑙 and 𝐼⇓ ≃ 1𝒟t where 𝐼 are the inferrable inclusion functors.
Since the 𝐼 are fully faithful, we deduce ⇑𝐼 ≃ 1𝒩 ⦁

and ⇓𝐼 ≃ 1𝒫 ⦁
from 𝐼⇑𝐼 ≃ 𝐼

and 𝐼⇓𝐼 ≃ 𝐼.
The adjunctions follow from force𝐼 ∘ 𝐼delay = id𝐼 and unwrap𝐼 ∙ 𝐼wrap =

id. ∎

The above is actually a characterisation of the duploid structure.
Indeed, a pre-duploid 𝒟 with functors ⇑ ∶ 𝒟𝑙 → 𝒟𝑙 and ⇓ ∶ 𝒟t → 𝒟t
naturally isomorphic to the identity functor, such that any object ⇑𝐴
is negative and any object ⇓𝐴 is positive, has a duploid structure
defined by the induced families of inverse morphisms.
Proposition II.24. Let 𝒟 be a duploid. We have natural isomorphisms
between (pro-)functors 𝒟t

op ×𝒟𝑙 → Set:�� ��𝒟t(−, 𝐼⇑=) ≃ 𝒟(−, =) ≃ 𝒟𝑙(𝐼⇓−, =)

where 𝐼 denotes the inferrable inclusion functors.
Proof. It follows from Proposition II.23 that we have natural isomorph-
isms between functors 𝒟t

op ×𝒟𝑙 → Set:

𝒟 (−, 𝐼⇑=) ≃ 𝒟 (−, =) ≃ 𝒟 (𝐼⇓−, =) .

Now any morphism 𝐴 → ⇑𝐵 is thunkable, in other words we have
𝒟(𝐴, ⇑𝐵) = 𝒟t(𝐴, ⇑𝐵). It follows that the functor 𝒟 (−, 𝐼⇑=) (with 𝐼 ∶
𝒩 ⦁ → 𝒟𝑙) is equal to the functor 𝒟t(−, 𝐼⇑=) (with 𝐼 ∶ 𝒩 ⦁ → 𝒟t).

For similar reasons, the functor 𝒟(𝐼⇓−, =) (with 𝐼 ∶ 𝒫 ⦁ → 𝒟𝑙) is equal
to the functor 𝒟𝑙(𝐼⇓−, =) (with 𝐼 ∶ 𝒫 ⦁ → 𝒟t). Hence the result. ∎
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In particular, obviating the inclusion functors, we have the adjunc-
tions:

𝒟t

⇓
$$

⊥ 𝒟𝑙

⇑

dd 𝒩
⇓

$$
⊥ 𝒫
⇑

cc

Let us note that the bijections 𝒟 (𝐴, ⇑𝐵) ≃ 𝒟(⇓𝐴, 𝐵) are given with:�
�

�
�

𝒟t(𝐴, ⇑𝐵) 𝒟𝑙(⇓𝐴, 𝐵)
𝑓 ↦ (force𝐵 ∘ 𝑓 ) ◉ unwrap𝐴

delay𝐵 ◉ (𝑔 ∙wrap𝐴) ↤ 𝑔

Remark The adjunction ⇓ ⊣ ⇑ distinguishes our interpretation of po-
larities from ones based on shifts ↓ and ↑ that take part in an adjunction
of the form ↑ ⊣ ↓ (see e.g. Laurent [Lau02], Zeilberger [Zei08]). With the
latter, a morphism 𝐴 → 𝑃 usually represents a value and 𝑁 → 𝐴 usually
represents a stack (or covalue); in other words it is a notion of polarisa-
tion tied to focusing or continuation-passing style. An adjunction ↑ ⊣ ↓ is
the mark of an indirect model for which the interpretation of a language
— involving usually at least a CPS translation — requires a development
on its own.
Our notion of polarities adds a level of granularity: in our syntax, both

a strict expression 𝐴 → 𝑃 and a suspended expression 𝐴 → ⇑𝑃 translate
into a morphism 𝐴 → ↑𝑃 in the terminology of Laurent or Zeilberger.
But a morphism 𝐴 → ↑𝑃 may be composed in different ways that are
determined by the polarities in our sense. In terms of continuations, our
polarities distinguish continuations that are meant to be applied from
continuations that are meant to be passed.

II.2.5 The category of duploids
Definition II.25. A functor of pre-duploids 𝐹 ∶ 𝒟1 → 𝒟2 is given by
a mapping on objects |𝐹| ∶ |𝒟1| → |𝒟2| that preserves polarities, to-
gether with mappings on morphisms 𝐹𝐴,𝐵 ∶ 𝒟1(𝐴, 𝐵) → 𝒟2(𝐹𝐴, 𝐹𝐵),
satisfying 𝐹(id𝐴) = id𝐹𝐴 and 𝐹(𝑔 ◉ 𝑓 ) = 𝐹𝑔 ◉𝐹𝑓 .
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A functor of duploids 𝐹 ∶ 𝒟1 → 𝒟2 is a functor of pre-duploids such
that 𝐹(force𝑃) is linear for all 𝑃 ∈ |𝒫1|, and 𝐹(wrap𝑁) is thunkable for
all 𝑁 ∈ |𝒩1|.

Proposition II.26 (Characterisation). Let 𝒟 and 𝒟 ′ be two duploids
and let 𝐹 ∶ 𝒟 → 𝒟 ′ be a mapping on objects |𝐹| ∶ |𝒟 | → |𝒟 ′|
that preserves polarities, together with mappings on morphisms
𝐹𝐴,𝐵 ∶ 𝒟(𝐴, 𝐵) → 𝒟 ′(𝐹𝐴, 𝐹𝐵).
The following three propositions are equivalent:

1. 𝐹 is a functor of duploids;
2. 𝐹 is a functor of pre-duploids, and the full sub-pre-duploid 𝐹𝒟

of 𝒟 ′ that has objects of the form 𝐹𝐴 for 𝐴 ∈ |𝒟 | has a duploid
structure, given by the maps 𝑁 ↦ 𝐹⇓𝑁 and 𝑃 ↦ 𝐹⇑𝑃 together with
the families of morphisms 𝐹delay, 𝐹force, 𝐹wrap and 𝐹unwrap;

3. 𝐹 restricts to functors 𝐹t ∶ 𝒟t → 𝒟 ′
t and 𝐹𝑙 ∶ 𝒟𝑙 → 𝒟 ′

𝑙, such that the
transformation 𝐹 ∶ 𝒟(−, =) → 𝒟 ′(𝐹t−, 𝐹𝑙=) is natural.

Proof. (1.⇒2.) Suppose that 𝐹 ∶ 𝒟 → 𝒟 ′ is a functor of duploids. By pre-
duploid functoriality, the families of maps 𝐹delay and 𝐹force are inverse
of each other and so are 𝐹wrap and 𝐹unwrap. Moreover, the following
equations:

𝐹force𝑃 ∘ (𝐹delay𝑃 ∙ 𝑓 ) = (𝐹force𝑃 ∘ 𝐹delay𝑃) ∙ 𝑓 = 𝑓
(𝑓 ∘ 𝐹unwrap𝑁) ∙ 𝐹wrap𝑁 = 𝑓 ∘ (𝐹unwrap𝑁 ∙ 𝐹wrap𝑁) = 𝑓

hold because 𝐹(force𝑃) is linear and 𝐹(wrap𝑁) is thunkable. This defines a
duploid structure on 𝐹𝒟 .

(2.⇒3.) Applying Proposition II.15 to the duploid 𝐹𝒟 , we may char-
acterise thunkability and linearity of morphisms 𝑓 ∶ 𝐹𝐴 → 𝐹𝐵 in 𝒟 ′ in
terms of 𝐹delay, 𝐹force, 𝐹wrap and 𝐹unwrap. Therefore by pre-duploid
functoriality, 𝐹 preserves linearity and thunkability. In other words
𝐹 restricts to functors 𝐹t ∶ 𝒟t → 𝒟 ′

t and 𝐹𝑙 ∶ 𝒟𝑙 → 𝒟 ′
𝑙. Naturality for

𝐹 ∶ 𝒟 (−, =) .→ 𝒟 ′(𝐹t−, 𝐹𝑙=) finally corresponds to 𝐹ℎ◉𝐹𝑔 ◉𝐹𝑓 =𝐹(ℎ◉𝑔 ◉𝑓 )
for any ℎ linear, any 𝑔 and any 𝑓 thunkable.

(3.⇒1.) We suppose that 𝐹 restricts to functors 𝐹t and 𝐹𝑙, such that
the transformation 𝐹 ∶ 𝒟 (−, =) .→ 𝒟 ′(𝐹t−, 𝐹𝑙=) is natural. From the data
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of the functors 𝐹t and 𝐹𝑙 we have 𝐹(id𝐴) = id𝐹𝐴, 𝐹(force𝑃) linear and
𝐹(wrap𝑁) thunkable. From the natural transformation 𝐹 we have for all ℎ
linear, all 𝑔 and all 𝑓 thunkable:

𝐹ℎ ◉𝐹𝑔 ◉𝐹𝑓 = 𝐹(ℎ ◉𝑔 ◉ 𝑓 ) .

In particular for all 𝑔 ∙ 𝑓 and all ℎ ∘ 𝑔:

𝐹(𝑔 ∙ 𝑓 ) = 𝐹𝑔 ∙ 𝐹𝑓
𝐹(ℎ ∘ 𝑔) = 𝐹ℎ ∘ 𝐹𝑔

Therefore 𝐹 is a functor of duploids. ∎
Proposition II.27. Every functor of duploids 𝐹 ∶ 𝒟 → 𝒟 ′ preserves the
shifts:

𝐹⇑ ≃ ⇑′𝐹 ∶ 𝒟𝑙 → 𝒩 ′⦁

𝐹⇓ ≃ ⇓′𝐹 ∶ 𝒟t → 𝒫 ′⦁

and also preserves the isomorphisms of Proposition II.24 in the sense
that the following diagram, in the category of functors 𝒟t

op ×𝒟𝑙 → Set,
commutes:

𝒟t(−, ⇑=)

𝐹t
��

𝒟(−, =)≃oo ≃ //

𝐹

��

𝒟𝑙(⇓−, =)
𝐹𝑙

��
𝒟 ′

t(𝐹t−, 𝐹t⇑=)

≃
��

𝒟 ′
𝑙(𝐹⇓−, 𝐹=)

≃
��

𝒟 ′(𝐹−, ⇑′𝐹=) 𝒟 ′(𝐹−, 𝐹=)≃oo ≃ // 𝒟 ′(⇓′𝐹−, 𝐹=)

(we leave the inclusion functors implicit.)
Proof. We consider 𝒟 and 𝒟 ′ with the isomorphisms of Proposition II.23.
According to Proposition II.26, we may post- and pre-compose with re-
strictions of 𝐹 to obtain natural isomorphisms:

⇑′𝐹 = ⇑′𝐹𝑙 ≃ 𝐹𝑙 ≃ 𝐹𝑙⇑ = 𝐹⇑
⇓′𝐹 = ⇓′𝐹t ≃ 𝐹t ≃ 𝐹t⇓ = 𝐹⇓
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given by 𝐹delay ∘ force′
𝐹 and 𝐹wrap ∙ unwrap′

𝐹. Now consider the equation in
the right-hand square:

𝐹(𝑓 ◉ unwrap) ∙ 𝐹wrap ◉ unwrap = 𝐹𝑓 ◉ unwrap .

It holds by application of the equation of the duploid 𝐹𝒟 : (𝐹𝑓 ◉𝐹unwrap)∙
𝐹wrap=𝐹𝑓 . The equation in the left-hand square is obtained similarly. ∎

We could have requested that 𝐹 strictly preserves shifts. It is not
hard to see that this coincides with a notion of strict duploid functor,
that strictly preserves all the data of the duploid.

Definition II.28. Dupl is the category whose objects are duploids
and whose morphisms are duploid functors. The obvious identity in
Dupl is written 1𝒟 .

II.2.6 Examples of duploids

Duplicial algebras with units
Duploids are named after Jean-Louis Loday’s duplicial algebras [Lod06].
A duplicial algebra is given by a vector space 𝑋 together with two
associative operations ∙, ∘ ∶ 𝑋 ⊗ 𝑋 → 𝑋 that satisfy the mixed associ-
ativity rule:

∀𝑥, 𝑦, 𝑧 ∈ 𝑋, (𝑥 ∙ 𝑦) ∘ 𝑧 = 𝑥 ∙ (𝑦 ∘ 𝑧) .
The following example is meant to justify the terminology.

Let a duplicial algebra be given with elements 𝑒+, 𝑒⊝ ∈ 𝑋 that are
neutral for ∙ and ∘ (respectively).

Proposition II.29. The following defines a duploid:

Objects |𝒟 | and 𝜛 are defined with |𝒩 | = {⊝} and |𝒫 | = {+}.
Morphisms 𝒟(𝐴, 𝐵) ≝ 𝑋 with id𝜀 = 𝑒𝜀.
Composition Positive composition is given by ∙; negative composition by

∘.
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Duploid structure Necessarily we take ⇓⊝ ≝ + and ⇑+ = ⊝. We take the
following:

delay ≝ 𝑒+

force ≝ 𝑒⊝

wrap ≝ 𝑒+

unwrap ≝ 𝑒⊝

Proof. The axioms of the duploid are satisfied:

𝑒⊝ ∘ (𝑒+ ∙ 𝑥) = 𝑥
𝑒+ ∙ 𝑒⊝ = 𝑒⊝

(𝑥 ∘ 𝑒⊝) ∙ 𝑒+ = 𝑥
𝑒+ ∘ 𝑒⊝ = 𝑒+ ∎

The Blass phenomenon in Conway games
Melliès [Mel05] comes close to building a duploid using the con-
struction of Blass games. His analysis of the Blass problem in Con-
way games [Mel05, Section 3] can be rephrased in the terminology
of Section II.2.3: the Blass phenomenon comes down to the fact
that the (pro-)functor 𝒞1(𝐹−, =) ∶ 𝒞2

op ×𝒞1 → Set in an adjunction
𝐹 ⊣ 𝐺 ∶ 𝒞1 → 𝒞2 does not extend into a functor 𝒫 op × 𝒩 → Set
where 𝒫 and 𝒩 are the Kleisli categories of the monad 𝐺𝐹 and
the co-monad 𝐹𝐺 (respectively). This is the essence of Proposi-
tion II.22. He then defines a category for an asynchronous variant
of Conway games. As he shows, asynchronism is a way to force the
double-negation monad to be idempotent, and therefore to recover
associativity of composition. He builds this way a game model of
linear logic.

Girard’s polarisation
Girard’s polarised translation of the classical logic LC into intuition-
istic logic [Gir91], further formulated by Danos, Joinet and Schel-
linx [DJS97] and Laurent [Lau02], inspired the duploid construction.
Girard’s translation corresponds to considering in the duploid con-
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struction the self-adjunction of the negation functor ¬ = 𝑅− in Set
for 𝑅 arbitrary. But obviously, the duploid obtained from the self-
adjunction of negation in any response category (in the terminology
of Selinger [Sel01]) gives a denotational semantics of LC. The ex-
ample is rich; for instance Thielecke [Thi97] explains the importance
of this self-adjunction in CPS translations. This makes of duploids
an element in the understanding of continuation-passing style, anti-
cipating Chapter III.

Melliès and Tabareau [MT10] propose to decompose the self-
adjunction of negation in the response category ℳ through the
linear negation ¬0 in a dialogue category ℒ and the ressource mod-
alities 𝑀, 𝐿. These modalities can be seen as a uniform way of
describing various models of the exponentials of linear logic [Mel09].
In this context, the self-adjunction in a response category:

ℳ
¬op

&&
⊥ ℳop

¬
ee

is obtained by composing the following adjunctions:

ℳ
𝐿

$$
⊥ ℒ
𝑀

dd

¬0
op

%%
⊥ ℒ op

¬0

ee

𝑀op

&&
⊥ ℳop

𝐿op

ff

(we refer the reader to [MT10] for the terminology). They consider
models of linear logic obtained through what corresponds to the
duploid construction of the adjunction ¬0

op ⊣ ¬0, assuming that
the adjunction is idempotent. This point of view was conceived as
an abstract account of the asynchronous games mentioned above,
and asks how properties of linear logic extend to settings where the
adjunction is not idempotent (see Melliès [Mel12]).

The adjunction of a negation with itself is peculiar: idempotency
is equivalent to commutativity of the double-negation strongmonad,
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as noticed by Führmann [Füh99]6. This is why Melliès and Tabareau
may emphasise commutativity over idempotency in [Mel05, MT10].
Finally, in the light of our development, it appears that idempotency
is more fundamental in this context. We may indeed consider the
duploid obtained from the composite adjunction:

ℳ
¬0

op∘𝐿
%%

⊥ ℒ op

𝑀∘¬0

ee

with the idea that the corresponding logic is intuitionistic.7 This will
likely give instances where the monad is strong and commutative,
but where the adjunction is not idempotent, and thus where the
composition is not associative.

Direct models of call by value
We explain how Thunk-force categories give rise to duploids where ⇑
is bijective. In Section II.1.2, we defined a pre-duploid from a thunk-
force category (𝒫 , ∙, id, 𝐿, 𝜗, 𝜀) with a bijection ⇑ ∶ |𝒫 | → |𝒩 |. Let us
define ⇓ ∶ |𝒩 | → |𝒫 | with: �� ��⇓⇑𝑃 ≝ 𝐿𝑃 .

For 𝑁 = ⇑𝑃, we define:

𝒟(𝑃,⇑𝑃) ∋ delay𝑃 ≝ id𝒫
𝑃 ∈ 𝒫 (𝑃, 𝑃)

𝒟(⇑𝑃,𝑃) ∋ force𝑃 ≝ 𝜀𝑃 ∈ 𝒫 (𝐿𝑃, 𝑃)
𝒟(𝑁,⇓𝑁) ∋ wrap𝑁 ≝ id𝒫

𝐿𝑃 ∈ 𝒫 (𝐿𝑃, 𝐿𝑃)
𝒟(⇓𝑁,𝑁) ∋ unwrap𝑁 ≝ 𝜀𝑃 ∈ 𝒫 (𝐿𝑃, 𝑃)

6Melliès and Tabareau also credit a private communication from Masahito
Hasegawa.

7It should be compared to the various proposals for a polarised intuitionistic
logic by Girard [Gir93, Gir07] and Liang and Miller [LM07].
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Proposition II.30. The above construction yields a duploid.

Proof. Let us check the equations of the duploid:

force𝑃 ∘ (delay𝑃 ∙ 𝑓 ) = 𝜀𝑃 ∙ 𝐿𝑓 ∙ 𝜗𝐴 = 𝑓
= 𝑓 ∙ 𝜀𝐴 ∙ 𝜗𝐴

= 𝑓
(𝑓 ∘ unwrap⇑𝑃) ∙wrap⇑𝑃 = 𝑓 ∙ 𝐿𝜀𝑃 ∙ 𝜗𝐿𝑃

= 𝑓
delay𝑃 ∙ force𝑃 = 𝜀𝑃 = id𝒟

⇑𝑃

wrap⇑𝑃 ∘ unwrap⇑𝑃 = 𝐿𝜀𝑃 ∙ 𝜗𝐿𝑃 = id𝒟
𝐿𝑃 ∎

We will see in Section II.3.5 that thunk-force categories are charac-
terised as duploids where ⇑ is bijective on objects.

Direct models of call by name
Symmetrically, a runnable monad on a category gives a duploid
where ⇓ is bijective. We will see in Section II.3.5 that runnable
monads are characterised in this way.

II.3 Structure theorem
This section is devoted to the proof of the main result of the chapter:

Theorem II.31. There are a reflection and an equivalence as follows:

Dupl≃Adjeq ◁Adj .

The category of adjunctionsAdj is defined below. The full subcat-
egoryAdjeq ofAdj consists in adjunctions that satisfy the equalising
requirement (see Section II.3.2).

We consider pseudo maps of adjunctions as defined by Jac-
obs [Jac93]:

Definition II.32. Let 𝐹 ⊣(𝜂,𝜀) 𝐺 ∶ 𝒞1 → 𝒞2 and 𝐹′ ⊣(𝜂′,𝜀′) 𝐺′ ∶ 𝒞 ′
1 → 𝒞 ′

2
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be two adjunctions. A pseudo map of adjunctions:�� ��(𝐻1, 𝐻2, 𝜙, 𝜓) ∶ (𝐹 ⊣(𝜂,𝜀) 𝐺) → (𝐹′ ⊣(𝜂′,𝜀′) 𝐺′)

is given by a pair of functors 𝐻1 ∶ 𝒞1 → 𝒞 ′
1 and 𝐻2 ∶ 𝒞2 → 𝒞 ′

2 together
with natural isomorphisms:

𝜙 ∶ 𝐹′𝐻2
≃→ 𝐻1𝐹

𝜓 ∶ 𝐺′𝐻1
≃→ 𝐻2𝐺

such that 𝐻1 and 𝐻2 preserve 𝜂 and 𝜀 up to isomorphism:

𝐻2𝜂 = 𝜓𝐹 ∘ 𝐺′𝜙 ∘ 𝜂′
𝐻2

𝐻1𝜀 = 𝜀′
𝐻1 ∘ 𝐹′𝜓 −1 ∘ 𝜙−1

𝐺

As noted by Jacobs, two pseudo maps (𝐻1, 𝐻2, 𝜙, 𝜓) and (𝐻 ′
1, 𝐻 ′

2,
𝜙′, 𝜓 ′) compose as:

(𝐻 ′
1, 𝐻 ′

2, 𝜙′, 𝜓 ′)∘(𝐻1, 𝐻2, 𝜙, 𝜓)= (𝐻 ′
1𝐻1, 𝐻 ′

2𝐻2, 𝐻 ′
1𝜙∘𝜙′

𝐻2 , 𝐻
′
2𝜓 ∘𝜓 ′

𝐻1)

and we write the obvious identity as 1𝐹⊣𝐺 = (1𝒞1
, 1𝒞2

, id𝐹, id𝐺).
Moreover, the above two equations are equivalent, and 𝜙 and 𝜓
determine each other [Jac93].

We may reformulate the equations in terms of the natural iso-
morphism of the adjunction when convenient. Equivalently to pre-
serving 𝜂 or 𝜀, a pseudo map of adjunctions (𝐻1, 𝐻2, 𝜙, 𝜓) must pre-
serve one of the natural isomorphisms ♯ ∶ 𝒞1(𝐹−, =) ≃→ 𝒞2(−, 𝐺=) or
♭ = ♯−1 of the adjunction, modulo 𝜙 and 𝜓:

𝐻2 𝑓 ♯ = 𝜓𝑁 ∘ (𝐻1𝑓 ∘ 𝜙𝑃)♯′ for all 𝑓 ∈ 𝒞1(𝐹𝑃, 𝑁)
𝐻1 𝑔♭ = (𝜓 −1

𝑁 ∘ 𝐻2𝑔)♭′ ∘ 𝜙−1
𝑃 for all 𝑔 ∈ 𝒞2(𝑃, 𝐺𝑁)

Definition II.33. The category of adjunctions Adj has adjunctions
between locally small categories as objects and pseudo maps of ad-
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junctions as morphisms.

Remark Mac Lane [ML71] defines the stricter notion of map of adjunc-
tion where 𝜙 and 𝜓 are identities. In comparison with the result above,
the reflection in Führmann [Füh99] is based on maps of (Kleisli) adjunc-
tions and strict functors of Thunk-force categories; and the structure the-
orem in Selinger [Sel01] is based on strictmaps of control categories.
It is obvious in the following development that we could state a re-

flection between a categoryDupl with strict functors of duploids and a
category Adj with maps of adjunctions. However I found the notion of
non-strict functor more elegant.

II.3.1 Every duploid comes from an adjunction
Proposition II.34. Let 𝒟 be a duploid. We define ↑ ∶ 𝒫 ⦁ → 𝒩 ⦁ the
restriction of ⇑ and ↓ ∶ 𝒩 ⦁ → 𝒫 ⦁ the restriction of ⇓. There is an
adjunction: �� ��↑ ⊣ ↓

with unit wrap⇑ ∘ delay and co-unit unwrap ∙ force⇓.
Proof. Due to the adjoint equivalences from Proposition II.23, we have
the following natural isomorphisms:

𝒩 ⦁(⇑𝐼−, =) ≃ 𝒟𝑙(𝐼−, 𝐼=) ∶ 𝒫 ⦁op ×𝒩 ⦁ → Set
𝒫 ⦁(−, ⇓𝐼=) ≃ 𝒟t(𝐼−, 𝐼=) ∶ 𝒫 ⦁op ×𝒩 ⦁ → Set

where 𝐼 denotes the inferrable inclusion functors. Since we have:

𝒟𝑙(𝑃,𝑁) = 𝒟(𝑃,𝑁) = 𝒟t(𝑃,𝑁) ,

we also have:

𝒟𝑙(𝐼−, 𝐼=) = 𝒟t(𝐼−, 𝐼=) ∶ 𝒫 ⦁op×𝒩 ⦁ → Set .

Thus we have an adjunction:

𝒩 ⦁(⇑𝐼−, =) ≃ 𝒫 ⦁(−,⇓𝐼=) ∶ 𝒫 ⦁op×𝒩 ⦁ → Set .
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The adjunction is given by the bijection:

𝒩 ⦁(↑𝑃, 𝑁) ≃ 𝒫 ⦁(𝑃, ↓𝑁)
𝑓 ↦ wrap𝑁 ∘ 𝑓 ∘ delay𝑃

unwrap𝑁 ∙ 𝑔 ∙ force𝑃 ↤ 𝑔 ∎

We show that the duploid obtained from this adjunction is iso-
morphic inDupl to 𝒟 .

Proposition II.35. Let 𝒟 a duploid and 𝒟 ′ the duploid obtained from
the adjunction ↑ ⊣ ↓ ∶ 𝒩 ⦁ → 𝒫 ⦁ with the construction of Section II.2.3.
There is an isomorphism between the duploids 𝒟 and 𝒟 ′.

Proof. Recall that 𝒟 ′ is defined with:

|𝒟 ′| = |𝒟 |
𝒟 ′(𝐴, 𝐵) = 𝒩 ⦁(↑⇓𝐴, ⇑𝐵)

(we may identify 𝐴+ with ⇓𝐴 and 𝐵⊝ with ⇑𝐵). Furthermore, by defini-
tion we have:

id𝒟 ′
𝑃 = id𝒟

⇑𝑃

id𝒟 ′
𝑁 = unwrap𝑁 ∙ force⇓𝑁

𝑔 ∘𝒟 ′ 𝑓 = (𝑔 ∘ delay⇓𝑁) ∙ (wrap𝑁 ∘ 𝑓 ∘ delay𝐴) ◉ force𝐴

𝑔 ∙𝒟 ′ 𝑓 = 𝑔 ∘ 𝑓

According to Propositions II.23 and II.24, we have natural isomorph-
isms:

𝒟(−, =) ≃ 𝒟𝑙(𝐼⇓−, =) ≃ 𝒩 ⦁(⇑𝐼⇓−, ⇑=)
and thus for all 𝐴, 𝐵 ∈ |𝒟 | we have a bijection 𝒟 (𝐴, 𝐵) → 𝒩 ⦁(↑⇓𝐴, ⇑𝐵) =
𝒟 ′(𝐴, 𝐵) given by:

𝐹𝐴,𝐵 ∶ 𝑓 ↦ delay𝐵 ◉ (𝑓 ◉ unwrap𝐴) ∙ force⇓𝐴

It is straightforward to check that this mapping defines a functor of pre-
duploids 𝐹 ∶ 𝒟 → 𝒟 ′.
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Now we have 𝐹(wrap𝑁) = id𝒟
⇑⇓𝑁 which is the definition of wrap′

𝑁; and
𝐹(force𝑃) = unwrap⇑𝑃 ∙ force⇓⇑𝑃 which is the definition of force′

𝑃. Therefore
𝐹(wrap𝑁) is thunkable and 𝐹(force𝑃) is linear. We conclude that 𝐹 is a
functor of duploids.

Like for functors of categories, it is easy to see, using the characterisa-
tion 3. of Proposition II.26, that if 𝐹 is bijective on objects and morph-
isms then its inverse (given here with 𝑓 ↦ (force𝐵 ∘ 𝑓 ∘ delay⇓𝐴) ∙wrap𝐴) is a
functor of duploids. This concludes the proof. ∎

II.3.2 The equalising requirement
Definition II.36. An adjunction 𝐹 ⊣(𝜂,𝜀) 𝐺 ∶ 𝒞1 → 𝒞2 satisfies the
equalising requirement if and only if for all 𝑃 ∈ |𝒞2|, 𝜂𝑃 is an equaliser
of 𝜂𝐺𝐹𝑃 and 𝐺𝐹𝜂𝑃, and for all 𝑁 ∈ |𝒞1|, 𝜀𝑁 is a co-equaliser of 𝜀𝐹𝐺𝑁
and 𝐹𝐺𝜀𝑁 .
Definition II.37. Let Adjeq be the full subcategory of Adj whose
objects are adjunctions that satisfy the equalising requirement.

Let us recall that 𝜂𝑃 is an equaliser of 𝜂𝐺𝐹𝑃 and 𝐺𝐹𝜂𝑃 if and only
if for all 𝑓 ∈ 𝒞2(𝑃, 𝐺𝐹𝑄) such that 𝜂𝐺𝐹𝑃 ∘ 𝑓 = 𝐺𝐹𝜂𝑃 ∘ 𝑓 , there exists a
unique 𝑔 ∈ 𝒞2(𝑃, 𝑄) such that 𝑓 = 𝜂𝑃 ∘ 𝑔.

Also, 𝜀𝑁 is a co-equaliser of 𝜀𝐹𝐺𝑁 and 𝐹𝐺𝜀𝑁 if and only if for all
𝑓 ∈ 𝒞1(𝐹𝐺𝑁, 𝑀) such that 𝑓 ∘ 𝜀𝐹𝐺𝑁 = 𝑓 ∘ 𝐹𝐺𝜀𝑁 , there exists a unique
𝑔 ∈ 𝒞1(𝑁, 𝑀) such that 𝑓 = 𝑔 ∘ 𝜀𝑁 .

We give an equivalent formulation of this condition in terms of
the associated duploid:
Proposition II.38. Let 𝐹 ⊣(𝜂,𝜀) 𝐺 ∶ 𝒞1 → 𝒞2 be an adjunction, and
consider the associated duploid 𝒟 . The adjunction satisfies the
equalising requirement if and only if for all objects 𝐴, 𝑃, 𝑁 the following
three conditions hold:
1. 𝜀𝑁 is an epimorphism and 𝜂𝑃 is a monomorphism; or equivalently 𝐺

and 𝐹 are faithful;
2. all linear morphisms 𝑓 ∈ 𝒟(𝑁, 𝐴) are of the form 𝑔 ∘ 𝜀𝑁 with

𝑔 ∈ 𝒞1(𝑁, 𝐴⊝); or equivalently all linear morphisms are in the image
of 𝐺 modulo the adjunction;
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3. all thunkable morphisms 𝑓 ∈ 𝒟(𝐴, 𝑃) are (modulo the adjunction)
of the form 𝜂𝑃 ∘ 𝑔 with 𝑔 ∈ 𝒞2(𝐴+, 𝑃); or equivalently all thunkable
morphisms are in the image of 𝐹;

Proof. Applying Proposition II.21, it is immediate to see that the condi-
tions (2.) and (3.) are equivalent to the existence part of the equalising
requirement; while the condition (1.) is equivalent to the uniqueness
part. Equivalence with the second part of each condition is obtained
by rephrasing through the natural isomorphism that defines the adjunc-
tion. ∎

Proposition II.39. Let 𝒟 be a duploid and consider the adjunction
↑ ⊣ ↓ ∶ 𝒩 ⦁ → 𝒫 ⦁. Then the adjunction satisfies the equalising
requirement.
Proof. We have 𝜀= unwrap ∙ force⇓. It has a section in 𝒩 , namely the natural
transformation 𝜗 ≝ delay⇓ ∙ wrap ∶ 1 .→ ⇑⇓. Let 𝑓 ∈ 𝒩 ⦁(↑↓𝑁, 𝑀) such that
𝑓 ∘ 𝜀↑↓𝑁 = 𝑓 ∘ ↑↓𝜀𝑁 . By definition this means:

𝑓 ∘ 𝜀⇑⇓𝑁 = 𝑓 ∘ ⇑⇓𝜀𝑁 .

Using this assumption we have:

𝑓 = 𝑓 ∘ 𝜀⇑⇓𝑁 ∘ 𝜗⇑⇓𝑁

= 𝑓 ∘ ⇑⇓𝜀𝑁 ∘ 𝜗⇑⇓𝑁

= 𝑓 ∘ 𝜗⇑⇓𝑁 ∘ 𝜀𝑁

Thus there exists 𝑔 such that 𝑔 ∘ 𝜀𝑁 = 𝑓 . Because 𝜀 has a section, 𝑔 is
uniquely determined. Thus 𝜀 is a co-equaliser of 𝜀↑↓𝑁 and ↑↓𝜀𝑁 . The proof
that 𝜂 is an equaliser of 𝜂↓↑𝑃 and ↓↑𝜂𝑃 is symmetric. ∎

II.3.3 The functors i and j
Lemma II.40. We have a functor 𝑗 ∶ Adj → Dupl defined as follows.
Given an adjunction 𝐹 ⊣ 𝐺 ∶ 𝒞1 → 𝒞2, we call 𝑗(𝐹 ⊣ 𝐺) the associated

duploid defined in Section II.2.3. We keep in particular the convention
that 𝑁,𝑀 … represent objects of 𝒞1 and 𝑃,𝑄… represent objects of
𝒞2.
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Now let two adjunctions 𝐹 ⊣(♯,♭) 𝐺 ∶ 𝒞1 → 𝒞2 and 𝐹′ ⊣(♯′,♭′) 𝐺′ ∶ 𝒞 ′
1 →

𝒞 ′
2 and a pseudo map of adjunctions:

(𝐻1,𝐻2,𝜙,𝜓) ∶ (𝐹 ⊣(𝜂,𝜀) 𝐺) → (𝐹′ ⊣(𝜂′,𝜀′) 𝐺′) .

Let us write 𝒟 = 𝑗(𝐹 ⊣ 𝐺) and 𝒟 ′ = 𝑗(𝐹′ ⊣ 𝐺′); let us also write:

𝐻𝑁 = 𝐻1𝑁 for 𝑁 ∈ |𝒞1|
𝐻𝑃 = 𝐻2𝑃 for 𝑃 ∈ |𝒞2|

Let us extend 𝜙 and 𝜓 into the following families of maps:

𝜙̄𝐴 ∶ (𝐻𝐴)⊝ ≃→ 𝐻1 𝐴⊝ = {𝜙𝑃 if 𝐴 = 𝑃
id𝑁 if 𝐴 = 𝑁

𝜓̄𝐴 ∶ (𝐻𝐴)+ ≃→ 𝐻2 𝐴+ = {id𝑃 if 𝐴 = 𝑃
𝜓𝑁 if 𝐴 = 𝑁

We define a functor of duploids 𝑗(𝐻1, 𝐻2, 𝜙, 𝜓) = 𝐻 ∶ 𝒟 → 𝒟 ′ by
defining 𝐻 on morphisms as follows:

𝐻 ∶ 𝒞1(𝐹 𝐴+, 𝐵⊝) → 𝒞 ′
1(𝐹′ (𝐻𝐴)+, (𝐻𝐵)⊝)

𝑓 ↦ 𝜙̄−1
𝐵 ∘ 𝐻1𝑓 ∘ 𝜙𝐴+ ∘ 𝐹′𝜓̄𝐴

Proof. We show that this indeed defines a functor Adj → Dupl. We first
prove that 𝐻 is a functor of duploids. We recall that positive identity and
composition are defined as the ones of 𝒞1. Therefore it is immediate that
𝐻id𝒟

𝑃 = id𝒟 ′
𝐻𝑃 and 𝐻𝑓 ∙𝒟 ′ 𝐻𝑔 = 𝐻(𝑓 ∙𝒟 𝑔).

We recall that negative identity and composition come from the ones
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in 𝒞2 modulo the adjunction. Thus:

𝐻id𝒟
𝑁 = 𝐻𝜀𝑁

= 𝐻1𝜀𝑁 ∘ 𝜙𝐺𝑁 ∘ 𝐹′𝜓𝑁

= 𝜀′
𝐻1𝑁 ∘ 𝐹′𝜓 −1

𝑁 ∘ 𝜙−1
𝐺𝑁 ∘ 𝜙𝐺𝑁 ∘ 𝐹′𝜓𝑁

= 𝜀′
𝐻1𝑁 = id𝒟 ′

𝐻𝑁

and:

𝐻(𝑓 ∘𝒟 𝑔) = 𝜙̄−1
𝐵 ∘ (𝐻1 (𝑓 ♯ ∘𝒞2 𝑔♯)♭) ∘ 𝜙𝐴+ ∘ 𝐹′𝜓̄𝐴

where:

(𝐻1 (𝑓 ♯ ∘ 𝑔♯)♭) ∘ 𝜙𝐴+ = (𝜓 −1
𝐵⊝ ∘ 𝐻2(𝑓 ♯ ∘ 𝑔♯))♭′ ∘ 𝜙−1

𝐴+ ∘ 𝜙𝐴+

= (𝜓 −1
𝐵⊝ ∘ 𝐻2 𝑓 ♯ ∘ 𝐻2 𝑔♯)♭′

= (𝜓 −1
𝐵⊝ ∘ 𝜓𝐵⊝ ∘ (𝐻1𝑓 ∘ 𝜙𝐺𝑁)♯′ ∘ 𝜓𝑁 ∘ (𝐻1𝑔 ∘ 𝜙𝐴+)♯′)♭′

= ((𝐻1𝑓 ∘ 𝜙𝐺𝑁)♯′ ∘ 𝜓𝑁 ∘ (𝐻1𝑔 ∘ 𝜙𝐴+)♯′)♭′

Therefore by naturality of ♭′, we have:

𝐻(𝑓 ∘𝒟 𝑔) = (𝐺′𝜙̄−1
𝐵 ∘ (𝐻1𝑓 ∘ 𝜙𝐺𝑁)♯′ ∘ 𝜓𝑁 ∘ (𝐻1𝑔 ∘ 𝜙𝐴+)♯′ ∘ 𝜓̄𝐴)♭′ .

Hence by naturality of ♯′, we have:

𝐻(𝑓 ∘𝒟 𝑔) = ((𝜙̄−1
𝐵 ∘ 𝐻1𝑓 ∘ 𝜙𝐺𝑁 ∘ 𝐹′𝜓𝑁)♯′ ∘𝒞 ′

2 (𝐻1𝑔 ∘ 𝜙𝐴+ ∘ 𝐹′𝜓̄𝐴)♯′)♭′

= 𝐻𝑓 ∘𝒟 ′ 𝐻𝑔

Therefore 𝐻 is a functor of pre-duploids.

Let us now prove that 𝐻force𝑃 is linear and 𝐻wrap𝑁 is thunkable. Ac-
cording to Proposition II.21 we have to show:

𝐻force𝑃 ∘ 𝜀′
𝐹′𝐺′𝐻𝐹𝑃 = 𝐻force𝑃 ∘ 𝐹′𝐺′𝜀′

𝐻𝐹𝑃

𝜂′
𝐺′𝐹′𝐻𝐺𝑁 ∘ (𝐻wrap𝑁)♯′ = 𝐺′𝐹′𝜂′

𝐻𝐺𝑁 ∘ (𝐻wrap𝑁)♯′

Using the hypothesis of the pseudo-maps 𝐻1𝜀𝐹𝑃 = 𝜀′
𝐻1𝐹𝑃 ∘ 𝐹′𝜓 −1

𝐹𝑃 ∘ 𝜙−1
𝐺𝐹𝑃,
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we have:

𝐻force𝑃 = 𝜙−1
𝑃 ∘ 𝐻1𝜀𝐹𝑃 ∘ 𝜙𝐺𝐹𝑃 ∘ 𝐹′𝜓𝐹𝑃

= 𝜙−1
𝑃 ∘ 𝜀′

𝐻1𝐹𝑃 ∘ 𝐹′𝜓 −1
𝐹𝑃 ∘ 𝜙−1

𝐺𝐹𝑃 ∘ 𝜙𝐺𝐹𝑃 ∘ 𝐹′𝜓𝐹𝑃

= 𝜙−1
𝑃 ∘ 𝜀′

𝐻1𝐹𝑃

thus the above equations can be written:

𝜙−1
𝑃 ∘ 𝜀′

𝐻1𝐹𝑃 ∘ 𝜀′
𝐹′𝐺′𝐻1𝐹𝑃 = 𝜙−1

𝑃 ∘ 𝜀′
𝐻1𝐹𝑃 ∘ 𝐹′𝐺′𝜀′

𝐻1𝐹𝑃

𝜂′
𝐺′𝐹′𝐻2𝐺𝑁 ∘ 𝐺′𝐹′𝜓𝑁 ∘ 𝜂′

𝐺′𝐻1𝑁 = 𝐺′𝐹′𝜂′
𝐻2𝐺𝑁 ∘ 𝐺′𝐹′𝜓𝑁 ∘ 𝜂′

𝐺′𝐻1𝑁

The one above, is equivalent to the following instance of naturality of 𝜀′:

𝜀′
𝐻1𝐹𝑃 ∘ 𝜀′

𝐹′𝐺′𝐻1𝐹𝑃 = 𝜀′
𝐻1𝐹𝑃 ∘ 𝐹′𝐺′𝜀′

𝐻1𝐹𝑃

therefore 𝐻force𝑃 is linear. The one below holds by naturality of 𝜂′:

𝜂′
𝐺′𝐹′𝐻2𝐺𝑁 ∘ 𝐺′𝐹′𝜓𝑁 ∘ 𝜂′

𝐺′𝐻1𝑁 = 𝜂′
𝐺′𝐹′𝐻2𝐺𝑁 ∘ 𝜂′

𝐻2𝐺𝑁 ∘ 𝜓𝑁

= 𝐺′𝐹′𝜂′
𝐻2𝐺𝑁 ∘ 𝜂′

𝐻2𝐺𝑁 ∘ 𝜓𝑁

= 𝐺′𝐹′𝜂′
𝐻2𝐺𝑁 ∘ 𝐺′𝐹′𝜓𝑁 ∘ 𝜂′

𝐺′𝐻1𝑁

hence 𝐻wrap𝑁 is thunkable. 𝐻 is therefore a functor of duploids.
It is straightforward to see that 𝑗(1𝒞1

, 1𝒞2
, id𝐹 , id𝐺)= 1𝑗(𝐹⊣𝐺) and we also

have:

𝑗((𝐻 ′
1, 𝐻 ′

2, 𝜙′, 𝜓 ′) ∘ (𝐻1, 𝐻2, 𝜙, 𝜓))(𝑓 )

= 𝐻 ′
1𝜙 ∘ 𝜙′

𝐻2

−1

𝐵 ∘ 𝐻 ′
1𝐻1𝑓 ∘ (𝐻 ′

1𝜙 ∘ 𝜙′
𝐻2)𝐴+ ∘ 𝐹′𝐻2𝜓 ∘ 𝜓 ′

𝐻1 𝐴

= ̄𝜙′−1
𝐻𝐵 ∘ 𝐻 ′

1𝜙̄−1
𝐵 ∘ 𝐻 ′

1𝐻1𝑓 ∘ 𝐻 ′
1𝜙𝐴+ ∘ 𝜙′

𝐻2𝐴+ ∘ 𝐹′𝐻2𝜓̄𝐴 ∘ 𝐹′𝜓̄ ′
𝐻𝐴

= ̄𝜙′−1
𝐻𝐵 ∘ 𝐻 ′

1𝜙̄−1
𝐵 ∘ 𝐻 ′

1𝐻1𝑓 ∘ 𝐻 ′
1𝜙𝐴+ ∘ 𝐻1𝐹𝜓̄𝐴 ∘ 𝜙′

(𝐻𝐴)+ ∘ 𝐹′𝜓̄ ′
𝐻𝐴 (𝜙′ nat.)

= ̄𝜙′−1
𝐻𝐵 ∘ 𝐻 ′

1(𝜙̄−1
𝐵 ∘ 𝐻1𝑓 ∘ 𝜙𝐴+ ∘ 𝐹𝜓̄𝐴) ∘ 𝜙′

(𝐻𝐴)+ ∘ 𝐹′𝜓̄ ′
𝐻𝐴

= 𝑗(𝐻 ′
1, 𝐻 ′

2, 𝜙′, 𝜓 ′) ∘ 𝑗(𝐻1, 𝐻2, 𝜙, 𝜓)(𝑓 )

Thus 𝑗 is a functor. ∎
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Lemma II.41. There is a functor 𝑖 ∶ Dupl → Adj defined as follows.
Given a duploid 𝒟 , the adjunction 𝑖𝒟 is ↑ ⊣ ↓ ∶ 𝒩 ⦁ → 𝒫 ⦁ as

considered in II.3.1.
Now let 𝒟 and 𝒟 ′ two duploids and let us write 𝑖𝒟 = (↑ ⊣ ↓ ∶

𝒩 ⦁ → 𝒫 ⦁) and 𝑖𝒟 ′ = (↑′ ⊣ ↓′ ∶ 𝒩 ′⦁ → 𝒫 ′⦁). Given a duploid functor
𝐻 ∶ 𝒟 → 𝒟 ′ we define:

𝑖𝐻 = (𝐻1, 𝐻2, 𝜙, 𝜓) ∶ (↑ ⊣ ↓) → (↑′ ⊣ ↓′)

with 𝐻1 the functor 𝐻𝑙 restricted to 𝒩 ⦁ and 𝐻2 the functor 𝐻t
restrained to 𝒫 ⦁; and:

𝜙𝑃 ≝ 𝐻delay𝑃 ∙ force′
𝐻𝑃 ∶ ↑′𝐻2𝑃 ≃→ 𝐻1↑𝑃

𝜓𝑁 ≝ 𝐻wrap𝑁 ∘ unwrap′
𝐻𝑁 ∶ ↓′𝐻1𝑁

≃→ 𝐻2↓𝑁

Proof. We prove that this indeed defines a functor Dupl → Adj. Accord-
ing to Proposition II.26,we have 𝐻1 ∶ 𝒩 ⦁ → 𝒩 ′⦁ and 𝐻2 ∶ 𝒫 ⦁ → 𝒫 ′⦁. The
natural isomorphisms 𝜙 and 𝜓 are obtained by restriction to 𝒫 ⦁ and 𝒩 ⦁

of the ones in Proposition II.27.
Now we consider the unit 𝜂 ≝ wrap⇑ ∘ delay of the first adjunction. It

is immediate to see that we have 𝜓⇑ ∙ ⇓′𝜙 ∙ 𝜂′
𝐻2 = 𝐻2𝜂. This makes 𝑖𝐻 a

pseudo map of adjunctions.
Last, let us consider 𝑖𝐻 ′ ∘ 𝑖𝐻 and let us call 𝜙𝐻 ′𝐻 and 𝜓𝐻 ′𝐻 the iso-

morphisms of 𝑖(𝐻 ′𝐻). We prove 𝑖𝐻 ′ ∘ 𝑖𝐻 = 𝑖(𝐻 ′𝐻) by showing 𝜙𝐻 ′𝐻 =
𝐻 ′

1𝜙 ∘ 𝜙′
𝐻2 and 𝜓𝐻 ′𝐻 = 𝐻2𝜓 ∘ 𝜓 ′

𝐻1 . We have:

𝐻 ′
1𝜙 ∘ 𝜙′

𝐻2 = 𝐻 ′
1(𝐻delay ∙ force′

𝐻) ∘ (𝐻 ′delay′ ∙ force″
𝐻 ′)𝐻2

= (𝐻 ′𝐻delay ∙ 𝐻 ′force′
𝐻) ∘ (𝐻 ′delay′

𝐻 ∙ force″
𝐻 ′𝐻)

= 𝐻 ′𝐻delay ∙ force″
𝐻 ′𝐻

= 𝜙𝐻 ′𝐻 by definition,

and symmetrically for 𝜓𝐻 ′𝐻 . Together with 𝑖(1𝒟 ) = 1𝑖𝒟 this makes 𝑖 a
functorDupl → Adj. ∎
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II.3.4 Proof of the main result

Lemma II.42. There is a natural transformation 𝜼 ∶ 1Adj .→ 𝑖𝑗.

Proof. For any adjunction 𝐹 ⊣(𝜂,𝜀) 𝐺 ∶ 𝒞1 → 𝒞2, let us consider the duploid
𝒟 = 𝑗(𝐹 ⊣ 𝐺). The component 𝜼𝐹⊣𝐺 ∶ (𝐹 ⊣ 𝐺) → 𝑖𝒟 is given by:

𝐻𝜼
1 𝑁 = 𝑁

𝐻𝜼
1 (𝑓 ∶ 𝑁 → 𝑀) = 𝑓 ∘𝒞1 𝜀𝑁 ∈ 𝒩 ⦁(𝑁, 𝑀)

𝐻𝜼
2𝑃 = 𝑃

𝐻𝜼
2(𝑔 ∶ 𝑃 → 𝑄) = 𝐹𝑔 ∈ 𝒫 ⦁(𝑃, 𝑄)

The co-unit 𝜀′ of the adjunction 𝑖𝒟 is given by:

𝜀′ = unwrap ∙ force⇓ = 𝜀 ∘𝒞1 𝜀𝐹𝐺

Thus 𝐻1 strictly preserves 𝜀:

𝐻1𝜀 = 𝜀 ∘ 𝜀𝐹𝐺 = 𝜀′
𝐻2

We may therefore take the identity isomorphisms 𝜓𝜼 = id𝒫 ⦁

𝐺 = id𝒞1
𝐹𝐺 and

𝜙𝜼 = id𝒩 ⦁

𝐹 = 𝜀𝐹. This defines 𝜼𝐹⊣𝐺 as a (pseudo) map of adjunctions.
Let us prove that 𝜼 is natural. Let us consider a pseudo map of adjunc-

tions:
(𝐻1, 𝐻2, 𝜙, 𝜓) ∶ (𝐹 ⊣(𝜂,𝜀) 𝐺) → (𝐹′ ⊣(𝜂′,𝜀′) 𝐺′)

In the following we consider the duploids 𝒟 = 𝑗(𝐹 ⊣ 𝐺) and 𝒟 ′ = 𝑗(𝐹′ ⊣
𝐺′); the functor of duploid 𝐻 ′ = 𝑗(𝐻1, 𝐻2, 𝜙, 𝜓) and the pseudo map of
adjunctions 𝑖𝐻 ′ = (𝐻 ′

1, 𝐻 ′
2, 𝜙′, 𝜓 ′). By definition we have for 𝑓 ∈ 𝒩 ⦁(𝑁, 𝑀)

and 𝑔 ∈ 𝒫 ⦁(𝑃, 𝑄):

𝐻 ′
1𝑓 = 𝐻 ′𝑓 = 𝐻1𝑓 ∘ 𝜙𝐺𝑁 ∘ 𝐹′𝜓𝑁

𝐻 ′
2𝑔 = 𝐻 ′𝑔 = 𝜙−1

𝑄 ∘ 𝐻1𝑔 ∘ 𝜙𝑃

𝜙′
𝑃 = 𝐻 ′delay𝑃 ∙𝒟 ′

force′
𝐻 ′𝑃 = 𝜙𝑃 ∘ 𝜀′

𝐹′𝐻2𝑃
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Now let us prove:

𝜼𝐹′⊣𝐺′ ∘ (𝐻1, 𝐻2, 𝜙, 𝜓) = 𝑖𝑗(𝐻1, 𝐻2, 𝜙, 𝜓) ∘ 𝜼𝐹⊣𝐺

On the left hand side we have the following pseudo map:

(𝑓 ↦ (𝐻1𝑓 ) ∘ 𝜀′
𝑁 , 𝑔 ↦ 𝐹′𝐻2𝑔, 𝐻𝜼

1 𝜙, 𝐻𝜼
2𝜓)

On the right-hand side we have:

(𝑓 ↦ 𝐻 ′
1(𝑓 ∘ 𝜀𝑁), 𝑔 ↦ 𝐻 ′

2𝐹𝑔, 𝜙′
𝐻𝜼

2
, 𝜓 ′

𝐻𝜼
1
)

The first three components coincide:

𝐻 ′
1(𝑓 ∘ 𝜀𝑁) = 𝐻1(𝑓 ∘ 𝜀𝑁) ∘ 𝜙𝐺𝑁 ∘ 𝐹′𝜓𝑁

= 𝐻1𝑓 ∘ (𝐻1𝜀𝑁 ∘ 𝜙𝐺𝑁 ∘ 𝐹′𝜓𝑁)
= 𝐻1𝑓 ∘ 𝜀′

𝐻1𝑁

𝐻 ′
2𝐹𝑔 = 𝜙−1

𝑄 ∘ 𝐻1𝐹𝑔 ∘ 𝜙𝑃 = 𝐹′𝐻2𝑔
𝐻𝜼

1 𝜙 = 𝜙 ∘ 𝜀′
𝐹′𝐻2

= 𝜙′ = 𝜙′
𝐻𝜼

2

Therefore the two sides are equal. This completes the proof. ∎

Lemma II.43. There is a natural isomorphism 𝜺 ∶ 𝑗𝑖 ≃→ 1Dupl.
Proof. According to Proposition II.35 we have for any duploid 𝒟 an iso-
morphism:

𝜺𝒟 ∶ 𝑗𝑖𝒟 → 𝒟 ,

where:

𝜺𝒟 (𝐴) = 𝐴
𝜺𝒟 (𝑓 ) = (force𝐵 ∘ 𝑓 ∘ delay⇓𝐴) ∙wrap𝐴

Let 𝐻 ∶ 𝒟 → 𝒟 ′ be a functor of duploids. By definition we have for any
𝑓 ∈ 𝒟 (𝐴, 𝐵):

𝑗𝑖𝐻(𝑓 ) =(delay′
𝐻𝐵 ◉𝐻force𝐵) ∘ 𝐻𝑓 ∘

(𝐻delay⇓𝐴 ∙ force′
𝐻⇓𝐴) ∘ ⇑′(𝐻wrap𝐴 ◉ unwrap′

𝐻𝐴)



150 Chapter II Duploids: Models of a non-associative composition

Therefore by linearity of 𝐻𝑓 and delay′
𝐻𝐵 we have:

𝑗𝑖𝐻(𝑓 ) = ⇑′(𝐻(force𝐵 ∘ 𝑓 ∘ delay⇓𝐴) ∙ 𝐻wrap𝐴 ◉ unwrap′
𝐻𝐴)

= 𝜺−1
𝒟 ′ ∘ 𝐻 ∘ 𝜺𝒟 (𝑓 )

The functors are equal on objects, therefore we may conclude:

𝑗𝑖𝐻 = 𝜺−1
𝒟 ′ ∘ 𝐻 ∘ 𝜺𝒟 . ∎

Lemma II.44. We have the adjunction 𝑗 ⊣(𝜼,𝜺) 𝑖 ∶ Dupl → Adj.

Proof. Building on Lemma II.42 and Lemma II.43, it remains us to show:

𝑖𝜺 ∘ 𝜼𝑖 = 1𝑖

𝜺𝑗 ∘ 𝑗𝜼 = 1𝑗

Let 𝒟 a duploid. On the one hand we have by definition:

𝜼𝑖𝒟 = (𝑓 ↦ 𝑓 ∘ (unwrap𝑁 ∙ force⇓𝑁), ⇑, id𝑗𝑖𝒟
⇑ , −)

(where the functors are identity on objects). On the other hand, we have:

𝑖𝜺−1
𝒟 = (𝑓 ↦ (𝑓 ∘ unwrap𝑁) ∙ force⇓𝑁 , 𝑔 ↦ delay𝑃 ∙ 𝑔 ∙ force𝑃, 𝜺−1

𝒟 (id𝒟
⇑𝑃), −)

(where the functors are identity on objects). The two pseudo maps of
adjunctions coincide (in the first component, we use the hypothesis that
𝑓 is linear). This gives us the first equation.

Now let 𝐹 ⊣(𝜂,𝜀) 𝐺 ∶ 𝒞1 → 𝒞2. By definition we have for all 𝑓 ∈ 𝑗(𝐹 ⊣
𝐺)(𝐴, 𝐵):

𝑗𝜼𝐹⊣𝐺(𝑓 ) = 𝑓 ∘ 𝜀𝐹 𝐴+

We also notice that the definition of the duploid 𝑗(𝐹 ⊣ 𝐺) Section II.2.3
extends as follows:

wrap𝐴 = id𝒞1
𝐹(𝐴+)

force𝐴 = 𝜀𝐺(𝐴⊝)
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Therefore it follows by definition that we have for all 𝑔 ∈ 𝑗𝑖𝑗(𝐹 ⊣ 𝐺)(𝐴, 𝐵):

𝜺𝑗(𝐹⊣𝐺)(𝑔) = 𝑔 ∘ 𝐹𝜂𝐴+

Therefore:
𝜺𝑗(𝐹⊣𝐺) ∘ 𝑗𝜼𝐹⊣𝐺 = 1𝑗(𝐹⊣𝐺)

Since both 𝑗𝜼𝐹⊣𝐺 and 𝜺𝑗(𝐹⊣𝐺) are identity on objects, we conclude that
the second equation holds. ∎

Lemma II.45. There is an equivalence of categories:�� ��Dupl ≃ Adjeq .

Proof. According to Proposition II.39, 𝑖 co-restricts to a functor Dupl →
Adjeq. There remains to show that the restriction of 𝜼 to Adjeq is an
isomorphism; in other words that 𝜼𝐹⊣𝐺 is invertible whenever 𝐹 ⊣ 𝐺 ∶
𝒞1 → 𝒞1 satisfies the equalising requirement.

Consider such an adjunction. It is not hard to see that a pseudo map of
adjunctions is invertible if and only if its first two components are. Let us
recall that these two components are defined with:

𝐻𝜼
1 𝑁 = 𝑁

𝐻𝜼
1 (𝑓 ∶ 𝑁 → 𝑀) = 𝑓 ∘𝒞1 𝜀𝑁 ∈ 𝒩 ⦁(𝑁, 𝑀)

𝐻𝜼
2𝑃 = 𝑃

𝐻𝜼
2(𝑔 ∶ 𝑃 → 𝑄) = 𝐹𝑔 ∈ 𝒫 ⦁(𝑃, 𝑄)

Therefore 𝐻𝜼
1 and 𝐻𝜼

2 are invertible because they are bijective on objects,
and, by application of Proposition II.38, bijective on morphisms. This
concludes the proof. ∎

We may now proceed with the proof of the main result.

Proof of Theorem II.31. According to Lemma II.44 and Lemma II.43, 𝑗 ∶
Adj → Dupl is a reflection. According to II.45, Adjeq is the reflective
subcategory ofAdj determined by the right adjoint to 𝑗. ∎
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Intuitively, according to Proposition II.38 and Theorem II.31, the
functor 𝑗 completes the values with all the expressions that are pure,
and completes the stacks with all the evaluation contexts that are
linear. Moreover 𝑗 identifies any two values that denote the same
expression, and any two stacks that denote the same evaluation con-
text.

II.3.5 Characterisation of Kleisli categories
We have not developed the notion of strict functor of duploids.
We leave it as an exercise for the reader to check that our reflec-
tion restricts to a reflection between the sub-category Dupl st of
Dupl whose morphisms are strict functors of duploids, and the sub-
category Adj st of Adj whose morphisms are maps of adjunctions
in the sense of Mac Lane. The full sub-category Adj steq of Adjeq
determined by the right adjoint to the reflection consists of adjunc-
tions satisfying the equalising requirement.

As an immediate corollary, thunk-force categories are essentially
duploids where ⇑ is bijective on objects:

Corollary II.46. Führmann’s category Tf [Füh99] of thunk-force
categories is equivalent to the full sub-categoryDupl st+ ofDupl st whose
objects are duploids with ⇑ bijective on objects.

Proof. Notice that 𝑖 and 𝑗 preserves the fact that 𝐹 and ⇑ are bijective
on objects. Therefore the equivalence Dupl st ≃ Adj steq restricts to an
equivalence between Dupl st+ and the full subcategory of Adj steq whose
objects are adjunctions 𝐹 ⊣ 𝐺 with 𝐹 bijective on objects. According to
Führmann, the latter is equivalent toTf [Füh99, Theorem 9]. ∎

By duality, categories with a runnable monad are essentially du-
ploids where ⇓ is bijective on objects.



Chapter III

Decomposing
delimited CPS translations

We show how delimited CPS translations decompose in three steps:

1. Call by value and call by name are implemented in a single polar-
ised calculus with delimited control by choosing the appropriate
polarity coercions;

2. A variant of the duploid construction relates the polarised calcu-
lus to an indirect model inspired by linear logic;

3. Erasing the interesting structure take us back into a calculus of
continuations. Polarities disappear while administrative redexes
appear.

Our approach allow us to rationally reconstruct four distinct call-by-
name variants of Danvy and Filinski’s shift and reset, one of which
appears to be new. Although the decomposition also holds for non-
delimited CPS translations, the full decomposition did not appear in
its entirety: the direct, polarised, intermediate calculus was missing.

III.1 Delimited control operators
Delimited control operators model in direct style the fact that cap-
tured contexts have a finite extent. They do so by including a first-
class context delimiter < ⋅>, as introduced by Felleisen [Fel88]. The
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literature distinguishes four ways of capturing a delimited context,
depending on how the delimiter is inserted in the result:

<𝐸[ℱ0(𝜆𝑥.𝑡)]> ⊳ 𝑡[𝜆𝑦. 𝐸[𝑦] /𝑥]
<𝐸[ℱ(𝜆𝑥.𝑡)]> ⊳ <𝑡[𝜆𝑦. 𝐸[𝑦] /𝑥]>
<𝐸[𝒮0(𝜆𝑥.𝑡)]> ⊳ 𝑡[𝜆𝑦.<𝐸[𝑦]>/𝑥]
<𝐸[𝒮(𝜆𝑥.𝑡)]> ⊳ <𝑡[𝜆𝑦.<𝐸[𝑦]>/𝑥]>

ℱ is the operator control of Felleisen et al. [FWFD88, Fel88]; 𝒮 is Danvy
and Filinski’s shift [DF90]; and ℱ0 and 𝒮0 are respectively control0 and
shift0 in the terminology of Shan [Sha07]. In the context of Danvy
and Filinski’s shift, the delimiter < ⋅> is called reset. With all variants,
the delimiter is erased once a value is reached:

<𝑉> ⊳ 𝑉 .

In this chapter we are interested in Danvy and Filinski’s shift 𝒮
and reset < ⋅ >. The first reason is that there are many examples
of uses (see Biernacki et al. [BDS06]). The second reason is that it
was long thought to be the only one to have a defining CPS trans-
lation [Sha07]. Thus, there is a consistent body of work studying
their equational theory [KH03], their proof theoretic meaning [AHS04,
AHS09, Ili10] as well as alternatives to the call-by-value evaluation
order [HG08, BB09, KT10].

Danvy and Filinski’s CPS translation is well understood from the
point of view of monads, and the type system that Danvy and Filin-
ski provide on top of their calculus can be described by “annotated”
monads (Wadler [Wad94]). As far as the call-by-value shift and reset
calculus is concerned, our polarised analysis parallels the monadic
analysis. Monads, however, are a limiting approach to CPS, as they
do not account for the Lafont-Reus-Streicher translation, and even
less so for polarisation, as we saw in Section II.3.5 on page 152.

Our approach is based on the proof-theoretic decomposition of
shift and reset of Herbelin et al. [AHS04, Her05, AHS09] with the λµt̂p𝑣
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calculus and its 𝜆̄𝜇 ̃𝜇 variant. As they show, shift and reset decompose
into the 𝜇𝛼 context binder of Parigot together with a continuation
variable written t̂p and a context binder 𝜇t̂p with an unconventional
scope. With our polarised approach we can decompose the λµt̂p𝑣 cal-
culus as well as its call-by-name variant λµt̂p𝑛 introduced by Herbelin
and Ghilezan [HG08]. We can also rationally reconstruct three other
call-by-name variants, one of which appears to be new.

While the call-by-name λµ calculus can be deduced from the call-
by-value one by duality [Sel01, CH00], this is no longer true with
delimited control. Polarisation is therefore crucial in our analysis.

A linear analysis of the CPS target
Our approach is also different for its analysis of the target of Danvy
and Filinski’s CPS translation. Delimited CPS translations relax the
hypothesis that calls to continuations are made in tail position. As
a consequence, contrarily to non-delimited CPS translations, the
order of evaluation of the target calculus matters, and the target of
Danvy and Filinski’s calculus is in call by value.

Unsurprisingly, the literature expresses this call-by-value order by
resorting to a second CPS translation when necessary. However,
in this last translation it is important that continuations are used
linearly. (See Kameyama and Hasegawa [KH03]; more generally on
linearity in CPS translations when continuations are not first-class
see Danvy and Lawall [DL92, Dan00].) We noticed that the second
translation could be replaced with the so-called “boring” translation
into linear logic [Gir87] which is based on the encoding !(𝑃 ⊸ 𝑄)
of implication. This translation indeed yields a model of call by
value (Maraist et al. [MOTW94]), and more precisely, corresponds
to Moggi’s monadic model [Mog89] where the strong monad is com-
mutative (Benton and Wadler [BW95]).

However, instead of carrying out a second translation, we directly
translate into a call-by-value calculus whose equational theory is in-
formed by the fact that it arises from a commutative strong monad.
In other words, the target of our translation is a call-by-value λ calcu-
lus extended with the following equation that accounts for commut-
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ativity:

let 𝑥 be 𝑡 in (let 𝑦 be 𝑢 in 𝑣) ≃ let 𝑦 be 𝑢 in (let 𝑥 be 𝑡 in 𝑣) . (III.1)

We call the calculus λ×v .

Our realization in choosing the “boring” translation of call by value
is that it allows us to link up with the polarised study of double-
negation translations. This approach is based on the decomposition
of the type of continuations into the exponential modality ! of LLP
and the involutive negation:

¬𝑃 = !𝑃⊥ .

Delimited CPS translations replace negation by implication, which
can be understood in the context of CPS translations as an annot-
ated negation modality:

¬𝑄𝑃 ≝ 𝑃 → 𝑄

Now, this annotated negation modality can be seen through the
“boring” translation as an annotated exponential:�� ��¬𝑄𝑃 = !𝑄𝑃⊥ ≝ !(𝑃⊥ ⅋ 𝑄) .

(We call the connective !𝑃 an exponential in the sense that it defines
a functor that enjoys !𝑃(𝐴 & 𝐵) ≃ !𝑃𝐴 ⊗ !𝑃𝐵 in linear logic, since ⅋
distributes over &.)

We see as an additional argument in favour of a call-by-value target
the fact that LLP lends itself to analogies with call by value, rather
than call by name, λ calculus. Indeed, if the target of the CPS
translation had been in call by name, as in Sabry’s variant of the
calculus [Sab96] or as in Chapter IV, then we would have been unable
to provide such a decomposition inspired from linear logic.
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λµt̂p𝑣/𝑛

cpsv⟦⋅⟧
cpsn⟦⋅⟧

�� ��

pos⟦⋅⟧
neg⟦⋅⟧

//// Lpol,t̂p+

dupl⟦⋅⟧
��

λ×v Lexp
flat⟦⋅⟧

oo

Figure III.1: The polarised decomposition of delimited CPS

Technical contribution
We decompose the delimited CPS translations in three steps (Fig-
ure III.1 on this page). See also Table I.17 on page 93 for a summary
of the systems considered in this chapter.

In Section III.2 we introduce the polarised calculus for delimited
control Lpol,t̂p+ and we describe its translation cps⟦⋅⟧ into λ×v . We
reconstruct five calculi, including four in call by name. Then for
two of them: the calculi λµt̂p𝑣 and λµt̂p𝑛, we decompose the CPS
translations through Lpol,t̂p+ . Finally we introduce LKdelim, a variant
of Girard’s LC [Gir91] and Danos, Joinet and Schellinx’s LK𝜂

𝑝 [DJS97]
that has type annotations. This system allows us to reconstruct
the type systems of λµt̂p𝑣 and λµt̂p𝑛, which shows that the polarised
decomposition is also informative for annotated type systems.

In Section III.3, we introduce the calculus Lexp and we show how
the cps⟦⋅⟧ decomposes through Lexp: it is equal to a variant of the
duploid construction dupl⟦⋅⟧, followed by the translation flat⟦⋅⟧.
flat⟦⋅⟧ removes polarities and introduces administrative redexes.
Then we introduce L ̄J, a variant of LLP which is obtained by re-
placing the exponentials ! and ? by the annotated modalities ?𝑃 and
!𝑃.1

1In terms of proofs nets, these modalities are described by adding auxiliary
doors to the ! and ? cells together with immediate reduction and expansion
laws. Such proofs nets were used extensively in the development of our
decomposition, but as far as formalisation was concerned we found easier to
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All the translations preserve equivalences; the translations cps⟦⋅⟧
and dupl⟦⋅⟧ also simulate the reduction.

It is important to note that:
• We provide the simple type systems L ̄J and LKdelim for their il-

lustrative purpose regarding the untyped translations. We prove
that typing is preserved by the translations. Other than that,
the chapter focuses on untyped calculi and their untyped transla-
tions.

• Additive connectives are omitted in the development. This is
because they are not useful in the decomposition of the CPS
translations we consider.

III.2 A polarised calculus for delimited
control

We introduce in Figure III.2 on the facing page the calculus Lpol,t̂p+ .
The goal is to show that the CPS translations of the call-by-value
λµt̂p𝑣 calculus of Ariola, Herbelin and Sabry and the call-by-name
λµt̂p𝑛 calculus of Herbelin and Ghilezan factor in the following man-
ner:

λµt̂p𝑣

cpsv⟦⋅⟧
��

pos⟦⋅⟧
// Lpol,t̂p+

cps⟦⋅⟧
||yy
yy
yy
yy
yy
yy
yy

λµt̂p𝑛

cpsn⟦⋅⟧
��

neg⟦⋅⟧
// Lpol,t̂p+

cps⟦⋅⟧
||yy
yy
yy
yy
yy
yy
yy

λ×v λ×v

where the top arrow consists in canonical implementations of ab-
straction and application in Lpol,t̂p+ (modulo administrative reduc-
tions for the second diagram).
Proposition III.1. The reduction →R𝑝

is confluent.

use the techniques of this thesis.
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pos. variables 𝑥, 𝑦, 𝑧…
neg. variables 𝛼, 𝛽, 𝛾 …
variables 𝜅 ⩴ 𝑥 ∣ 𝛼
values 𝑉 ⩴ 𝑉+ ∣ 𝑡⊝

pos. values 𝑉+ ⩴ 𝑥 ∣ (𝑉, 𝑉 ′) ∣ {𝑡⊝}
pos. terms 𝑡+ ⩴ 𝑥 ∣ (𝑉, 𝑉 ′) ∣ {𝑡⊝} ∣ 𝜇𝛼.𝑐 ∣ 𝜇t̂p.𝑐
neg. terms 𝑡⊝ ⩴ 𝛼 ∣ 𝜇(𝜅, 𝜅′).𝑐 ∣ 𝜇{𝛼}.𝑐 ∣ 𝜇𝑥.𝑐 ∣ t̂p
commands 𝑐 ⩴ ⟨𝑡+ ‖𝑡⊝⟩ (not.

= ⟨𝑡⊝ ‖𝑡+⟩)
(a) Syntax

(𝜇𝛼) ⟨𝜇𝛼.𝑐‖𝑡⊝⟩ ⊳R𝑝
𝑐[𝑡⊝/𝛼]

(𝜇𝑥) ⟨𝑉+ ‖𝜇𝑥.𝑐⟩ ⊳R𝑝
𝑐[𝑉+/𝑥]

(𝜇(𝜅, 𝜅′)) ⟨(𝑉, 𝑉 ′)‖𝜇(𝜅, 𝜅′).𝑐⟩† ⊳R𝑝
𝑐[𝑉/𝜅, 𝑉 ′/𝜅′]

(𝜇{𝛼}) ⟨{𝑡⊝}‖𝜇{𝛼}.𝑐⟩ ⊳R𝑝
𝑐[𝑡⊝/𝛼]

(𝜇t̂p) ⟨𝜇t̂p.⟨𝑉+ ‖ t̂p⟩∥𝑡⊝⟩‡ ⊳R𝑝
⟨𝑉+ ‖𝑡⊝⟩

†: when the polarities of values match the polarities of variables
‡: even when t̂p appears freely in 𝑉+

(b) Reductions

(𝜂+) 𝑡+ ⊳E𝑝
𝜇𝛼.⟨𝑡+ ‖𝛼⟩

(𝜂⊝) 𝑡⊝
† ⊳E𝑝

𝜇𝑞.⟨𝑞‖𝑡⊝⟩
(𝜂t̂p) 𝑐‡ ⊳E𝑝

⟨𝜇t̂p.𝑐‖ t̂p⟩
(ct̂p) ⟨𝑊 ∥𝜇𝑞.⟨𝜇t̂p.𝑐‖𝑡⊝⟩⟩† ⊳E𝑝

⟨𝜇t̂p.⟨𝑊 ‖𝜇𝑞.𝑐⟩∥𝑡⊝⟩
†: where 𝑞 is 𝑥, {𝛼} or (𝜅, 𝜅′) and where 𝑊 is 𝑉+ or 𝜇t̂p.𝑐′
‡: even when t̂p appears freely in 𝑐

(c) Expansions
Figure III.2: Lpol,t̂p+ : the calculus
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Proof. The reduction ⊳R𝑝
is left-linear and has no critical pairs. ∎

We now explain the specific features of the calculus Lpol,t̂p+ .

III.2.1 Involutive negation
In the calculus Lpol,t̂p+ , instead of six categories:

𝑡+, 𝑒⊝, 𝑡⊝, 𝑒+,𝑉, 𝜋,

we give only three:
𝑡+, 𝑡⊝, 𝑉.

We can do so by identifying 𝑒⊝ with 𝑡+, 𝑒+ with 𝑡⊝, and 𝜋 with 𝑉. This
means that the distinction between expressions and contexts is now
informal, through the notation ⟨ 𝑡 | (for expressions) and | 𝑡 ⟩ (for
contexts). We have ⟨𝑡 ‖𝑢⟩ = ⟨𝑢‖𝑡⟩ thanks to the informal notation:

⟨𝑡⊝ ‖𝑡+⟩ not.
= ⟨𝑡+ ‖𝑡⊝⟩

Positive variables written 𝑥, 𝑦 replace positive variables 𝑥+ and negat-
ive co-variables 𝛼⊝. Negative variables written 𝛼, 𝛽 replace negative
variables 𝑥⊝ and positive co-variables 𝛼+. With 𝜅 we denote either of
𝑥 or 𝛼. One consequence of identifying co-variables with variables is
that now both can be bound in multiple locations by a single binder.
Thus Lpol,t̂p+ is an extension of the classical calculus Ln.

In terms of types, this identification corresponds to introducing
an operation ⋅⊥ on formulae, defined such that we have 𝐴⊥⊥ = 𝐴, and
that sequents of the following form:

Γ ⊢ Δ

are replaced by the following:

⊢ Γ⊥,Δ

In this context, indeed, the premises of the cut rule are interchange-
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able:
⊢ 𝑡 ∶ 𝐴 ∣ Γ ⊢ 𝑢 ∶ 𝐴⊥ ∣ Δ—

⟨𝑡 ‖𝑢⟩ ∶ ( ⊢ Γ, Δ)
This operation corresponds in logic to a strictly involutive negation,
in a manner inspired by Girard [Gir87, Gir91].

We will devote Chapter IV to explaining such an involutive neg-
ation with the idea of providing an explicit access to contexts as
values with accessors, rather than as continuations. For now, al-
though we could introduce a grammatical distinction between terms
and contexts and an explicit type ¬ for mediating the two sides of a
sequent, this would not make our decompositions more informative.
This is because, as we will see, the CPS translation of Lpol,t̂p+ forces
the identification of ⟨𝑡+ ‖ 𝑡⊝ ⟩ with ⟨𝑡⊝ ‖ 𝑡+ ⟩ , and thus negation to be
strictly involutive.

III.2.2 Abstraction and application

In Lpol,t̂p+ , the pair of two values 𝑉, 𝑊 is given with (𝑉, 𝑊); pairing
also denote the stacking operation, as we will see in this section. The
symmetric construction is written 𝜇(𝜅, 𝜅′).𝑐 and denotes the context
for pattern-matching on pairs. We also explain how it is used to
encode abstraction.

We chose to restrict any non-value to be of the form 𝜇𝛼.𝑐 or 𝜇t̂p.𝑐,
thus pairs are made of values. In order to constitute the pair of 𝑡 and
𝑢 in a left-to-right evaluation order, we proceed as follows:

(𝑡, 𝑢) ≝ 𝜇𝛼.⟨𝑡 ∥𝜇𝑥.⟨𝑢∥𝜇𝑦.⟨(𝑥, 𝑦)‖𝛼⟩⟩⟩

We can similarly define the right-to-left pairing. (This restriction
corresponds to Danos, Joinet and Schellinx’s η restriction [DJS97]
which extends Flanagan et al.’s A-normal form [FSDF93] and Hatcliff
and Danvy’s monadic normal form [HD94]. We further discuss this
restriction in Section IV.6.1.)
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Call-by-value abstraction and application

Following Curien and Herbelin [CH00], we retrieve the call-by-value
abstraction 𝜆𝑣 and application @𝑣 by solving the following equations
in the calculus Lpol,t̂p+:

⟨𝑡+ @𝑣 𝑢+ ‖𝑡 ′
⊝⟩ ⊳∗

R𝑝
⟨𝑡+ ‖𝑢+ ⊙ 𝑡 ′

⊝⟩
⟨𝜆𝑣𝑥.𝑡+ ‖𝑢+ ⊙ 𝑡 ′

⊝⟩ ⊳∗
R𝑝

⟨𝑢+ ∥𝜇𝑥.⟨𝑡+ ‖𝑡 ′
⊝⟩⟩

In other words we define for 𝑡+, 𝑢+ positive terms and 𝑢⊝ a negative
term:

⟨𝜆𝑣𝑥.𝑡+ | ≝ ⟨{𝜇(𝑥, 𝛼).⟨𝑡+ ‖𝛼⟩} ∣
| 𝑡+ ⊙ 𝑢⊝⟩ ≝ ∣𝜇{𝛼}.⟨𝑡+ ∥𝜇𝑥.⟨𝛼‖(𝑥, 𝑢⊝)⟩⟩⟩

⟨𝑡+ @𝑣 𝑢+ | ≝ ⟨𝜇𝛼.⟨𝑡+ ‖𝑢+ ⊙ 𝛼⟩ ∣

Proposition III.2. We have:

⟨(𝜆𝑣𝑥.𝑡+)@𝑣 𝑉+ ‖𝑢⊝⟩ ⊳∗
R𝑝

⟨𝑡+[𝑉+/𝑥]‖𝑢⊝⟩
𝜆𝑣𝑥.(𝑉+ @𝑣 𝑥) ≃RE𝑝

𝑉+

Proof. Indeed we have:

⟨(𝜆𝑣𝑥.𝑡+)@𝑣 𝑉+ ‖𝑢⊝⟩
⊳R𝑝

⟨𝜆𝑣𝑥.𝑡+ ‖𝑉+ ⊙ 𝑢⊝⟩

⊳R𝑝
⟨𝑉+ ∥𝜇𝑥.⟨𝑡+ ‖𝑢⊝⟩⟩

⊳R𝑝
⟨𝑡+[𝑉+/𝑥]‖𝑢⊝⟩
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and:

𝜆𝑣𝑥.(𝑉+ @𝑣 𝑥)

= {𝜇(𝑥, 𝛼).⟨𝜇𝛼.⟨𝑉+ ∥𝜇{𝛽}.⟨𝑥∥𝜇𝑦.⟨𝛽‖(𝑦, 𝛼)⟩⟩⟩∥𝛼⟩}

→∗
R𝑝 {𝜇(𝑥, 𝛼).⟨𝑉+ ∥𝜇{𝛽}.⟨𝛽‖(𝑥, 𝛼)⟩⟩}

⊳E𝑝
𝜇𝛾 .⟨{𝜇(𝑥, 𝛼).⟨𝑉+ ∥𝜇{𝛽}.⟨𝛽‖(𝑥, 𝛼)⟩⟩}∥𝛾⟩

←R𝑝
𝜇𝛾 .⟨𝑉+ ∥𝜇𝑦.⟨{𝜇(𝑥, 𝛼).⟨𝑦∥𝜇{𝛽}.⟨𝛽‖(𝑥, 𝛼)⟩⟩}∥𝛾⟩⟩

→E𝑝
𝜇𝛾 .⟨𝑉+ ∥𝜇{𝛽}.⟨{𝛽}∥𝜇𝑦.⟨{𝜇(𝑥, 𝛼).⟨𝑦∥𝜇{𝛽}.⟨𝛽‖(𝑥, 𝛼)⟩⟩}∥𝛾⟩⟩⟩

→∗
R𝑝

𝜇𝛾 .⟨𝑉+ ∥𝜇{𝛽}.⟨{𝜇(𝑥, 𝛼).⟨𝛽‖(𝑥, 𝛼)⟩}∥𝛾⟩⟩

←∗
E𝑝

𝑉+ ∎

Call-by-name abstraction and application
Also, as we saw already, the call-by-name application 𝜆𝑛 and abstrac-
tion @𝑛 can be derived by solving the rules of Krivine’s abstract
machine. We adopt the notation ⟨ 𝑡⊝ ‖ 𝑡+ ⟩ instead of ⟨ 𝑡+ ‖ 𝑡⊝ ⟩ to
emphasize that negative terms are now seen as expressions.

⟨𝑡⊝ @𝑛 𝑢⊝ ‖𝑉+⟩ ⊳∗
R𝑝

⟨𝑡⊝ ‖𝑢⊝ ⋅ 𝑉+⟩
⟨𝜆𝑛𝛼.𝑡⊝ ‖𝑢⊝ ⋅ 𝑉+⟩ ⊳∗

R𝑝
⟨𝑡⊝[𝑢⊝/𝛼]‖𝑉+⟩

Thus, given 𝑡⊝, 𝑢⊝ negative terms and 𝑉+ a positive value of Lpol,t̂p+ ,
we define:

⟨𝜆𝑛𝛼.𝑡⊝ | ≝ ⟨𝜇(𝛼, 𝑥).⟨𝑡⊝ ‖𝑥⟩ ∣
| 𝑡⊝ ⋅ 𝑉+⟩ ≝ |(𝑡⊝, 𝑉+)⟩

⟨𝑡⊝ @𝑛 𝑢⊝ | ≝ ⟨𝜇𝑥.⟨𝑡⊝ ‖𝑢⊝ ⋅ 𝑥⟩ ∣

Following our conventions, negative variables are written 𝛼, 𝛽 and
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therefore the call-by-name abstraction is written 𝜆𝛼. This notation at
odds with the tradition is a consequence of the focus of this chapter
on the distinction between positive and negative variables rather
than the one between variables and co-variables.

Generic abstration and application
Notice that both definitions of abstraction and application stem
from the more general definition:

⟨𝜆𝜅.𝑡 | ≝ ⟨𝜇(𝜅, 𝜅′).⟨𝑡 ‖𝜅′⟩ ∣
⟨𝑡 𝑢 | ≝ ⟨𝜇𝜅′.⟨𝑢∥𝜇𝜅.⟨𝑡 ‖(𝜅, 𝜅′)⟩⟩ ∣

by appropriately coercing the polarities.

III.2.3 Top-level context
The negative term t̂p term is used to model the top-level context
(when seen as a positive context). It can be bound in a special way
by the binder 𝜇t̂p.𝑐. Together they are used to implement control
delimiters. The operator 𝜇t̂p differs from a binder 𝜇𝛼 because t̂p is not
a standard variable. Therefore it is not subject to standard renaming
conventions nor subject to a capture-avoiding substitution. Also
⟨𝜇t̂p.𝑐 ‖ 𝑡⊝⟩ is not always a redex. Reduction is possible only when 𝑐 is
of the form ⟨𝑉+ ‖ t̂p⟩:

(𝜇t̂p) 𝜇t̂p.⟨𝑉+ ‖ t̂p⟩ ⊳R𝑝
𝑉+

Because the binding is not standard, this rule is applied even if t̂p
appears in 𝑉+.

The binder 𝜇t̂p.𝑐 is used to define abstract machines as pairs 𝑐[𝜎] of
a command 𝑐 and a list 𝜎 = (𝑡1

⊝,… , 𝑡𝑛
⊝) of negative terms, inductively

as follows: �
�

�
�

𝑐[] ≝ 𝑐
𝑐[𝑡1

⊝,… , 𝑡𝑛
⊝] ≝ ⟨𝜇t̂p.𝑐 ‖ 𝑡1

⊝⟩[𝑡2
⊝,… , 𝑡𝑛

⊝]
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The operator 𝜇t̂p therefore corresponds to the operation that lets the
list grow. Note that the definition does not yield uniqueness of the
decomposition of a command 𝑐 under the form 𝑐′[𝜎].

The list 𝜎 is accessed when the variable t̂p comes in head position,
that is to say, is encountered against a value 𝑉+. Indeed the following
expresses the (𝜇t̂p) rule:

⟨𝑉+ ‖ t̂p⟩[𝑡⊝, 𝜎] →R𝑝
⟨𝑉+ ‖ 𝑡⊝⟩[𝜎]

Also, the following expansions express the rules (𝜂t̂p) and (𝑐t̂p):

𝑐[𝜎 , 𝜎 ′] →E𝑝
𝑐[𝜎 , t̂p, 𝜎 ′]

𝑐[𝜎 , 𝜇𝑞.(𝑐′[𝑡⊝]), 𝜎 ′] →E𝑝
𝑐[𝜎 , 𝜇𝑞.𝑐′, 𝑡⊝, 𝜎 ′]

We obtain Danvy and Filinski’s shift and reset by solving the fol-
lowing equations:

⟨𝒮 ‖𝜆𝑥.𝑡+ ⊙ 𝑡⊝⟩[𝑢⊝, 𝜎] ⊳R𝑝
⟨𝑡+[k𝑡⊝/𝑥]‖𝑢⊝⟩[𝜎]

⟨k𝑡⊝ ‖𝑉+ ⊙ 𝑢⊝⟩[𝜎] ⊳R𝑝
⟨𝑉+ ‖ 𝑡⊝⟩[𝑢⊝, 𝜎]

⟨<𝑡+>‖𝑡⊝⟩[𝜎] ⊳R𝑝
⟨𝑡+ ‖ t̂p⟩[𝑡⊝, 𝜎]

In other words we define:

⟨k𝑡⊝ | ≝ ⟨𝜆𝑣𝑥.𝜇t̂p.⟨𝑥‖𝑡⊝⟩ ∣
⟨𝒮 | ≝ ⟨𝜆𝑥.𝜇𝛼.⟨𝑥‖k𝑡⊝ ⊙ t̂p⟩ ∣

⟨<𝑡+> | ≝ ⟨𝜇t̂p.⟨𝑡+ ‖ t̂p⟩ ∣

We have by definition:

⟨<𝑉>‖𝑡⊝⟩ ⊳R𝑝
⟨𝑉 ‖𝑡⊝⟩

Also, let | 𝑡⊝(𝛼) ⟩ be any negative term that has an adjoint positive
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term ⟨𝐸(𝑥)| in the following sense:

⟨𝐸(𝑥)‖𝛼⟩ ⊳∗
R𝑝

⟨𝑥‖𝑡⊝(𝛼)⟩

𝒮 and < ⋅ > implement Danvy and Filinski’s shift and reset in the
following sense:

Proposition III.3. One has:

⟨<𝐸(𝒮 @𝑣 𝜆𝑥.𝑡+)>‖𝑢⊝⟩ →∗
R𝑝

⟨<𝑡+[k𝑡⊝(t̂p)/𝑥]> ‖𝑢⊝⟩
k𝑡⊝(t̂p) ≃RE𝑝

𝜆𝑦.<𝐸(𝑦)>

Proof. Indeed, we have:

⟨<𝐸(𝒮 @𝑣 𝜆𝑥.𝑡+)>‖𝑢⊝⟩
= ⟨𝐸(𝒮 @𝑣 𝜆𝑥.𝑡+)‖ t̂p⟩[𝑢⊝]
→∗

R𝑝
⟨𝒮 @𝑣 𝜆𝑥.𝑡+ ‖ 𝑡⊝(t̂p)⟩[𝑢⊝]

→R𝑝
⟨𝒮 ‖𝜆𝑥.𝑡+ ⊙ 𝑡⊝(t̂p)⟩[𝑢⊝]

→R𝑝
⟨𝜆𝑥.𝑡+ ‖k𝑡⊝(t̂p) ⊙ t̂p⟩[𝑢⊝]

→R𝑝
⟨𝑡+[k𝑡⊝(t̂p)/𝑥]‖ t̂p⟩[𝑢⊝]

= ⟨<𝑡+[k𝑡⊝(t̂p)/𝑥]>‖𝑢⊝⟩

and:

⟨k𝑡⊝(t̂p) ‖𝑉 ⊙ 𝑢⊝⟩
⊳R𝑝

⟨𝑉 ‖𝑡⊝(t̂p)⟩[𝑢⊝]

⊲∗
R𝑝

⟨𝐸(𝑉)‖ t̂p⟩[𝑢⊝]
= ⟨<𝐸(𝑉)>‖𝑢⊝⟩
⊲∗
R𝑝

⟨𝜆𝑦.<𝐸(𝑦)> ‖𝑉 ⊙ 𝑢⊝⟩
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Thus by extensionality (Proposition III.2) we have indeed:

k𝑡⊝(t̂p) ≃RE𝑝
𝜆𝑦.<𝐸(𝑦)> ∎

III.2.4 The CPS translation
The introduce in Figure III.3 on the next page the calculus λ×v . It
serves as the target of all the CPS translations of the chapter. The
CPS translation of Lpol,t̂p+ into λ×v is defined in Figure III.4 on
page 169.

We write the abstraction for a pair as follows:

𝜆(𝑥, 𝑦).𝑡 ≝ 𝜆𝑧.let (𝑥, 𝑦) be 𝑧 in 𝑡 .

Also, some decompositions are going to be stated modulo the linear
reductions ⊳admin that we call administrative. As a consequence of
the following lemma, the reduction ⊳admin𝜆

is redundant from the
point of view of equivalences.

Lemma III.4. In λ×v , for any 𝑀, 𝑁 we have:

(𝜆𝑞.𝑀) 𝑁 ≃RE𝑝
let 𝑞 be𝑁 in𝑀

Proof. Indeed we have:

(𝜆𝑞.𝑀) 𝑁
→E𝜆

(𝜆𝑞.𝑀) (let 𝑞 be𝑁 in 𝑞)
⊳E𝜆

let 𝑞 be𝑁 in (𝜆𝑞.𝑀) 𝑞
→R𝜆

let 𝑞 be𝑁 in𝑀 ∎

Corollary III.5. If 𝑀 ⊳admin𝜆
𝑁, then 𝑀 ≃RE𝜆

𝑁.

We now state that the translation is substitutive:

Lemma III.6. For 𝑝 a command or a term, 𝑥 and 𝛼 variables, 𝑉 a
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𝑉, 𝑉 ′ ⩴ 𝑥 ∣ 𝜆𝑥.𝑀 ∣ (𝑉, 𝑉 ′)
𝑀, 𝑁 ⩴ 𝑉 ∣ 𝑀 𝑁 ∣ let 𝑥 be𝑀 in𝑁 ∣ let (𝑥, 𝑦) be𝑀 in𝑁

(a) Syntax

(𝜆𝑥.𝑀) 𝑉 ⊳R𝜆
𝑀[𝑉/𝑥]

let 𝑥 be𝑉 in𝑀 ⊳R𝜆
𝑀[𝑉/𝑥]

let (𝑥, 𝑦) be (𝑉, 𝑉 ′) in𝑀 ⊳R𝜆
𝑀[𝑉/𝑥, 𝑉 ′/𝑦]

(b) Reductions

𝐸□⩴ let 𝑞 be□ in𝑀 ∣ let 𝑞 be𝑀 in□ ∣□𝑀 ∣ 𝑀□
where 𝑞 stands for 𝑥 and (𝑥, 𝑦).

(c) Linear evaluation contexts

𝑉 ⊳E𝜆
𝜆𝑥.(𝑉 𝑥)

𝑀 ⊳E𝜆
let 𝑞 be𝑀 in 𝑞

𝐸[let 𝑞 be𝑀 in 𝑢] ⊳E𝜆
let 𝑞 be𝑀 in𝐸[𝑢]

𝜆𝑥.let 𝑞 be𝑉 in𝑀 ⊳E𝜆
let 𝑞 be𝑉 in 𝜆𝑥.𝑀

(d) Expansions

(𝜆𝑥.𝑁) 𝑀 ⊳admin𝜆
let 𝑥 be𝑀 in𝑁

let 𝑥 be𝑀 in𝐸[𝑥] ⊳admin𝜆
𝐸[𝑀]

(e) Administrative reduction
Figure III.3: The call-by-value calculus with pairs λ×v.
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val⟦𝑥⟧ ≝ 𝑥
val⟦(𝑉, 𝑉 ′)⟧ ≝ (val⟦𝑉⟧, val⟦𝑉 ′⟧)

val⟦{𝑡⊝}⟧ ≝ cps⟦𝑡⊝⟧
val⟦𝑡⊝⟧ ≝ cps⟦𝑡⊝⟧

(a) Translation val⟦⋅⟧ ∶ 𝑉 ↦ 𝑉

cps⟦𝑉+⟧(𝑀) ≝ 𝑀 val⟦𝑉+⟧
cps⟦𝜇𝛼.𝑐⟧(𝑀) ≝ let 𝛼 be𝑀 incps⟦𝑐⟧
cps⟦𝜇t̂p.𝑐⟧(𝑀) ≝ 𝑀 cps⟦𝑐⟧
(b) Translation cps⟦⋅⟧(𝑀) ∶ 𝑡+ ↦ 𝑀

cps⟦𝛼⟧ ≝ 𝛼
cps⟦t̂p⟧ ≝ 𝜆𝑥.𝑥

cps⟦𝜇𝑥.𝑐⟧ ≝ 𝜆𝑥.cps⟦𝑐⟧
cps⟦𝜇(𝜅, 𝜅′).𝑐⟧ ≝ 𝜆(𝜅, 𝜅′).cps⟦𝑐⟧

cps⟦𝜇{𝛼}.𝑐⟧ ≝ 𝜆𝛼.cps⟦𝑐⟧
(c) Translation cps⟦⋅⟧ ∶ 𝑡⊝ ↦ 𝑉

cps⟦⟨𝑡+ ‖𝑢⊝⟩⟧ ≝ cps⟦𝑡+⟧(cps⟦𝑢⊝⟧)
(d) Translation cps⟦⋅⟧ ∶ 𝑐 ↦ 𝑀

Figure III.4: The translation cps⟦⋅⟧ from Lpol,t̂p+ to λ×v.
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value, 𝑉+ a positive value and 𝑡⊝ a negative term, one has:

val⟦𝑉[𝑉+/𝑥]⟧ = val⟦𝑉⟧[val⟦𝑉+⟧/𝑥]
cps⟦𝑝[𝑉+/𝑥]⟧ = cps⟦𝑝⟧[val⟦𝑉+⟧/𝑥]
cps⟦𝑝[𝑡⊝/𝛼]⟧ = cps⟦𝑝⟧[cps⟦𝑡⊝⟧/𝛼]

(In the case of 𝑝 = 𝑡+, equality is meant point-wise.)
Proof. Follows from a straightforward induction over 𝑉 and 𝑝. ∎

As a consequence we have:
Proposition III.7. The translation cps⟦⋅⟧ ∶Lpol,t̂p⊝ → λ×v is a simulation:
if 𝑐 →R𝑝

𝑐′ then cps⟦𝑐⟧ →+
R𝜆

cps⟦𝑐′⟧.
Proof. The result holds for ⊳R𝑝

by case analysis. In particular we have:

cps⟦⟨𝜇t̂p.⟨𝑉+ ‖ t̂p⟩∥ 𝑡⊝⟩⟧ = cps⟦𝑡⊝⟧ (𝜆𝑥.𝑥 val⟦𝑉+⟧)
→R𝜆

cps⟦𝑡⊝⟧ val⟦𝑉+⟧
= cps⟦⟨𝑉+ ‖ 𝑡⊝⟩⟧

We conclude by induction on the definition of →R𝑝
. ∎

Proposition III.8. The translation cps⟦⋅⟧ ∶ Lpol,t̂p+ → λ×v preserves
equivalences:
• if 𝑡 ≃RE𝑝

𝑡 ′ then cps⟦𝑡⟧(𝑀) ≃RE𝜆
cps⟦𝑡 ′⟧(𝑀) for all terms 𝑀.

• if 𝑐 ≃RE𝑝
𝑐′ then cps⟦𝑐⟧ ≃RE𝜆

cps⟦𝑐′⟧.
Proof. By Proposition III.7 we are left with proving that if 𝑝 ⊳E𝑝

𝑝 then
cps⟦𝑡⟧ ≃RE𝜆

cps⟦𝑢⟧. Case of the rule (ct̂p). We have to show:

cps⟦⟨𝑊 ∥𝜇𝑞.⟨𝜇t̂p.𝑐‖𝑡⊝⟩⟩⟧ ≃RE𝜆
cps⟦⟨𝜇t̂p.⟨𝑊 ‖𝜇𝑞.𝑐⟩∥ 𝑡⊝⟩⟧

where 𝑞 is 𝑥, {𝛼} or (𝜅, 𝜅′) and where 𝑊 is 𝑉+ or 𝜇t̂p.𝑐′. We have:

cps⟦⟨𝑊 ∥𝜇𝑞.⟨𝜇t̂p.𝑐‖𝑡⊝⟩⟩⟧ = cps⟦𝑊⟧(𝜆𝑞.(cps⟦𝑡⊝⟧ cps⟦𝑐⟧))
cps⟦⟨𝜇t̂p.⟨𝑊 ‖𝜇𝑞.𝑐⟩∥ 𝑡⊝⟩⟧ = cps⟦𝑡⊝⟧ cps⟦𝑊⟧(𝜆𝑞.cps⟦𝑐⟧)
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𝑞 is 𝑥, 𝛼 or (𝜅, 𝜅′) in the target.
We have either cps⟦𝑊⟧(𝑀) = 𝑀 val⟦𝑉⟧ if 𝑊 = 𝑉, or cps⟦𝜇t̂p.𝑐⟧(𝑀) =

𝑀 cps⟦𝑐⟧ if 𝑊 = 𝜇t̂p.𝑐. Let us deal with both cases at once by taking 𝑁
such that cps⟦𝑊⟧(𝑀) = 𝑀 𝑁. We have:

cps⟦⟨𝑊 ∥𝜇𝑞.⟨𝜇t̂p.𝑐‖𝑡⊝⟩⟩⟧
= 𝜆𝑞.(cps⟦𝑡⊝⟧ cps⟦𝑐⟧) 𝑁
≃RE𝜆

let 𝑞 be𝑁 incps⟦𝑡⊝⟧ cps⟦𝑐⟧
⊲E𝜆

cps⟦𝑡⊝⟧ (let 𝑞 be𝑁 incps⟦𝑐⟧)
≃RE𝜆

cps⟦𝑡⊝⟧ (𝜆𝑞.cps⟦𝑐⟧ 𝑁)
= cps⟦⟨𝜇t̂p.⟨𝑊 ‖𝜇𝑞.𝑐⟩∥ 𝑡⊝⟩⟧

The other cases are straightforward. ∎

III.2.5 The λµt̂p𝑣 calculus
The goal is to decompose the CPS translation of Ariola, Herbelin
and Sabry’s λµt̂p𝑣 calculus [AHS04]. The calculus is defined in Fig-
ure III.5 on the next page. Its CPS translation is defined in Fig-
ure III.6 on page 173 along the lines of Herbelin and Ghilezan
[HG08].2

Ariola, Herbelin and Sabry define 𝒮 and < ⋅> as follows:

𝒮 𝑀 ≝ 𝜇𝛼.[t̂p](𝑀 𝜆𝑥.𝜇t̂p.[𝛼] 𝑥)
<𝑀> ≝ 𝜇t̂p.[t̂p] 𝑀

They show that the calculus λµt̂p𝑣 is in an equational correspondence
with Kameyama and Hasegawa’s complete axiomatisation [KH03] of
Danvy and Filinski’s shift and reset.
2We differ from [HG08] essentially in the treatment of adminis-

trative redexes. Herbelin and Ghilezan define cpsv⟦𝑡 𝑢⟧(𝑀) =
cpsv⟦𝑡⟧(𝜆𝑥.cpsv⟦𝑢⟧(𝜆𝑦.𝑥(𝑦, 𝑀))) and cpsv⟦𝜇𝛼.𝑐⟧(𝑀) = cpsv⟦𝑐⟧[𝑀/𝛼]. But
then we lose the fact that 𝑀 is used linearly. In particular this can lead to
duplication of code. Linearity in 𝑀 is necessary if we want that the second
part of the decomposition goes well (Section III.3).
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𝑉 ⩴ 𝑥 ∣ 𝜆𝑥.𝑡 𝑒 ⩴ 𝛼 ∣ t̂p
𝑡 ⩴ 𝑉 ∣ 𝑡 𝑡 ∣ 𝜇t̂p.𝑐 ∣ 𝜇𝛼.𝑐 𝑐 ⩴ [𝑒] 𝑡

(a) Values, terms, co-variables, commands.

(𝜆𝑥.𝑡) 𝑉 ⊳R𝑣
𝑡[𝑉/𝑥]

(𝜇𝛼.𝑐) 𝑡 ⊳R𝑣
𝜇𝛽.𝑐[[𝛽] (□ 𝑡)/𝛼] 𝛽 fresh

𝑉 (𝜇𝛼.𝑐) ⊳R𝑣
𝜇𝛽.𝑐[[𝛽] (𝑉 □)/𝛼] 𝛽 fresh

[𝑒] 𝜇𝛼.𝑐 ⊳R𝑣
𝑐[𝑒/𝛼]

𝜇t̂p.[t̂p] 𝑉 ⊳R𝑣
𝑉 even if t̂p occurs in 𝑉

The structural substitution [[𝛽] 𝐸□/𝛼]
replaces all occurrences of the form
[𝛼] 𝑡 by [𝛽] 𝐸[𝑡].

(b) Reduction

𝑐 ⊳E𝑣
[t̂p] 𝜇t̂p.𝑐

𝑡 ⊳E𝑣
𝜇𝛼.[𝛼] 𝑡

𝑉 ⊳E𝑣
𝜆𝑥.(𝑉 𝑥)

(𝜆𝑥.𝜇t̂p.[𝑒] 𝑡) (𝜇t̂p.𝑐) ⊳E𝑣
𝜇t̂p.[𝑒] ((𝜆𝑥.𝑡) (𝜇t̂p.𝑐))

(𝜆𝑥.𝜇𝛼.[𝑒] 𝑡) 𝑢 ⊳E𝑣
𝜇𝛼.[𝑒] ((𝜆𝑥.𝑡) 𝑢)

𝐸𝑣[𝑡] ⊳E𝑣
(𝜆𝑥.𝐸𝑣[𝑥]) 𝑡

where 𝐸𝑣 □ ⩴ □ ∣ 𝐸𝑣[□ 𝑡] ∣ 𝐸𝑣[𝑉 □].
(c) Expansions

Figure III.5: The λµt̂p𝑣 calculus
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valv⟦𝑥⟧ ≝ 𝑥
valv⟦𝜆𝑥.𝑡⟧ ≝ 𝜆(𝑥, 𝑘).cpsv⟦𝑡⟧(𝑘)

(a) valv⟦⋅⟧ ∶ 𝑉 ↦ 𝑉

cpsv⟦[𝛼]𝑡⟧ ≝ cpsv⟦𝑡⟧(𝛼)
cpsv⟦[t̂p] 𝑡⟧ ≝ cpsv⟦𝑡⟧(𝜆𝑥.𝑥)

(b) cpsv⟦⋅⟧ ∶ 𝑐 ↦ 𝑀

cpsv⟦𝑉⟧(𝑀) ≝ 𝑀 valv⟦𝑉⟧
cpsv⟦𝑡 𝑢⟧(𝑀) ≝ let 𝑘 be𝑀 incpsv⟦𝑡⟧(𝜆𝑥.cpsv⟦𝑢⟧(𝜆𝑦.𝑥(𝑦, 𝑘)))
cpsv⟦𝜇𝛼.𝑐⟧(𝑀) ≝ let 𝛼 be𝑀 incpsv⟦𝑐⟧
cpsv⟦𝜇t̂p.𝑐⟧(𝑀) ≝ 𝑀 cpsv⟦𝑐⟧

(c) cpsv⟦⋅⟧(𝑀) ∶ 𝑡 ↦ 𝑀
Figure III.6: The translation cpsv⟦⋅⟧ of the λµt̂p𝑣 calculus

We defined in Section III.2.2 the call-by-value abstraction and ap-
plication 𝜆𝑣 and @𝑣. This induces a translation pos⟦⋅⟧ from terms
and commands of λµt̂p𝑣 to terms and commands of Lpol,t̂p+:�� ��pos⟦⋅⟧ ∶ λµt̂p𝑣 → Lpol,t̂p+

(it takes [𝑒] to | 𝑒 ⟩ , 𝑥 to 𝑥, 𝜇𝛼 to 𝜇𝛼, 𝜇t̂p to 𝜇t̂p, 𝜆𝑥 to 𝜆𝑣𝑥 and
application to @𝑣). We can notice that this translation preserves our
definitions of 𝒮 and < ⋅>, with 𝜆𝑥.𝜇t̂p.[𝛼] 𝑥 playing the role of k𝛼 in
λµt̂p𝑣. We also have:

Proposition III.9. The translation pos⟦⋅⟧ preserves equivalences: if
𝑝 ≃RE𝑣

𝑝′ then pos⟦𝑝⟧ ≃RE𝑝
pos⟦𝑝′⟧ where 𝑝 is a term or a command.

Proof. It follows from the base cases which are of the form 𝑝 ⊳RE𝑣
𝑝′.

Case 𝑉 ⊳E𝑣
𝜆𝑥.(𝑉 𝑥). In Proposition III.2 we proved 𝜆𝑣𝑥.(𝑉+ @𝑣 𝑥) ≃RE𝑝
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𝑉+.
Case (𝜆𝑥.𝜇t̂p.[𝑒] 𝑡) (𝜇t̂p.𝑐) ⊳E𝑣

𝜇t̂p.[𝑒] ((𝜆𝑥.𝑡) (𝜇t̂p.𝑐)). This amounts to
showing:

⟨𝜇t̂p.𝑐∥𝜇𝑥.⟨𝜇t̂p.⟨pos⟦𝑡⟧‖𝑒⟩∥𝛼⟩⟩ ≃RE𝑝
⟨𝜇t̂p.⟨𝜇t̂p.𝑐∥𝜇𝑥.⟨pos⟦𝑡⟧‖𝑒⟩⟩∥𝛼⟩ .

This is an instance of the rule (ct̂p).
Case (𝜆𝑥.𝜇𝛼.[𝑒] 𝑡) 𝑢 ⊳E𝑣

𝜇𝛼.[𝑒] ((𝜆𝑥.𝑡) 𝑢). This amounts to showing:

⟨pos⟦𝑢⟧∥𝜇𝑥.⟨𝜇𝛼.⟨pos⟦𝑡⟧‖𝑒⟩∥𝛼⟩⟩ ≃RE𝑝
⟨𝜇𝛼.⟨pos⟦𝑢⟧∥𝜇𝑥.⟨pos⟦𝑡⟧‖𝑒⟩⟩∥𝛼⟩

which is immediate.
All the other cases are straightforward. ∎

Proposition III.10. The translation cpsv⟦⋅⟧ decomposes as follows: for
𝑝 a command or a term of λµt̂p𝑣, we have cps ∘ pos⟦𝑝⟧ = cpsv⟦𝑝⟧.
Proof. By a straightforward induction on 𝑝. In particular we have indeed:

val⟦pos⟦𝜆𝑥.𝑡⟧⟧
= val⟦{𝜇(𝑥, 𝛼).⟨pos⟦𝑡⟧‖𝛼⟩}⟧
= 𝜆(𝑥, 𝛼).cps ∘pos⟦𝑡⟧(𝛼)

and:

cps⟦pos⟦𝑡 𝑢⟧⟧(𝑀)
= cps⟦𝜇𝛼.⟨pos⟦𝑡⟧∥𝜇{𝛽}.⟨pos⟦𝑢⟧∥𝜇𝑥.⟨𝛽‖(𝑥, 𝛼)⟩⟩⟩⟧(𝑀)
= let 𝛼 be𝑀 incps ∘pos⟦𝑡⟧(𝜆𝛽.cps ∘pos⟦𝑢⟧(𝜆𝑥.𝛽 (𝑥, 𝛼))) ∎

This proves that the first diagram of our decomposition com-
mutes.

λµt̂p𝑣

cpsv⟦⋅⟧
��

pos⟦⋅⟧
// Lpol,t̂p+

cps⟦⋅⟧
||yy
yy
yy
yy
yy
yy
yy

λ×v
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We have therefore reconstructed the following result:

Corollary III.11. The translation cpsv⟦⋅⟧ ∶ λµt̂p𝑣 → λ×v preserves equi-
valences:

• If 𝑡 ≃RE𝑣
𝑡 ′ then cpsv⟦𝑡⟧(𝑀) ≃RE𝜆

cpsv⟦𝑡 ′⟧(𝑀) for all terms 𝑀.
• If 𝑐 ≃RE𝑣

𝑐′ then cpsv⟦𝑐⟧ ≃RE𝜆
cpsv⟦𝑐′⟧.

We come close to having a simulation result as well, but do not, as
is standard with the structural substitution [[𝛽] 𝐸□/𝛼] used in the
calculus λµt̂p𝑣.

III.2.6 The design space of call-by-name delimited
control

Implementing delimited control operators in call by name, based on
the calculus Lpol,t̂p+ , amounts to finding ways of letting the 𝜇t̂p and t̂p
operators interact with the terms of the call-by-name calculus. The
challenge resides in the fact that 𝜇t̂p has a positive polarity, while we
would like to use it to bind a positive value representing a stack. We
have to imagine ways of integrating 𝜇t̂p and t̂p together with call-by-
name abstractions and applications. We count four distinct ways.

1) Simulating call by name in call by value
We can re-define abstraction and application as positive terms, by
simulating call by name into call by value using thunks (see Hatcliff
and Danvy [HD97]). This leads to Biernacka and Biernacki’s call-
by-name variant of shift and reset [BB09]. As is well known, due
to matters orthogonal to delimited control, this model is not exten-
sional.

2) Casting stacks into negative terms
This solution encodes call by name with 𝜆𝑛 and @𝑛. The top-level
context t̂p is bound to a positive value 𝑉+ representing a stack by
casting it into a negative term, as follows:

⟨𝜇t̂p.𝑐∥𝜇{𝛼}.⟨𝑉+ ‖𝛼⟩⟩
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This suggests that we define a negative term 𝜇t̂p⊝.𝑐 and a positive
term t̂p⊝ by solving the following equations:

⟨𝜇t̂p⊝.𝑐‖𝑉+⟩ ⊳∗
R𝑝

𝑐[𝜇{𝛼}.⟨𝑉+ ‖𝛼⟩]
⟨𝑡⊝ ‖ t̂p⊝⟩[𝜇{𝛼}.⟨𝑉+ ‖𝛼⟩] ⊳∗

R𝑝
⟨𝑡⊝ ‖𝑉+⟩

In other words, given 𝑡⊝ a negative term and 𝑐 a command of Lpol,t̂p+ ,
we define:

⟨𝜇t̂p⊝.𝑐 | ≝ ⟨𝜇𝑥.⟨𝜇t̂p.𝑐∥𝜇{𝛼}.⟨𝛼‖𝑥⟩⟩ ∣
| t̂p⊝⟩ ≝ ∣𝜇𝛼.⟨{𝛼}‖ t̂p⟩⟩

With these definitions, the control delimiter is vacuous:

<𝑡⊝>⊝ ≝ 𝜇t̂p⊝.⟨𝑡⊝ ‖ t̂p⊝⟩
⟨<𝑡⊝>⊝ ‖𝑉+⟩ ⊳R𝑝

⟨𝜇t̂p.⟨𝑡⊝ ∥𝜇𝛼.⟨{𝛼}‖ t̂p⟩⟩∥𝜇{𝛼}.⟨𝛼‖𝑉+⟩⟩
→R𝑝

⟨𝜇t̂p.⟨{𝑡⊝}‖ t̂p⟩∥𝜇{𝛼}.⟨𝛼‖𝑥⟩⟩
⊳R𝑝

⟨{𝑡⊝}∥𝜇{𝛼}.⟨𝛼‖𝑥⟩⟩
⊳R𝑝

𝑡⊝

As we will see in the next section, this gives the continuation-
passing-style translation of Herbelin and Ghilezan’s λµt̂p𝑛 calcu-
lus [HG08].

3) Un-casting stacks unto negative terms

Alternatively, again in the context of 𝜆𝑛 and @𝑛, we can bind t̂p to a
positive value 𝑉+ representing a stack by un-casting it as a negative
term, as follows:

⟨𝜇{𝛼}.⟨𝜇t̂p.𝑐‖𝛼⟩∥𝑉+⟩
This makes sense only if we assume that it is of the form {𝑡⊝}. One
reason for such a stack {𝑡⊝} to come up is if we consider, together
with 𝜆𝑛 and @𝑛, positive constants 𝑛,… of some base type. These
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constants are cast in a negative setting under the following form:

̄𝑛 ≝ 𝜇{𝛼}.⟨𝑛‖𝛼⟩

Thus, the contexts of ̄𝑛 are indeed of the form {𝑡⊝}.

This suggests that we define operators t̂p⊝′
and 𝜇t̂p⊝′

by solving the
following equations:

⟨ ̄𝑛‖ t̂p⊝′
⟩[𝑡⊝] ⊳∗

R𝑝
⟨𝑛‖𝑡⊝⟩

⟨𝜇t̂p⊝′
.𝑐‖{𝑡⊝}⟩ ⊳∗

R𝑝
𝑐[𝑡⊝]

In other words we define:

| t̂p⊝′
⟩ ≝ |{t̂p}⟩

⟨𝜇t̂p⊝′
.𝑐 | ≝ ⟨𝜇{𝛼}.⟨𝜇t̂p.𝑐‖𝛼⟩ ∣

This defines a control delimiter as follows:

<𝑡⊝>⊝′ ≝ 𝜇t̂p⊝′
.⟨𝑡⊝ ‖ t̂p⊝′

⟩

This delimiter is not vacuous since we have:

⟨< ̄𝑛>⊝′ ‖𝑉+⟩ ⊳∗
R𝑝

⟨ ̄𝑛‖𝑉+⟩

but <𝑡⊝>⊝′ for 𝑡⊝ ≠ ̄𝑛 first computes 𝑡⊝. However, < ⋅>⊝′ is defined
only on terms of an appropriate type, since the following term is
stuck:

⟨<𝑡⊝>⊝′ ‖𝑡⊝ ⋅ 𝑉+⟩

The constructors 𝜆𝑛 and @𝑛 together with the operators t̂p⊝′

and 𝜇t̂p⊝′
correspond to a system described by Kameyama and

Tanaka [KT10, Section 8] where they already note that “a reset-term is
restricted to be of basic types”.
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4) Dualising
Lastly, since t̂p is negative and 𝜇t̂p is positive, we can consider the
former as an expression and the latter as a context. This means
that 𝜇t̂p binds expressions in call by name. Thus, t̂p is a linear read
operation:

⟨t̂p‖𝑉+⟩[𝑡⊝] ⊳∗
R𝑝

⟨𝑡⊝ ‖𝑉+⟩

The 𝜇t̂p context implements a store operation:

⟨store 𝑡⊝ in𝑢⊝ ‖𝑉+⟩ ⊳∗
R𝑝

⟨𝑢⊝ ‖𝑉+⟩[𝑡⊝]

Indeed, we can solve the above equation and obtain:

⟨store 𝑡⊝ in𝑢⊝ | ≝ ⟨𝜇𝛼.⟨𝑡⊝ ∥𝜇t̂p.⟨𝑢⊝ ‖𝛼⟩⟩ ∣

The call-by-name λ calculus with read and store operations appears
to be new. It corresponds to the dual of shift and reset. (There is
a formal duality between state and exceptions described by Dumas,
Duval, Fousse and Reynaud [DDFR12], but no formal comparison has
been established yet.)

III.2.7 The λµt̂p𝑛 calculus
In this section we analyse in more details the CPS translation of
Herbelin and Ghilezan’s λµt̂p𝑛 calculus [HG08]. We define a variant
that satisfies the same3 translation in Figure III.7 on the next page.
The goal is to decompose the translation through the calculus Lpol,t̂p+ ,
using the call-by-name abstraction and application 𝜆𝑛 and @𝑛 from
Section III.2.2, as well as the operators t̂p⊝ and 𝜇t̂p⊝ from the previous
section.
3We differ from [HG08] in that we applied an 𝜂 expansion in the definition

of cpsn⟦𝜇t̂p⊝.𝑐⟧. This leaves the denotational semantics of Herbelin and
Ghilezan unchanged when the target calculus is in call by name, but it is
important for meaningfulness when the target is in call by value.
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𝑡 ⩴ 𝛼 ∣ 𝜆𝛼.𝑡 ∣ 𝑡 𝑡 ∣ 𝜇t̂p⊝.𝑐 ∣ 𝜇𝑥.𝑐
𝑐 ⩴ [𝑥] 𝑡 ∣ [t̂p⊝] 𝑡
(a) Terms and commands

𝑡 ⊳E𝑛
𝜇𝑥.[𝑥] 𝑡

𝑡 ⊳E𝑛
𝜆𝛼.(𝑡 𝛼)

(b) Expansions

(𝜆𝛼.𝑡) 𝑢 ⊳R𝑛
𝑡[𝑢/𝛼]

(𝜇𝑥.𝑐) 𝑡 ⊳R𝑛
𝜇𝑦.𝑐[[𝑦] (□ 𝑡)/𝑥] 𝑦 fresh

[𝑦] 𝜇𝑥.𝑐 ⊳R𝑛
𝑐[𝑦/𝑥]

𝜇t̂p⊝.[t̂p⊝] 𝑡 ⊳R𝑛
𝑡 even if t̂p⊝ occurs in 𝑡

(c) Reductions
Figure III.7: The λµt̂p𝑛 calculus

cpsn⟦𝛼⟧ ≝ 𝛼
cpsn⟦𝜆𝛼.𝑡⟧ ≝ 𝜆(𝛼, 𝑥).cpsn⟦𝑡⟧𝑥
cpsn⟦𝑡 𝑢⟧ ≝ 𝜆𝑥.cpsn⟦𝑡⟧(cpsn⟦𝑢⟧, 𝑥)
cpsn⟦𝜇𝑥.𝑐⟧ ≝ 𝜆𝑥.cpsn⟦𝑐⟧
cpsn⟦𝜇t̂p⊝.𝑐⟧ ≝ 𝜆𝑥.(cpsn⟦𝑐⟧𝑥)

(a) cpsn⟦⋅⟧ ∶ 𝑡 ↦ 𝑉

cpsn⟦[𝑥]𝑡⟧ ≝ cpsn⟦𝑡⟧𝑥
cpsn⟦[t̂p⊝] 𝑡⟧ ≝ cpsn⟦𝑡⟧

(b) cpsn⟦⋅⟧ ∶ 𝑐 ↦ 𝑡
Figure III.8: The translation cpsn⟦⋅⟧ of the λµt̂p𝑛 calculus
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The CPS translation is defined in Figure III.8 on the preceding
page and is based on Lafont, Reus and Streicher’s model which we
have already seen. Of course, by changing the target of a translation
we change the denotational semantics. In [HG08], the target of the
translation is in call by name while here it is replaced by λ×v . Thus
the calculus is slightly different.4 We should note however that the
λµt̂p𝑛 calculus is not defined by its denotational semantics (in other
words by the target of the translation) but is defined as the result of
a particular way of solving critical pairs in a non-deterministic λµt̂p
calculus. Now, the variant validates the same rules of reductions. In
other words, we can associate different calculi to a particular way of
solving critical pairs in Herbelin and Ghilezan’s methodology.

Recall that we defined the call-by-name application and abstrac-
tion 𝜆𝑛 and @𝑛 in Section III.2.2, as well as the operators t̂p⊝ and
𝜇t̂p⊝ in the previous section. There is a straightforward translation
neg⟦⋅⟧ from terms and commands of λµt̂p𝑛 to terms and commands
of Lpol,t̂p+ , that takes it takes 𝜆 to 𝜆𝑛, application to @𝑛, 𝜇t̂p⊝to 𝜇t̂p⊝, 𝛼
to 𝛼, 𝜇𝑥 to 𝜇𝑥 and [𝑒] 𝑡 to ⟨𝑡 ‖𝑒⟩.

neg⟦⋅⟧ ∶ λµt̂p𝑛 → Lpol,t̂p+

We have:

Proposition III.12. The translation neg⟦⋅⟧ preserves equivalences: if
𝑝 ≃RE𝑛

𝑝′ then neg⟦𝑝⟧ ≃RE𝑝
neg⟦𝑝′⟧ where 𝑝 is a term or a command.

Proof. Immediate from what we have seen; in particular from the previ-
ous section we have 𝜇t̂p⊝.⟨𝑡⊝ ‖ t̂p⊝⟩ ≃RE𝑝

𝑡⊝. ∎

Proposition III.13. The translation cpsn⟦⋅⟧ decomposes as follows: for
any 𝑝 a command or a term of λµt̂p𝑛, we have cps ∘ neg⟦𝑝⟧ →∗

admin𝜆
cpsn⟦𝑝⟧.

4The translation no longer validates the additional equation [t̂p⊝] 𝜇t̂p⊝.𝑐 ≃ 𝑐
given in [HG08].
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Proof. By a straightforward induction on 𝑝. In particular we have:

cps ∘neg⟦𝜆𝛼.𝑡⟧
= cps⟦𝜇(𝛼, 𝑥).⟨neg⟦𝑡⟧‖𝑥⟩⟧
= 𝜆(𝛼, 𝑥).(cps ∘neg⟦𝑡⟧ 𝑥)
cps ∘neg⟦𝑡 𝑢⟧
= cps⟦𝜇𝑥.⟨neg⟦𝑡⟧‖neg⟦𝑢⟧ ⋅ 𝑥⟩⟧
= 𝜆𝑥.(cps ∘neg⟦𝑡⟧ (cps ∘neg⟦𝑢⟧, 𝑥))
cps ∘neg⟦[t̂p⊝] 𝑡⟧
= cps⟦⟨neg⟦𝑡⟧∥𝜇𝛼.⟨{𝛼}‖ t̂p⟩⟩⟧
= let 𝛼 beneg⟦𝑡⟧ in (𝜆𝑥.𝑥) 𝛼
⊳∗
admin𝜆

cps ∘neg⟦𝑡⟧
cps ∘neg⟦𝜇t̂p⊝.𝑐⟧
= cps⟦𝜇𝑥.⟨𝜇t̂p.neg⟦𝑐⟧∥𝜇{𝛼}.⟨𝛼‖𝑥⟩⟩⟧
= 𝜆𝑥.((𝜆𝑘.𝑘 𝑥)cps ∘neg⟦𝑐⟧)
→∗

admin𝜆
𝜆𝑥.cps ∘neg⟦𝑐⟧ 𝑥 ∎

This proves that the diagram representing the second decomposi-
tion commutes:

λµt̂p𝑛

cpsn⟦⋅⟧
��

neg⟦⋅⟧
// Lpol,t̂p+

cps⟦⋅⟧
||yy
yy
yy
yy
yy
yy
yy

λ×v

The result could be enhanced into a strict decomposition by repla-
cing ⊳admin𝜆

by a treatment of administrative reductions similar to
Section IV.4.2. However, this would require to adapt the translations
cpsv⟦⋅⟧ and cpsn⟦⋅⟧, whereas for our exposition we chose to match
closely Herbelin and Ghilezan.
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𝑃 ⩴ 𝑋 ∣ 𝑃∗ ⊗ 𝑃∗ ∣ ⇓𝑁𝑃

𝑁 ⩴ 𝑋⊥ ∣ 𝑁∗ ⅋ 𝑁∗ ∣ ⇑𝑃𝑃

𝑃∗ ⩴ 𝑃 ∣ 𝑁𝑃

𝑁∗ ⩴ 𝑁 ∣ 𝑃𝑃

(a) Formulae

Γ,Δ of the form 𝛼 ∶ 𝑃𝑄, 𝑥 ∶ 𝑁,…
𝑇 of the form t̂p ∶ 𝑃
𝑐 ∶ ( ⊢ Γ, 𝑇) ⊢ 𝑉 ∶ 𝑃∗; Γ
⊢ 𝑡⊝ ∶ 𝑁 ∣ Γ, 𝑇 ⊢ 𝑡+ ∶ 𝑃𝑄 ∣ Γ, 𝑇

(b) Judgements

(𝑋)⊥ ≝ 𝑋⊥ (𝑃∗ ⊗ 𝑄∗)⊥ ≝ 𝑃∗
⊥ ⅋ 𝑄∗

⊥ (⇓𝑁𝑃)⊥ ≝ ⇑𝑁⊥
𝑃

𝑋⊥⊥ ≝ 𝑋 (𝑁∗ ⅋ 𝑀∗)⊥ ≝ 𝑁∗
⊥ ⊗ 𝑀∗

⊥ (⇑𝑃𝑄)⊥ ≝ ⇓𝑃⊥
𝑄

where 𝐴𝑃
⊥ is (𝐴⊥)𝑃.

(c) Implicit negation
Figure III.9: LKdelim, a system of simple types for Lpol,t̂p+ (types)

As a consequence of the decomposition, we have a reconstruction
of the following result:

Proposition III.14. The translation cpsn⟦⋅⟧ preserves equivalences: if
𝑝 ≃RE𝑛

𝑝′ then cpsn⟦𝑝⟧ ≃RE𝜆
cpsn⟦𝑝′⟧ where 𝑝 is a term or a command

of λµt̂p𝑛.

Because of the structural substitution again, and like Herbelin and
Ghilezan, we come close to having a simulation result as well, but do
not.

III.2.8 LKdelim, a type systemwith annotations
We propose in Figure III.10 on the next page a type system for Lpol,t̂p+

which we call LKdelim. It is a variant of Girard’s LC and Danos-
Joinet-Schellinx’s LK𝜂

𝑝 [DJS97] with annotations suitable for typing
delimited continuations. It adds an intermediate judgement ⊢ 𝑉 ∶
𝑃∗; Γ where 𝑉 is a value, possibly negative, and 𝑃∗ is of the form 𝑃 or
𝑁𝑃.
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—(ax+)⊢ 𝑥 ∶ 𝑃; 𝑥 ∶ 𝑃⊥ —(ax⊝)⊢ 𝛼 ∶ 𝑁 ∣ 𝛼 ∶ 𝑁⊥
𝑃, t̂p ∶ 𝑃

𝑐 ∶ ( ⊢ 𝑥 ∶ 𝑁, Γ, 𝑇)—(𝜇⊝)⊢ 𝜇𝑥.𝑐 ∶ 𝑁 ∣ Γ, 𝑇
𝑐 ∶ ( ⊢ 𝛼 ∶ 𝑃𝑄, Γ, 𝑇)
—(𝜇+)⊢ 𝜇𝛼.𝑐 ∶ 𝑃𝑄 ∣ Γ, 𝑇

—(t̂p)
⊢ t̂p ∶ 𝑁 ∣ t̂p ∶ 𝑁⊥

𝑐 ∶ ( ⊢ Γ, t̂p ∶ 𝑃)—(𝜇t̂p)
⊢ 𝜇t̂p.𝑐 ∶ 𝑃𝑄 ∣ Γ, t̂p ∶ 𝑄

⊢ 𝑡+ ∶ 𝑃𝑄 ∣ Γ, t̂p ∶ 𝑅 ⊢ 𝑡⊝ ∶ 𝑃⊥
𝑄;Δ

—(cut)
⟨𝑡+ ‖ 𝑡⊝⟩ ∶ ( ⊢ Γ, Δ, t̂p ∶ 𝑅)

(a) Identity

⊢ 𝑉+ ∶ 𝑃; Γ—(der)⊢ 𝑉+ ∶ 𝑃𝑄 ∣ Γ, t̂p ∶ 𝑄
⊢ 𝑡⊝ ∶ 𝑁 ∣ Γ, t̂p ∶ 𝑃—(prom)⊢ 𝑡⊝ ∶ 𝑁𝑃; Γ

𝑐 ∶ ( ⊢ Γ, 𝑇)—(w+)𝑐 ∶ ( ⊢ 𝑥 ∶ 𝑁, Γ, 𝑇)
𝑐 ∶ ( ⊢ 𝑥 ∶ 𝑁, 𝑦 ∶ 𝑁, Γ, 𝑇)—(c+)𝑐[𝑥/𝑦] ∶ ( ⊢ 𝑥 ∶ 𝑁, Γ, 𝑇)

𝑐 ∶ ( ⊢ Γ, 𝑇)—(w⊝)𝑐 ∶ ( ⊢ 𝛼 ∶ 𝑃𝑄, Γ, 𝑇)
𝑐 ∶ ( ⊢ 𝛼 ∶ 𝑃𝑄, 𝛽 ∶ 𝑃𝑄, Γ, 𝑇)
—(c⊝)𝑐[𝛼/𝛽] ∶ ( ⊢ 𝛼 ∶ 𝑃𝑄, Γ, 𝑇)

In addition there are 12 rules similar to (𝑤±) and (𝑐±) in-
volving 𝑡+, 𝑡⊝ and 𝑉 instead of 𝑐 which we do not mention.

(b) Structure

⊢ 𝑉 ∶ 𝑃∗; Γ ⊢ 𝑉 ′ ∶ 𝑄∗;Δ—(⊗)⊢ (𝑉,𝑉 ′) ∶ 𝑃∗ ⊗ 𝑄∗; Γ,Δ
⊢ 𝑡⊝ ∶ 𝑁𝑃; Γ—(⇓)⊢ {𝑡⊝} ∶ ⇓𝑁𝑃; Γ

𝑐 ∶ ( ⊢ 𝜅 ∶ 𝑁∗, 𝜅′ ∶ 𝑀∗, Γ, 𝑇)—(⅋)⊢ 𝜇(𝜅, 𝜅′).𝑐 ∶ 𝑁∗ ⅋ 𝑀∗ ∣ Γ, 𝑇
𝑐 ∶ ( ⊢ 𝛼 ∶ 𝑃𝑄, Γ, 𝑇)
—(⇑)⊢ 𝜇{𝛼}.𝑐 ∶ ⇑𝑃𝑄 ∣ Γ, 𝑇

(c) Logic
Figure III.10: LKdelim, a system of simple types for Lpol,t̂p+ (rules)
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Remark We used the notation of Girard’s stoup [Gir91] for a linear-
ity constraint that corresponds more closely to Danos et al’s η restric-
tion [DJS97]. Tradition of having negatives in the stoup goes back to
Girard [Gir93]. An alternative to our concise treatment would be to in-
stantiate each logical rule for all possible combination of polarities of the
premises, as in LC or LU [Gir91, Gir93]. (Witness the number of rules in
these systems!)

CPS translation on types
We assume that λ×v is given a system of simple types with connectives
→, ×. Our justification for the system LKdelim is that it is mapped
through the CPS translation into the simple types of λ×v . Positive and
annotated negative types translate as follows:

cps⟦𝑋⟧ ≝ 𝑋
cps⟦𝑃∗ ⊗ 𝑄∗⟧ ≝ cps⟦𝑃∗⟧×cps⟦𝑄∗⟧
cps⟦⇓𝑁𝑃⟧ ≝ cps⟦𝑁⊥⟧ → cps⟦𝑃⟧
cps⟦𝑁𝑃⟧ ≝ cps⟦𝑁⊥⟧ → cps⟦𝑃⟧

Typing is preserved as follows:
• If 𝑐 ∶ ( ⊢ Γ, t̂p ∶ 𝑃) then cps⟦Γ⊥⟧ ⊢ cps⟦𝑐⟧ ∶ cps⟦𝑃⟧
• If ⊢ 𝑉 ∶ 𝑃∗; Γ then cps⟦Γ⊥⟧ ⊢ val⟦𝑉⟧ ∶ cps⟦𝑃∗⟧
• If ⊢ 𝑡⊝ ∶ 𝑁 ∣ Γ, t̂p ∶ 𝑃 then cps⟦Γ⊥⟧ ⊢ cps⟦𝑡⊝⟧ ∶ cps⟦𝑁𝑃⟧
• If ⊢ 𝑡+ ∶ 𝑃𝑄 ∣ Γ, t̂p ∶ 𝑅 then cps⟦Γ⊥⟧, 𝑘 ∶ cps⟦𝑃⊥

𝑄⟧ ⊢ cps⟦𝑡+⟧(𝑘) ∶
cps⟦𝑅⟧

where:
cps⟦Γ⊥⟧ = ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ cps⟦𝑁⊥⟧, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝛼 ∶ cps⟦𝑃⊥

𝑄⟧)

whenever Γ = ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑁, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝛼 ∶ 𝑃𝑄). (With 𝑋⃗ we denote a sequence of
objects of the form 𝑋.)

The decomposition of type systems with annotations
Herbelin and Ghilezan give in [HG08] type systems with annotations
for λµt̂p𝑣 and for λµt̂p𝑛. For the case of the λµt̂p𝑣 calculus, sequents
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are of the form:

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵𝑅 ∣ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝛼 ∶ 𝐶𝑆; t̂p ∶ 𝑇

where the connective for implication has two annotations: 𝐴𝑅 →
𝐵𝑆. Now, the positive coding of implication induces in Lpol,t̂p+ the
following definition:

𝑃𝑅 → 𝑄𝑆 ≝ ⇓(𝑃⊥ ⅋ 𝑄𝑆)𝑅

and the following sequent:

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥 ∶ 𝑃 ⊢ 𝑡 ∶ 𝑄𝑅 ∣ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝛼 ∶ 𝑄′
𝑆; t̂p ∶ 𝑇

By a two-sided sequent Γ ⊢ Δ, we mean the sequent ⊢ Γ⊥,Δ. Thus,
thanks to this definition we recover Herbelin and Ghilezan’s type
system for λµt̂p𝑣 with LKdelim.

For the case of the λµt̂p𝑛 calculus, sequents are of the form:

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝛼 ∶ 𝐴Σ ⊢ 𝑡 ∶ 𝐵 ∣ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝐶; t̂p ∶ Ξ

where:
Σ,Ξ ⩴ ⊥ ∣ 𝐴 ⋅ Σ

and the connective for implication has one annotation:

𝐴Σ → 𝐵

The implementation of λµt̂p𝑛 in Lpol,t̂p+ yields, for 𝑁, 𝑀, 𝐿 denoting
negative formulae, the following definition:

𝑁Σ → 𝑀 ≝ 𝑁⊥
Σ ⅋ 𝑀

⊥ ≝ 𝑋0

𝐿 ⋅ Σ ≝ ⇓𝐿Σ

where 𝑋0 is some distinguished positive atom, and the following
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sequent:
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝛼 ∶ 𝑁Σ ⊢ 𝑡 ∶ 𝑀 ∣ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥 ∶ 𝐿; t̂p ∶ Ξ

Thus we recover the annotated type system of λµt̂p𝑛 with LKdelim.

Related work Kiselyov and Shan [KS07] give a type system and a
type checking algorithm for Danvy and Filinski’s shift and reset calculus,
whose goal is to be more liberal than the Danvy and Filinski’s type system.
Our goal on the contrary is merely to decompose existing type systems.
Kiselyov and Shan use connectives ⋅ ↓ 𝑇 and ⋅ ↑ 𝑇, which correspond

modulo duality to annotated negation modalities (¬𝑃𝑄) similar to the
exponentials !𝑃 and ?𝑃 of next section. They note that typing a term
amounts to transforming it into continuation-passing style. The type
system LKdelim is in direct style, but still anticipates to some degree the
CPS translation through the rules (der) and (prom), and therefore does
not do better in this respect. But “investigating the delimited case” of the
duality between call by name and call by value was left for “future work”
by the authors.

III.3 The indirect calculus Lexp
The goal is to decompose the translation cps⟦⋅⟧ by introducing the
intermediate calculus Lexp (Figure III.11 on the facing page).

Lpol,t̂p+

cps⟦⋅⟧

}}{{
{{
{{
{{
{{
{{
{

dupl⟦⋅⟧
��

λ×v Lexp
flat⟦⋅⟧

oo

The calculus Lexp is in indirect style, in the sense that the trans-
lation dupl⟦⋅⟧ ∶ Lpol,t̂p+ → Lexp is an adaptation to delimited con-
tinuations of the duploid construction of Chapter II. The indirect
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Positive variables are 𝑥, 𝑦…
⋆ is a distinguished negative variable
(values) 𝑉 ⩴ 𝑥 ∣ (𝑉, 𝑉) ∣ 𝜇𝑥⋄.𝑐
(positive terms) 𝑡+ ⩴ 𝑉 ∣ 𝜇⋆.𝑐
(negative terms) 𝑡⊝ ⩴ ⋆ ∣ 𝜇𝑥.𝑐 ∣ 𝜇(𝑥, 𝑥).𝑐 ∣ 𝑡⋄

+

(commands) 𝑐 ⩴ ⟨𝑡+ ‖ 𝑡⊝⟩ (not.= ⟨𝑡⊝ ‖ 𝑡+⟩)
(a) Syntax

⟨𝑉 ‖𝜇𝑥.𝑐⟩ ⊳R𝑒
𝑐[𝑉/𝑥]

⟨(𝑉, 𝑉 ′)‖𝜇(𝑥, 𝑦).𝑐⟩ ⊳R𝑒
𝑐[𝑉, 𝑉 ′/𝑥, 𝑦]

⟨𝑉+ ‖𝑡⋄
+⟩† ⊳R𝑒

⟨𝑡+ ∥𝜇𝑥.⟨𝑉+ ‖𝑥⋄⟩⟩
⟨𝜇𝑥⋄.𝑐‖𝑉⋄⟩ ⊳R𝑒

𝑐[𝑉/𝑥]
⟨𝜇⋆.⟨𝑡+ ‖⋆⟩∥𝑡⊝⟩ ⊳R𝑒

⟨𝑡+ ‖𝑡⊝⟩
†: when 𝑡+ is not a value, i.e. 𝑡+ = 𝜇⋆.𝑐.

(b) Reductions

𝑡⊝ ⊳E𝑒
𝜇𝑞.⟨𝑞‖𝑡⊝⟩

𝑉 ⊳E𝑒
𝜇𝑥⋄.⟨𝑉 ‖𝑥⋄⟩

𝑐 ⊳E𝑒
⟨𝜇⋆.𝑐‖⋆⟩

⟨𝑢+ ∥𝜇𝑞′.⟨𝑡+ ‖𝜇𝑞.𝑐⟩⟩ ⊳E𝑒
⟨𝑡+ ∥𝜇𝑞.⟨𝑢+ ‖𝜇𝑞′.𝑐⟩⟩

⟨𝜇⋆.⟨𝑡+ ‖𝜇𝑞.𝑐⟩∥𝑢⊝⟩ ⊳E𝑒
⟨𝑡+ ∥𝜇𝑞.⟨𝜇⋆.𝑐‖𝑢⊝⟩⟩

⟨𝜇𝑥⋄.⟨𝑉 ‖𝜇𝑞.𝑐⟩∥𝑢⊝⟩ ⊳E𝑒
⟨𝑉 ∥𝜇𝑞.⟨𝜇𝑥⋄.𝑐‖𝑢⊝⟩⟩

where 𝑞 denotes 𝑥 or (𝑥, 𝑦).
(c) Expansions

Figure III.11: Lexp: the calculus
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nature is expressed through the linearity of the distinguished negat-
ive variable ⋆, which shows that 𝜇⋆ is unable to implement control
operators. Lexp is polarised in the sense that there are both positive
and negative terms. Like in the calculus Lpol,t̂p+ , we have ⟨𝑡 ‖𝑢⟩= ⟨𝑢‖𝑡⟩
thanks to the informal notation:

⟨𝑡⊝ ‖𝑢+⟩ not.
= ⟨𝑢+ ‖𝑡⊝⟩

and therefore negation has to be strictly involutive. Last, Lexp is in
sequent calculus style, as we will see through its type system with
annotations.

The translation flat⟦⋅⟧ flattens the calculus Lexp into the λ×v calcu-
lus. By flattening we mean that the translation consists in removing
the interesting structure of sequent calculus, polarisation and the in-
volutive negation. Flattening has two consequences. First, we have
to reduce administrative redexes in the process in order to make
up for the loss of the sequent calculus structure. Second, terms
are translated regardless of their informal status as expressions or
contexts. The latter means that even if we wanted to introduce an
explicit distinction between expressions and contexts in the calculi
Lpol,t̂p+ and Lexp, as we did in Chapter IV, then the continuation-
based denotational semantics would still make the identification. In
particular it induces the presence of a strictly involutive negation. In
retrospect, this circumstantiates the novelty of Laurent’s decomposi-
tion of λµ calculi in proof nets [Lau02], compared to ordinary calculi
of continuations.

We have:
Proposition III.15. The reduction →R𝑒

is confluent.
Proof. The reduction ⊳R𝑒

is left-linear and has no critical pair. ∎

III.3.1 Translating Lpol,t̂p+ into Lexp
We translate Lpol,t̂p+ into Lexp. This is an application to delimited
continuations of the duploid construction.
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𝜅 denotes 𝑥 or 𝛼 in Lpol,t̂p+ , and is mapped to a
positive variable of Lexp that we write identically.

duplV⟦𝑥⟧ ≝ 𝑥
duplV⟦(𝑉, 𝑉 ′)⟧ ≝ (duplV⟦𝑉⟧, duplV⟦𝑉 ′⟧)
duplV⟦{𝑡⊝}⟧ ≝ dupl⟦𝑡⊝⟧
duplV⟦𝑡⊝⟧ ≝ dupl⟦𝑡⊝⟧

(a) TranslationduplV⟦⋅⟧ ∶ 𝑉 ↦ 𝑉

dupl⟦𝑉+⟧ ≝ duplV⟦𝑉+⟧⋄

dupl⟦𝜇𝛼.𝑐⟧ ≝ 𝜇𝛼.dupl⟦𝑐⟧
dupl⟦𝜇t̂p.𝑐⟧ ≝ (𝜇⋆.dupl⟦𝑐⟧)⋄

(b) Translationdupl⟦⋅⟧ ∶ 𝑡+ ↦ 𝑡⊝

dupl⟦𝛼⟧ ≝ 𝛼
dupl⟦t̂p⟧ ≝ 𝜇𝑥⋄.⟨𝑥‖⋆⟩
dupl⟦𝜇𝑥.𝑐⟧ ≝ 𝜇𝑥⋄.dupl⟦𝑐⟧
dupl⟦𝜇(𝜅, 𝜅′).𝑐⟧ ≝ 𝜇(𝜅, 𝜅′)⋄.dupl⟦𝑐⟧

≝ 𝜇𝑥⋄.⟨𝑥‖𝜇(𝜅, 𝜅′).dupl⟦𝑐⟧⟩
dupl⟦𝜇{𝛼}.𝑐⟧ ≝ 𝜇𝛼⋄.dupl⟦𝑐⟧

(c) Translationdupl⟦⋅⟧ ∶ 𝑡⊝ ↦ 𝑉

dupl⟦⟨𝑡+ ‖ 𝑡⊝⟩⟧ ≝ ⟨dupl⟦𝑡+⟧‖dupl⟦𝑡⊝⟧⟩

(d) Translationdupl⟦⋅⟧ ∶ 𝑐 ↦ 𝑐
Figure III.12: The translation dupl⟦⋅⟧ from Lpol,t̂p+ to Lexp
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Proposition III.16. The translation dupl⟦⋅⟧ is a simulation: if 𝑐 →R𝑝
𝑐′

then dupl⟦𝑐⟧ →+
R𝑒

dupl⟦𝑐′⟧.
Proof. By induction on the definition of →R𝑝

. We treat the base cases.
(Case ⟨𝜇t̂p.⟨𝑉+ ‖ t̂p⟩∥𝑡⊝⟩ ⊳R𝑝

⟨𝑉+ ‖ 𝑡⊝⟩)We have:

dupl⟦⟨𝜇t̂p.⟨𝑉+ ‖ t̂p⟩∥ 𝑡⊝⟩⟧
= ⟨(𝜇⋆.⟨duplV⟦𝑉+⟧⋄ ∥𝜇𝑥⋄.⟨𝑥‖⋆⟩⟩)⋄ ∥dupl⟦𝑡⊝⟧⟩

⊳R𝑝
⟨𝜇⋆.⟨duplV⟦𝑉+⟧⋄ ∥𝜇𝑥⋄.⟨𝑥‖⋆⟩⟩∥𝜇𝑦.⟨𝑦⋄ ‖dupl⟦𝑡⊝⟧⟩⟩

→R𝑝
⟨𝜇⋆.⟨duplV⟦𝑉+⟧‖⋆⟩∥𝜇𝑦.⟨𝑦⋄ ‖dupl⟦𝑡⊝⟧⟩⟩

⊳R𝑝
⟨duplV⟦𝑉+⟧∥𝜇𝑦.⟨𝑦⋄ ‖dupl⟦𝑡⊝⟧⟩⟩

⊳R𝑝
⟨duplV⟦𝑉+⟧⋄ ‖dupl⟦𝑡⊝⟧⟩

= dupl⟦⟨𝑉+ ‖ 𝑡⊝⟩⟧

The other base cases are straightforward. ∎
Proposition III.17. The translation dupl⟦⋅⟧ preserves equivalences: if
𝑝 ≃RE𝑝

𝑝′ for 𝑝, 𝑝′ terms of commands of Lpol,t̂p+ then dupl⟦𝑝⟧ ≃RE𝜆

dupl⟦𝑝′⟧.
Proof. By induction on the definition of ≃RE𝑝

. There remains to show the
base cases 𝑝 ⊳E𝑝

𝑝′.
(Case 𝑐 ⊳E𝑝

⟨𝜇t̂p.𝑐 ‖ t̂p⟩)We have:

dupl⟦⟨𝜇t̂p.𝑐 ‖ t̂p⟩⟧
= ⟨(𝜇⋆.dupl⟦𝑐⟧)⋄ ∥𝜇𝑥⋄.⟨𝑥‖⋆⟩⟩

⊳R𝑝
⟨𝜇⋆.dupl⟦𝑐⟧∥𝜇𝑦.⟨𝑦⋄ ∥𝜇𝑥⋄.⟨𝑥‖⋆⟩⟩⟩

⊳R𝑝
⟨𝜇⋆.dupl⟦𝑐⟧∥𝜇𝑦.⟨𝑦‖⋆⟩⟩

⊲∗
E𝑝

dupl⟦𝑐⟧

(Case ⟨𝑊 ∥𝜇𝑞.⟨𝜇t̂p.𝑐‖𝑡⊝⟩⟩ ⊳E𝑝
⟨𝜇t̂p.⟨𝑊 ‖𝜇𝑞.𝑐⟩ ∥ 𝑡⊝⟩ where 𝑞 is 𝑥, {𝛼} or (𝜅, 𝜅′)

and where 𝑊 is 𝑉+ or 𝜇t̂p.𝑐′) We have dupl⟦𝑊⟧ of the form 𝑡⋄
+. Notice
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that we have in general.

⟨𝑡⋄
+ ‖𝜇𝑞⋄.𝑐⟩ ≃RE𝑒

⟨𝑡+ ‖𝜇𝑞.𝑐⟩

Therefore we have:

dupl⟦⟨𝑊 ∥𝜇𝑞.⟨𝜇t̂p.𝑐‖𝑡⊝⟩⟩⟧
= ⟨𝑡⋄

+ ∥𝜇𝑞⋄.⟨(𝜇⋆.dupl⟦𝑐⟧)⋄ ‖dupl⟦𝑡⊝⟧⟩⟩

≃RE𝑒
⟨𝑡+ ∥𝜇𝑞.⟨(𝜇⋆.dupl⟦𝑐⟧)⋄ ‖dupl⟦𝑡⊝⟧⟩⟩

→R𝑒
⟨𝑡+ ∥𝜇𝑞.⟨𝜇⋆.dupl⟦𝑐⟧∥𝜇𝑥.⟨𝑥⋄ ‖dupl⟦𝑡⊝⟧⟩⟩⟩

⊲E𝑒
⟨𝜇⋆.⟨𝑡+ ‖𝜇𝑞.dupl⟦𝑐⟧⟩∥𝜇𝑥.⟨𝑥⋄ ‖dupl⟦𝑡⊝⟧⟩⟩

⊲R𝑒
⟨(𝜇⋆.⟨𝑡+ ‖𝜇𝑞.dupl⟦𝑐⟧⟩)⋄ ∥dupl⟦𝑡⊝⟧⟩

≃RE𝑒
⟨(𝜇⋆.⟨𝑡⋄

+ ‖𝜇𝑞⋄.dupl⟦𝑐⟧⟩)⋄ ∥dupl⟦𝑡⊝⟧⟩
= dupl⟦⟨𝜇t̂p.⟨𝑊 ‖𝜇𝑞.𝑐⟩∥ 𝑡⊝⟩⟧

The other cases are straightforward. ∎

III.3.2 Flattening Lexp into λ×v
The translation flat⟦⋅⟧ of Lexp into λ×v is defined in Figure III.13
on the next page. This last step of translating sequent calculus into
natural deduction accounts for the appearance of administrative re-
ductions. Indeed, administrative substitutions are performed in the
translation the command ⟨𝑡+ ‖ 𝑢⊝⟩: the negative term 𝑡⊝ is sent onto
flat⟦𝑢⊝⟧(𝑘), and then 𝑘 is substituted with the term flat⟦𝑡+⟧. It
matters that the substitution of 𝑘 in flat⟦𝑡⊝⟧(𝑘) does not duplicate
code since it is performed during the translation: this is achieved
by ensuring that flat⟦𝑡⊝⟧ is linear in its argument for the syntactic
notion of linearity.

Proposition III.18. The translation flat⟦⋅⟧ preserves equivalences:
• If 𝑡+ ≃RE𝑒

𝑢+ then flat⟦𝑡+⟧ ≃RE𝜆
flat⟦𝑢+⟧.

• If 𝑡⊝ ≃RE𝑒 𝑢⊝ then flat⟦𝑡⊝⟧(𝑀) ≃RE𝜆
flat⟦𝑢⊝⟧(𝑀) for any 𝑀.
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flat⟦𝑥⟧ ≝ 𝑥
flat⟦𝑉, 𝑉 ′⟧ ≝ (flat⟦𝑉⟧, flat⟦𝑉 ′⟧)
flat⟦𝜇𝑥⋄.𝑐⟧ ≝ 𝜆𝑥.flat⟦𝑐⟧
flat⟦𝜇⋆.𝑐⟧ ≝ flat⟦𝑐⟧

(a) flat⟦⋅⟧ ∶ 𝑡+ ↦ 𝑀

flat⟦⋆⟧(𝑀) ≝ 𝑀
flat⟦𝜇𝑥.𝑐⟧(𝑀) ≝ let 𝑥 be𝑀 in flat⟦𝑐⟧
flat⟦𝜇(𝑥, 𝑦).𝑐⟧(𝑀) ≝ let (𝑥, 𝑦) be𝑀 in flat⟦𝑐⟧
flat⟦𝑡⋄

+⟧(𝑀) ≝ 𝑀 flat⟦𝑡+⟧

(b) flat⟦⋅⟧(𝑀) ∶ 𝑡⊝ ↦ 𝑀

flat⟦⟨𝑡+ ‖𝑢⊝⟩⟧ ≝ flat⟦𝑢⊝⟧(flat⟦𝑡+⟧)

(c) flat⟦⋅⟧ ∶ 𝑐 ↦ 𝑀
Figure III.13: The translation flat⟦⋅⟧ from Lexp to λ×v

• If 𝑐 ≃RE𝑒
𝑐′ then flat⟦𝑐⟧ ≃RE𝜆

flat⟦𝑐′⟧.

Proof. By induction on the definition of ≃RE𝑒
. We treat the non-trivial

base cases.
(Case ⟨𝑢+ ∥𝜇𝑞′.⟨𝑡+ ‖𝜇𝑞.𝑐⟩⟩ ⊳E𝑒

⟨𝑡+ ∥ 𝜇𝑞.⟨𝑢+ ‖𝜇𝑞′.𝑐⟩⟩)This corresponds to the
equation:

let 𝑞′ be flat⟦𝑢+⟧ in let 𝑞 be flat⟦𝑡+⟧ in flat⟦𝑐⟧
⊳E𝜆

let 𝑞 be flat⟦𝑡+⟧ in let 𝑞′ be flat⟦𝑢+⟧ in flat⟦𝑐⟧

(Case ⟨𝜇⋆.⟨𝑡+ ‖𝜇𝑞.𝑐⟩ ∥ 𝑢⊝⟩ ⊳E𝑒
⟨𝑡+ ∥ 𝜇𝑞.⟨𝜇⋆.𝑐‖𝑢⊝⟩⟩) This corresponds to the

equation:

flat⟦𝑢⊝⟧(let 𝑞 be flat⟦𝑡+⟧ in flat⟦𝑐⟧)
ℛ let 𝑞 be flat⟦𝑡+⟧ in flat⟦𝑢⊝⟧(flat⟦𝑐⟧)
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where ℛ is = if 𝑢⊝ = ⋆, and ℛ is ⊳E𝜆
otherwise. Indeed, in all the other

cases flat⟦𝑢⊝⟧(□) is a linear evaluation context.
(Case ⟨𝜇𝑥⋄.⟨𝑉 ‖𝜇𝑞.𝑐⟩∥𝑢⊝⟩ ⊳E𝑒

⟨𝑉 ∥𝜇𝑞.⟨𝜇𝑥⋄.𝑐‖𝑢⊝⟩⟩)This corresponds to the
equation:

flat⟦𝑢⊝⟧(𝜆𝑥.let 𝑞 be flat⟦𝑉⟧ in flat⟦𝑐⟧)
≃RE𝜆

let 𝑞 be flat⟦𝑉⟧ in flat⟦𝑢⊝⟧(𝜆𝑥.flat⟦𝑐⟧)

We are reduced to the previous case by noticing that we have:

𝜆𝑥.let 𝑞 be flat⟦𝑉⟧ in flat⟦𝑐⟧
⊳E𝜆

let 𝑞 be flat⟦𝑉⟧ in 𝜆𝑥.flat⟦𝑐⟧

because flat⟦𝑉⟧ is a value.
The remaining cases are immediate. ∎

III.3.3 Decomposition
Proposition III.19. The CPS translation of Lpol,t̂p+ decomposes as
follows:

cps⟦⋅⟧ = flat ∘dupl⟦⋅⟧
val⟦⋅⟧ = flat ∘duplV⟦⋅⟧

Proof. The result is proved in each value, term or command 𝑝 by a
straightforward induction on 𝑝. ∎

This proves the third and last decomposition of this chapter:

Lpol,t̂p+

cps⟦⋅⟧

}}{{
{{
{{
{{
{{
{{
{

dupl⟦⋅⟧
��

λ×v Lexp
flat⟦⋅⟧

oo
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III.3.4 LJ̄ and annotated exponentials

The system of simple types L ̄J for Lexp is introduced in Figure III.14
on the facing page. L ̄J is essentially Laurent’s LLP [Lau02] with
annotations in the exponentials. As its name implies, it is also a
symmetrised version of the intuitionistic sequent calculus.

Duploid construction in types
Types and sequents of Lpol,t̂p+ are translated trough dupl⟦⋅⟧ as fol-
lows:

dupl⟦𝑋⟧ ≝ 𝑋
dupl⟦(𝑃∗ ⊗ 𝑄∗)⟧ ≝ dupl⟦𝑃∗⟧ ⊗dupl⟦𝑄∗⟧
dupl⟦⇓𝑁𝑃⟧ ≝ !dupl⟦𝑃⟧dupl⟦𝑁⟧
dupl⟦𝑁𝑃⟧ ≝ !dupl⟦𝑃⟧dupl⟦𝑁⟧

(and by duality such that dupl⟦𝑃⊥⟧ = dupl⟦𝑃⟧⊥.)
Contexts are translated as follows:

dupl⟦( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑁, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝛼 ∶ 𝑃𝑄)⟧ ≝ ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ dupl⟦𝑁⟧, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝛼 ∶ ?dupl⟦𝑄⟧dupl⟦𝑃⟧)
dupl⟦t̂p ∶ 𝑃⟧ ≝ ⋆ ∶ dupl⟦𝑃⟧

For instance, we have:

dupl ∘ pos⟦𝑃𝑅 → 𝑄𝑆⟧ = dupl⟦⇓(𝑃⊥ ⅋ 𝑄𝑆)𝑅⟧ = !𝑅′(𝑃′⊥ ⅋ ?𝑆′𝑄′)

with the notation 𝑃′ =dupl ∘pos⟦𝑃⟧. Thus the translation pos⟦⋅⟧ de-
composes the encoding “!(𝑃⊥ ⅋ ?𝑄)” described by Laurent [Lau02].

Also, we have:

dupl ∘neg⟦𝑁Σ → 𝑀⟧ = dupl⟦𝑁⊥
Σ ⅋ 𝑀⟧ = ?Σ′𝑁 ′⊥ ⅋ 𝑀′

with the notation 𝑁 ′ = dupl ∘neg⟦𝑁⟧. Thus the translation neg⟦⋅⟧
decomposes the encoding “?𝑁⊥ ⅋ 𝑀” described by Laurent.
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𝑃 ⩴ 𝑋 ∣ 𝑃 ⊗ 𝑃 ∣ !𝑃𝑁
𝑁 ⩴ 𝑋⊥ ∣ 𝑁 ⅋ 𝑁 ∣ ?𝑃𝑃

(a) Formulae

(𝑋)⊥ ≝ 𝑋⊥ (𝑃 ⊗ 𝑄)⊥ ≝ 𝑃⊥ ⅋ 𝑄⊥ (!𝑃𝑁)⊥ ≝ ?𝑃𝑁⊥

(𝑋⊥)⊥ ≝ 𝑋 (𝑁 ⅋ 𝑀)⊥ ≝ 𝑁⊥ ⊗ 𝑀⊥ (?𝑄𝑃)⊥ ≝ !𝑄𝑃⊥

(b) Implicit negation

⊢ 𝑡⊝ ∶ 𝑁 ∣ Γ,Π ⊢ 𝑡+ ∶ 𝑃 ∣ Γ 𝑐 ∶ ( ⊢ Γ, Π)
Γ,Δ is of the form 𝑥1 ∶ 𝑁1,… , 𝑥𝑛 ∶ 𝑁𝑛 and Π is of the form ⋆ ∶ 𝑃.

(c) Judgements

—(ax+)⊢ 𝑥 ∶ 𝑃 ∣ 𝑥 ∶ 𝑃⊥ —(ax⊝)⊢ ⋆ ∶ 𝑁 ∣ ⋆ ∶ 𝑁⊥

𝑐 ∶ ( ⊢ 𝑥 ∶ 𝑁, Γ)—(𝜇⊝)⊢ 𝜇𝑥.𝑐 ∶ 𝑁 ∣ Γ
𝑐 ∶ ( ⊢ Γ, ⋆ ∶ 𝑃)—(𝜇+)⊢ 𝜇⋆.𝑐 ∶ 𝑃 ∣ Γ

⊢ 𝑡+ ∶ 𝑃 ∣ Γ ⊢ 𝑡⊝ ∶ 𝑃⊥ ∣ Δ,Π—(cut)⟨𝑡+ ‖ 𝑡⊝⟩ ∶ ( ⊢ Γ, Δ, Π)
(d) Identity

𝑐 ∶ ( ⊢ 𝑥 ∶ 𝑁, Γ, ⋆ ∶ 𝑃)—(prom)
⊢ 𝜇𝑥⋄.𝑐 ∶ !𝑃𝑁 ∣ Γ

⊢ 𝑉 ∶ 𝑃 ∣ Γ—(der)⊢ 𝑉⋄ ∶ ?𝑄𝑃 ∣ Γ, ⋆ ∶ 𝑄

𝑐 ∶ ( ⊢ Γ, Π)—(w)𝑐 ∶ ( ⊢ 𝑥 ∶ 𝑁, Γ, Π)
𝑐 ∶ ( ⊢ 𝑥 ∶ 𝑁, 𝑦 ∶ 𝑁, Γ, Π)—(c)
𝑐[𝑥/𝑦] ∶ ( ⊢ 𝑥 ∶ 𝑁, Γ, Π)

Plus rules similar to (𝑤) and (𝑐) for 𝑡+ and 𝑡⊝ left unmentioned.
(e) Structure

⊢ 𝑉 ∶ 𝑃 ∣ Γ ⊢ 𝑉 ′ ∶ 𝑄 ∣ Δ—(⊗)⊢ (𝑉,𝑉 ′) ∶ 𝑃 ⊗ 𝑄 ∣ Γ,Δ
𝑐 ∶ ( ⊢ 𝑥 ∶ 𝑁, 𝑦 ∶ 𝑀, Γ, Π)—(⅋)⊢ 𝜇(𝑥, 𝑦).𝑐 ∶ 𝑁 ⅋𝑀 ∣ Γ,Π

(f) Logic
Figure III.14: LJ̄, a system of simple types for Lexp
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Typing is preserved as follows:

If 𝑐 ∶ ( ⊢LKdelim
Γ, 𝑇) then ⟦𝑐⟧ ∶ ( ⊢L ̄J ⟦Γ⟧, ⟦𝑇⟧)

If ⊢LKdelim
𝑡⊝ ∶ 𝑁 ∣ Γ, t̂p ∶ 𝑃 then ⊢L ̄J ⟦𝑡⊝⟧ ∶ !⟦𝑃⟧⟦𝑁⟧ ∣ ⟦Γ⟧

If ⊢LKdelim
𝑉 ∶ 𝑃∗ ∣ Γ then ⊢L ̄J duplV⟦𝑉⟧ ∶ ⟦𝑃∗⟧ ∣ ⟦Γ⟧

If ⊢LKdelim
𝑡+ ∶ 𝑃𝑄 ∣ Γ, 𝑇 then ⊢L ̄J ⟦𝑡+⟧ ∶ ?⟦𝑄⟧⟦𝑃⟧ ∣ ⟦Γ⟧, ⟦𝑇⟧

with the notation ⟦𝑥⟧ = dupl⟦𝑥⟧.
The (extension of the) duploid construction best appears when

we restore the left side of the sequents. The following sequent:

𝑃⃗, ⃗𝑁𝑅 ⊢LKdelim
⃗𝑄𝑆, 𝑁⃗, 𝑇

is translated into the following one:

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⟦𝑃⟧, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗!⟦𝑅⟧⟦𝑁⟧ ⊢L ̄J
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗?⟦𝑆⟧⟦𝑄⟧, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⟦𝑁⟧, ⟦𝑇⟧

Flattening in types

Then the types are mapped into the standard simple type system
of λ×v with pairs and arrows, also known as the ×, → fragment of
intuitionistic logic. Formulae translate as follows:

flat⟦𝑋⟧ ≝ 𝑋
flat⟦𝑃 ⊗ 𝑄⟧ ≝ flat⟦𝑃⟧×flat⟦𝑄⟧
flat⟦!𝑃𝑁⟧ ≝ flat⟦𝑁⊥⟧ → flat⟦𝑃⟧

Typing is preserved as follows:

If 𝑐 ∶ ( ⊢L ̄J Γ, ⋆ ∶ 𝑃) then ⟦Γ⊥⟧ ⊢ ⟦𝑐⟧ ∶ ⟦𝑃⟧
If ⊢L ̄J 𝑡 ∶ 𝑁 ∣ Γ, ⋆ ∶ 𝑃 then ⟦Γ⊥⟧, 𝑘 ∶ ⟦𝑁⊥⟧ ⊢ ⟦𝑡⟧(𝑘) ∶ ⟦𝑃⟧
If ⊢L ̄J 𝑡 ∶ 𝑃 ∣ Γ then ⟦Γ⊥⟧ ⊢ ⟦𝑡⟧ ∶ ⟦𝑃⟧
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where we write ⟦𝑥⟧ = flat⟦𝑥⟧ and ⟦Γ⊥⟧ = ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ flat⟦𝑁⊥⟧) whenever
Γ = ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑁).

Related work Recently, Zeilberger proposed [Zei10] — among other
contributions — a “simple account of delimited continuations through a
natural generalisation of classical polarised logic”. It is “in continuation-
passing style”, thus located at the level of LLP.
Zeilberger’s work is based on the hypothesis that delimited continu-

ations affect the structure of the polarity-changing negation. Our polar-
ised analysis of delimited CPS translations differs in this aspect, since the
decomposition shows above that the type of delimited continuations is
instead related to annotated exponentials of LJ̄. In particular, in our ap-
proach, the hypothesis that the symmetry between positive and negative
connectives has to be “broken” does not seem necessary. Indeed, LJ̄
contrasts indeed with Zeilberger’s logic by being symmetric.
While we expect that a translation of Danvy and Filinski’s calculus can

be given in the positive part of Zeilberger’s system, the author makes no
claims of connection with delimited control calculi of the literature.

III.3.5 Reversing translation into linear logic

In this section we describe a translation of L ̄J into linear logic [Gir87]
(LL) that explains the annotated exponential !𝑃. We restrict
ourselves to the typed case, since we apply 𝜂 expansion in the
translation. There is no standard acceptation of what would an
untyped syntax of LL be.

Also, we are voluntarily brief: the reader can refer to Benton and
Wadler [BW95] who establish a correspondence between the call-by-
value λ calculus obtained through the boring translation and Moggi’s
monadic model for a commutative strong monad. This result estab-
lishes our target calculus on firmer grounds, since λ×v is essentially a
call-by-value λ calculus extended with equations reflecting the com-
mutativity of the monad.



198 Chapter III Decomposing delimited CPS translations

In LL, it is possible to take the following definitions:

!𝑃𝐴 ≝ !(𝐴 ⅋ 𝑃) ?𝑃𝐴 ≝ ?(𝐴 ⊗ 𝑃⊥)

with the following derived rules:

⊢ ?Γ, 𝐴, 𝑃—(prom𝑃)⊢ ?Γ, !𝑃𝐴
⊢ Γ, 𝐴—(der𝑃)⊢ Γ, ?𝑃𝐴, 𝑃

We describe an extension of Laurent and Regnier’s reversing transla-
tion 𝜌 [LR03] of LLP into LL. The goal with 𝜌 is to confine structural
rules to the places where they conform to the constraints of LL: con-
traction, weakening and the context of promotion are restricted to
formulae of the form ?𝐴.

At the level of terms, the translation 𝜂-expands positive terms. 𝜂-
expansion allows us to replace contractions and weakenings on a
formulae 𝑁 by the same rules on formulae of the form 𝑋⊥ or ?𝑄𝑃.
Indeed, for instance, if 𝑧 is not linear in 𝑐 ∶ ( ⊢ 𝑧 ∶ 𝑋⊥ ⅋ 𝑌⊥, Γ), then
it is possible to get rid of structural rules on 𝑋⊥ ⅋ 𝑌⊥ by replacing
𝑐 by ⟨ 𝜇(𝑥, 𝑦).𝑐[(𝑥, 𝑦)/𝑧] ‖ 𝑧 ⟩ , which is equivalent and only uses
structural rules on 𝑋⊥ and 𝑌⊥. The negative context of promotion is
decomposed similarly so that it only contains formulae of the form
𝑋⊥ or ?𝑄𝑃. Dereliction and this promotion are replaced by their
derivation above.

We are done when we eventually get rid of structural rules on
atoms 𝑋 and 𝑋⊥ by replacing these atoms by !𝑋 and ?𝑋⊥ (the usual
exponential, not the annotated one). Changing the atoms is the only
operation that we need to carry out at the level of types.

III.4 Conclusion

We have proved that the call-by-value and the call-by-name delim-
ited CPS translations decompose in three steps:
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λµt̂p𝑣/𝑛

cpsv⟦⋅⟧
cpsn⟦⋅⟧

�� ��

pos⟦⋅⟧
neg⟦⋅⟧

//// Lpol,t̂p+

dupl⟦⋅⟧
��

λ×v Lexp
flat⟦⋅⟧

oo

The first step implements a user language into a calculus of machines
in which the description of reduction and extensional equivalences
is convenient. The second step makes side-effects explicit through
the duploid construction, which generalises the Kleisli construction
for monads and for co-monads. The last step seems to have little
value: it obfuscates the CPS translation by erasing interesting struc-
tures.

The decomposition pictures the calculi L as middlemen between
languages on the one hand and physical or mathematical models on
the other hand.

Language ⟶ L ⟶ Denotation
Implementation

The calculi L are syntaxes that delegate the implementation of user-
oriented features, such as presenting the system in a functional style,
to an additional layer of abstraction. They focus instead on an inter-
active representation of computation. For this reason, they are more
succinct syntaxes than idealised programming languages, and closer
to the physical or mathematical model.





Chapter IV

On the constructive
interpretation of an
involutive negation

We are interested in the constructive interpretation of reasoning by
contrapositive in classical logic, or, in other words, of an involutive
negation.

We first review the impossibility of an involutive negation in the
λC calculus, and see that it is related to an inappropriate order of
evaluation: its call-by-name evaluation strategy forces the calculus
to identify captured stacks with continuations.

Then we introduce the extensional, untyped and polarised calculi
λℓ (for natural deduction) and Lpol,t̂p⊝ (for sequent calculus). They
refine the λC calculus by distinguishing the positive type of captured
stacks from the negative type of continuations. Also, a delimitation
of control operators gives a constructive interpretation for the unit
⊥.

Captured stacks are given accessors that allow us to understand
isomorphisms such as 𝐴≃¬¬𝐴 and ¬∀𝑥 𝐴≃∃𝑥 ¬𝐴. Thus, the calculi
λℓ and Lpol,t̂p⊝ realise a formulae-as-types correspondence between an
involutive negation and a notion of high-level access to the stack
similar to Felleisen-Clements’s.
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Outline
Section IV.1 We review the lack of involution of negation in calculi
λC and Ln. We show that this deficiency comes from too strong a
constraint imposed on the evaluation order.

Section IV.2 We recall the direct link between the proofs of a for-
mula and the ones of its formal contrapositive through categorical
duality. We explain why it is not sufficient to provide a constructive
interpretation of reasoning by contrapositive.

Section IV.3 We introduce the λℓ calculus. To do so we introduce
the notion of polarity in this context and the one of inspectable
stack. We also introduce a natural deduction for λℓ where the type
of inspectable stacks refine the type of negations.

Sections IV.4 and IV.5 We introduce the calculus Lpol,t̂p⊝ which ex-
tends the calculus Ln in the same way as λℓ refines λC (see Table I.18
on page 99 for a summary of the calculi).

We give a CPS translation that simulates reduction and preserves
equivalence. We also show that we have a type isomorphism ¬¬𝐴 ≃
𝐴 in the calculi λℓ and Lpol,t̂p⊝ .

Section IV.6 We revisit Girard’s “stoup” [Gir91] and Danos-Joinet-
Schellinx’s η restriction [DJS97] through a study of commutation
properties in Lpol,t̂p⊝ .

IV.1 A review of the problem of involution
In this section, we review the absence of involution in the call-by-
name λC calculus (Figure I.12 on page 81) and we show how it comes
from an inappropriate order of evaluation. (The argument can be ad-
apted to all similar settings, and by duality to call-by-value settings.)
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We reduce the problem to the coexistence of two distinct left
introduction rules for ¬¬ in sequent calculus: one is focused, the
other one is not.

IV.1.1 Rules of negation

To begin with, we consider the rules of negation in LK:�
�

�
�

Γ ∣ 𝑒 ∶ 𝐴 ⊢ Δ—(⊢ ¬)Γ ⊢ [𝑒] ∶ ¬𝐴 ∣ Δ
Γ ⊢ 𝑡 ∶ 𝐴 ∣ Δ—(¬ ⊢)Γ ∣ [𝑡] ∶ ¬𝐴 ⊢ Δ

By taking the definition “¬𝑁 =𝑁 → ⊥” in the calculus Ln (Figure I.10
on page 79), we have the following constructors:�

�
�
�

[𝑡⊝] ≝ 𝑡⊝⋅stop
[𝑒⊝] ≝ k𝑒⊝

Thus the following rule:�� ��⟨[𝑒⊝]‖[𝑡⊝]⟩ ⊳∗
R𝑛

⟨𝑡⊝ ‖𝑒⊝⟩

Indeed this corresponds to the reduction ⟨k𝑒⊝ ‖𝑡⊝⋅stop⟩ ⊳∗
R𝑛

⟨𝑡⊝ ‖𝑒⊝⟩.

IV.1.2 Implementing call by value

The essential observation is that in the λC calculus, terms of type
¬¬𝑁 support call-by-value evaluation. This is observed by consider-
ing Γ, 𝑥 ∶ 𝑁 ⊢ 𝑡 ∶ 𝐴 and Γ ⊢ 𝑢 ∶ ¬¬𝑁. There are two ways of obtaining
a proof of Γ ⊢ 𝐴:�

�
�
�

𝑀n ≝ (𝜆𝑥.𝑡) (𝒞 𝑢) Γ ⊢ 𝑀n ∶ 𝐴
𝑀v ≝ 𝒞 𝜆𝑘.(𝑢 𝜆𝑥.(𝑘 𝑡)) Γ ⊢ 𝑀v ∶ 𝐴
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The two terms are distinguished through their execution:�
�

�
�

⟨𝑀n ‖𝜋⟩ ⊳∗
R𝑛

⟨𝑡[𝒞 𝑢/𝑥]‖𝜋⟩
⟨𝑀v ‖𝜋⟩ ⊳∗

R𝑛
⟨𝑢‖𝜆𝑥.(k𝜋 𝑡)⋅stop⟩

As we see, 𝑀v evaluates 𝑢 before 𝑡 (call by value), while 𝑀n evaluates
𝑡 before 𝑢 (call by name).

IV.1.3 The issue with involution in Ln
We show that the terms 𝑀v and 𝑀n correspond to two distinct ways
of introducing ¬¬ on the left in the calculus Ln:

• 𝑀v to a naive one which interferes with the evaluation order;
• 𝑀n to a focused one which does not interfere.

Naive introduction
The first way to introduce ¬¬ on the left is obvious:

Γ ∣ 𝑒⊝ ∶ 𝑁 ⊢ Δ—(⊢ ¬)Γ ⊢ [𝑒⊝] ∶ ¬𝑁 ∣ Δ—(¬ ⊢)Γ ∣ [[𝑒⊝]] ∶ ¬¬𝑁 ⊢ Δ

Let 𝑒𝑣 denote the following context:

𝑒𝑣 ≝ [[𝑒⊝]] = (𝜆𝑥.(k𝑒⊝ 𝑡⊝))⋅stop .

A term in the context 𝑒𝑣 is evaluated immediately because 𝑒𝑣 is a
stack for any 𝑒⊝.

Evaluating 𝑀v corresponds to evaluating 𝑢⊝ in the context 𝑒𝑣 for
𝑒⊝ = ̃𝜇𝑥.⟨𝑡⊝ ‖𝛼⟩: �� ��⟨𝑀v ‖𝛼⟩ ≃R𝑛

⟨𝑢⊝ ‖𝑒𝑣⟩ .

Proof. Indeed:
⟨𝑀v ‖𝛼⟩ ⊳∗

R𝑛
⟨𝑢‖𝜆𝑥.(k𝛼 𝑡⊝)⋅stop⟩ .
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Also:

𝜆𝑥.(k𝛼 𝑡⊝) = 𝜆𝑥.𝜇𝛽.⟨k𝛼 ‖𝑡⊝⋅𝛽⟩

→∗
R𝑛

𝜆𝑥.𝜇𝛽.⟨𝑡⊝ ‖𝛼⟩
←∗

R𝑛
𝜆𝑥.𝜇𝛽.⟨𝑥‖𝑒⊝⟩ = k𝑒⊝ . ∎

Focused introduction

The second way to introduce ¬¬ on the left is a focused variant of
the naive one. This means that we are careful to apply the rule ( ⊢ ¬)
only on stacks, at the price of introducing a cut, as follows:

——
Γ ∣ [[𝛽⊝]] ∶ ¬¬𝑁 ⊢ 𝛽⊝ ∶ 𝑁,Δ
——

Γ, 𝑥⊝ ∶ ¬¬𝑁 ⊢ 𝜇𝛽⊝.⟨𝑥⊝‖[[𝛽⊝]]⟩ ∶ 𝑁 ∣ Δ Γ ∣ 𝑒⊝ ∶ 𝑁 ⊢ Δ
——

Γ ∣ ̃𝜇𝑥⊝.⟨𝜇𝛽⊝.⟨𝑥⊝‖[[𝛽⊝]]⟩∥𝑒⊝⟩ ∶ ¬¬𝑁 ⊢ Δ

Let 𝑒𝑛 denote the context thus obtained:

𝑒𝑛 ≝ ̃𝜇𝑥⊝.⟨𝜇𝛽⊝.⟨𝑥⊝‖[[𝛽⊝]]⟩∥𝑒⊝⟩

The context 𝑒𝑛 uses its counter-term if and only if 𝑒⊝ does.

Evaluating the term 𝑀n amount to evaluating 𝑢⊝ in the context 𝑒𝑛
for 𝑒⊝ = ̃𝜇𝑥⊝.⟨𝑡⊝ ‖𝛼⊝⟩: �� ��⟨𝑀n ‖𝛼⊝⟩ ≃R𝑛

⟨𝑢⊝ ‖𝑒𝑛⟩ .

Proof. Indeed we have:

⟨𝑀n ‖𝛼⟩ →∗
R𝑛

⟨𝑡⊝[(𝒞)𝑢⊝/𝑥]‖𝛼⟩
= ⟨𝑡⊝[𝜇𝛽.⟨𝒞 ‖𝑢⊝⋅𝛽⟩/𝑥]∥𝛼⟩
→∗

R𝑛
⟨𝑡⊝[𝜇𝛽.⟨𝑢⊝ ‖k𝛽⋅stop⟩/𝑥]∥𝛼⟩

←R𝑛
⟨𝜇𝛽.⟨𝑢⊝ ‖k𝛽⋅stop⟩∥ ̃𝜇𝑥.⟨𝑡⊝ ‖𝛼⟩⟩
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←R𝑛
⟨𝑢⊝ ∥ ̃𝜇𝑥.⟨𝜇𝛽.⟨𝑥‖k𝛽⋅stop⟩∥ ̃𝜇𝑥.⟨𝑡⊝ ‖𝛼⟩⟩⟩

= ⟨𝑢⊝ ∥ ̃𝜇𝑥.⟨𝜇𝛽.⟨𝑥‖[[𝛽]]⟩∥𝑒⊝⟩⟩ = ⟨𝑢⊝ ‖𝑒𝑛⟩ . ∎

IV.1.4 Lifting the ambiguity of evaluation order
We recall below that in the more general context of the models of
negated objects, the isomorphism ¬¬𝑁 ≃𝑁 is equivalent to equating
(the homologues of) 𝑀n and 𝑀v, even in other (linear) settings
where ¬¬𝑁 ≃ 𝑁 does not mean that all proofs are identified. We
conclude that the impossibility of an involutive ¬ is characterised by
the necessity to distinguish 𝑀n and 𝑀v as soon as the system is affine
on the left (e.g. 𝑥 may be free in 𝑡 and 𝑢 might not use its argument).

Let us recall the notion of runnable monad fromChapter II, which
is going to describe the implementation of call by value with 𝑀v in
the denotational semantics of the λC calculus.

Definition IV.1. A runnable monad on a category 𝒞 is a monad
(𝑇, 𝜂, 𝜇) on 𝒞 where 𝜇 = 𝜌𝑇 for a run transformation 𝜌 ∶ 𝑇 → 1 that
satisfies 𝜌 ∘ 𝜂 = id and 𝜌 ∘ 𝑇𝜌 = 𝜌 ∘ 𝜌𝑇 .

The transformation 𝜌 can be natural; in which case 𝜂 ∘ 𝜌 = 𝜌𝑇 ∘ 𝑇𝜂 =
id yields 𝑇 ≃ 1; or not. In the latter case the inequality 𝜌𝑀 ∘ 𝑇𝑓 ≠
𝑓 ∘ 𝜌𝑁 ∶ 𝑇𝑁 → 𝑀 means that the model distinguishes two distinct
ways to compose 𝑔 ∶ 𝐿 → 𝑇𝑁 with 𝑓 ∶ 𝑁 → 𝑀.

Proposition IV.2. Let ℛ be a category with a self-adjoint functor
¬ ∶ ℛop → ℛ:

¬ ⊣(𝜂,𝜀) ¬ ∶ ℛop → ℛ
The full sub-category 𝒞 of negated objects ¬𝐴 has the runnable monad
(¬¬, 𝜂¬, 𝜌) with 𝜌¬𝐴 = ¬𝜀𝐴.

Proof. Themonad (¬¬, 𝜂¬, ¬𝜀¬¬) on 𝒞 comes from the monad (¬¬, 𝜂, ¬𝜀¬)
on ℛ and the equations on 𝜌 are an easy consequence of the adjunc-
tion. ∎



IV.2 On duality 207

The result is related to the one of Führmann [Füh99] through dual-
ity: 𝒞 above is essentially the Kleisli category of the co-monad ¬¬
on the category ℛop.1 The above construction can be instantiated
with Streicher and Reus’s category of negated domains [SR98] which
is a model of the λC calculus. We easily check that 𝒞 is given by
𝜌𝑁 ∶ ¬¬𝑁 → 𝑁. A fortiori, 𝑓 ∘ 𝜌 and 𝜌 ∘ ¬¬𝑓 respectively correspond
to 𝑀n and 𝑀v through the identification of 𝑓 to 𝑥 ↦ 𝑡.

Lastly, Melliès and Tabareau [MT10] instantiate ℛ above with a
dialogue category (in the terminology of the authors). They get with
𝒞 a model of linear logic (with ¬¬𝑁 ≃ 𝑁), by identifying 𝑓 ∘ 𝜌 and
𝜌 ∘¬¬𝑓 (“depolarisation”). In other words, they obtain an involutive
negation by forcing call by value to coincide with call by name, and
they can do so because their setting is linear.

The method used with the λℓ calculus to get an involutive neg-
ation is, on the contrary, to acknowledge the coexistence of the
call-by-name and the call-by-value evaluation schemes. Then, as we
will see, we obtain a new connective ∼ by adding a focalisation re-
duction to the negation, so that there is no more ambiguity on the
order of evaluation at the type ¬¬𝐴.

IV.2 On duality
Here we answer whether the duality between call by name and call
by value gives an interpretation of reasoning by contrapositive.

Recall that regarding the constructive interpretations of proposi-
tional classical logic, it is well-understood that interpretations in call
by name and the ones in call by value are related through duality, as
much in models (Streicher and Reus [SR98], Selinger [Sel01]) as in
term syntaxes (Curien and Herbelin [CH00], Wadler [Wad03]). Dual-
ity goes past the functional interpretation of Brouwer, Heyting and
Kolmogorov. Thus, the following implication has no intuitionistic

1I am grateful to Paul-André Melliès for mentioning this argument early in my
research.
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interpretation:

∀x, y ∈ 𝐴, 𝑃(x) ∨ 𝑄(y) → (∀x ∈ 𝐴, 𝑃(x)) ∨ (∀y ∈ 𝐴, 𝑄(y)) (IV.1)

Indeed, that would require the possibility of determining which side
of the conclusion is satisfied, only from bits of information “𝑃 or
𝑄” for each pair (x, y) in the hypothesis. This is not possible in a
systematic way, since sets can be infinite.

But intuitionism provides an interpretation for the formal contra-
positive of formula (IV.1):

(∃x ∈ 𝐴, ¬𝑃(x)) ∧ (∃y ∈ 𝐴, ¬𝑄(y)) → ∃x, y ∈ 𝐴, ¬𝑃(x) ∧¬𝑄(y)

According to the intuitionistic interpretation:

the proof gets a witness of “∃x”, one of “∃y”, and com-
bines them into a witness of “∃x, y”.

Duality associates to the call-by-value interpretation of the formula
above an interpretation in call by name for (IV.1). Duality formally
exchanges strict data structures with lazy ones (Filinski [Fil89]), in-
puts with outputs (as noticed by Girard through linear logic [Gir87]),
and also programs with their evaluation contexts (Curien and Her-
belin [CH00]).

We obtain in this way a constructive interpretation for the classical
proposition (IV.1):

the proof receives a refutation (or counter-example) for
“∀x”, one for “∀y”, and combines them into a refutation of
“∀x, y”.

The role of laziness is to delay the realisation of the conclusion “∨”
until the simultaneous utilisation of both branches of the conclusion,
that is to say until the refutations are indeed received. (Such a
classical disjunction in call by name has been studied by Pym and
Ritter [PR01] and Selinger [Sel01].)
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�� ��… : Main additions to Figure I.12 on page 81 — C is removed.

𝜀 ⩴ + ∣ ⊝

𝑡, 𝑢 ⩴ 𝑥𝜀 ∣ 𝜆𝑥.𝑡 ∣ (𝑡⊝ 𝑢)𝜀 ∣
�� ��let 𝑥+ be 𝑡+ in 𝑢 ∣�� ��(𝑡, 𝑢) ∣ let (𝑥, 𝑦) be 𝑡+ in 𝑢 ∣ send ∣ ℓ ∣ 𝐷→ ∣ 𝐷⊥ ∣ 𝐷∀

𝑡𝜀 ∶ term 𝑡 such that 𝜛(𝑡) = 𝜀 ∈ {+, ⊝}
(a) Quasi-proof terms

𝑡 𝜛(𝑡)
let … in 𝑢 𝜛(𝑢)
𝑥𝜀, (𝑡 𝑢)𝜀 𝜀
𝜆𝑥.𝑡, send, ℓ, 𝐷→, 𝐷⊥, 𝐷∀ ⊝
(𝑡, 𝑢) +

(b) Polarity 𝜛(𝑡) ∈ {+, ⊝}
Figure IV.1: The λℓ calculus

Notice that this shows that the intuitionistic interpretation of dis-
junction as a strong sum, besides being not always possible for clas-
sical tautologies, is not always useful either. Indeed, the interpreta-
tion obtained by duality makes no use of an hypothetical decision
procedure for “∀x, y ∈ 𝐴, (𝑃(x) ∨ 𝑄(y))”.

We believe that duality can provide useful intuitions. However,
the explanation through duality is not sufficient. The reason is that
duality is external to a calculus, whereas contraposition is an internal
operation.

IV.3 The λℓ calculus
In this section we introduce the λℓ calculus. Sections IV.3.1 through
IV.3.4 explain the operations and the types of the calculus. Section
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�� ��… : Main additions to Figure I.12 on page 81.

𝐴, 𝐵
⎧{
⎨{⎩

𝑁, 𝑀 ⩴ 𝐴 → 𝐵 ∣ ∀x 𝑁 ∣ ⊥
𝑃, 𝑄 ⩴

�� ��𝑋(t1,… , t𝑛) ∣ 𝐴 ⊗ 𝐵 ∣ ∃𝑥 𝑃 ∣ ∼𝐴

(a) Formulae

¬𝐴 ≝ {∼𝑁 if 𝐴 = 𝑁
𝑃 → ⊥ if 𝐴 = 𝑃

(b) Negation

Γ ⊢ 𝑡+ ∶ 𝑃
Γ ⊢ 𝑡⊝ ∶ 𝑁

where:
�� ��𝑥 ∶ 𝐴 ⩴ 𝑥+ ∶ 𝑃 ∣ 𝑥⊝ ∶ 𝑁
Γ = 𝑥1 ∶ 𝐴1,… , 𝑥𝑛 ∶ 𝐴𝑛

(c) Judgements�
�

�
�

ℓ ∶ (𝐴 → ⊥) → ∼𝐴 send ∶ ∼𝐴 → (𝐴 → ⊥) 𝐷⊥ ∶ ∼⊥ → 𝐴 → 𝐴
𝐷→ ∶ ∼(𝐴 → 𝐵) → 𝐴 ⊗ ∼𝐵 𝐷∀ ∶ ∼∀𝑥 𝑁 → ∃𝑥 ∼𝑁

—(ax)Γ, 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴

�
�

�
�Γ ⊢ 𝑡+ ∶ 𝑃 Γ, 𝑥+ ∶ 𝑃 ⊢ 𝑢 ∶ 𝐵—(let)

Γ ⊢ let 𝑥+ be 𝑡+ in 𝑢 ∶ 𝐵

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵—(→𝑖)Γ ⊢ 𝜆𝑥.𝑡 ∶ 𝐴 → 𝐵
Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵 Γ ⊢ 𝑢 ∶ 𝐴—(→𝑒, 𝜀 = 𝜛(𝐵))Γ ⊢ (𝑡⊝ 𝑢)𝜀 ∶ 𝐵�

�
�
�Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑢 ∶ 𝐵—(⊗𝑖)Γ ⊢ (𝑡, 𝑢) ∶ 𝐴 ⊗ 𝐵

�
�

�
�Γ ⊢ 𝑡+ ∶ 𝐴 ⊗ 𝐵 Γ, 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵 ⊢ 𝑢 ∶ 𝐶

—(⊗𝑒)Γ ⊢ let (𝑥, 𝑦) be 𝑡+ in 𝑢 ∶ 𝐶

Γ ⊢ 𝑡⊝ ∶ 𝑁—(∀𝑖)∗

Γ ⊢ 𝑡⊝ ∶ ∀x 𝑁
Γ ⊢ 𝑡⊝ ∶ ∀x 𝑁—(∀𝑒)Γ ⊢ 𝑡⊝ ∶ 𝑁[t/x]�

�
�
�Γ ⊢ 𝑡+ ∶ 𝑃[t/x]—(∃𝑖)Γ ⊢ 𝑡+ ∶ ∃𝑥 𝑃

�
�

�
�Γ ⊢ 𝑡+ ∶ ∃x 𝑃 Γ, 𝑥+ ∶ 𝑃 ⊢ 𝑢 ∶ 𝐴—(∃𝑒)∗

Γ ⊢ let 𝑥+ be 𝑡+ in 𝑢 ∶ 𝐴
∗: x ∉ fv(Γ, 𝐴).

(d) Rules

𝐷∀→ ≝ 𝜆𝑥+.let 𝑦+ be𝐷∀ 𝑥+ in𝐷→ 𝑦+ ∶ ∼∀x(𝐴 → 𝐵) → ∃x (𝐴 ⊗ ∼𝐵)
𝐷¬ ≝ 𝜆𝑥+.let (𝑦𝜀, 𝑧+) be𝐷→ 𝑥+ in (𝐷⊥ 𝑧+ 𝑦𝜀)𝜀 ∶ ∼(𝐴 → ⊥) → 𝐴
𝒜𝜀 ≝ 𝜆𝑥⊝.let (𝑦𝜀, 𝑧+) be𝐷→ ℓ_.𝑥⊝ in 𝑦𝜀 ∶ ⊥ → 𝐴
𝐸 ≝ 𝜆𝑥.ℓ𝑦⊝.(𝑦⊝ 𝑥)⊝ ∶ 𝐴 → ∼(𝐴 → ⊥)
𝒯 ≝ 𝜆𝑥⊝.(𝐷¬ ℓ𝑦⊝.(𝑥⊝ (ℓ 𝑦⊝)+)) ∶ (∼𝐴 → ⊥) → 𝐴
𝒞 ≝ 𝜆𝑥⊝.let (𝑦, 𝑧+) be𝐷→ (ℓ𝑥⊝)+ in 𝑦 ∶ ((𝐴 → ⊥) → ⊥) → 𝐴

(e) Derived terms (notation ℓ𝑥.𝑡⊝ ≝ (ℓ 𝜆𝑥.𝑡⊝)+)
Figure IV.2: Polarised first-order predicate calculus
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�� ��… : Main additions to Figure I.12 on page 81.

𝛼+, 𝛽⊝ … ∶ stack constants

𝑡 ⩴ … ∣
�� ��[𝜋] ∣ j𝜋+

𝑡 ⊇
�� ��𝑉, 𝑊 ⩴ 𝑡⊝ ∣ 𝑥+ ∣ (𝑉, 𝑊) ∣ [𝜋]

𝜋 ⩴ 𝛼𝜀 ∣ 𝑉⋅𝜋 ∣
�� ��̃𝜇𝑥+.𝑐 ∣ ̃𝜇(𝑥, 𝑦).𝑐

(a) Terms, values and stacks

𝑐 ⩴ ⟨𝑡⊝ ‖𝜋⊝⟩ ∣
�� ��⟨𝑡+ ‖𝜋+⟩

𝑚 ⩴
�� ��𝑐[𝜎]

𝜎 ⩴ ⋅ ∣ 𝜋⊝, 𝜎
(b) Commands and

machines

𝑡 𝜛(𝑡)
j𝜋+ ⊝
[𝜋] +

(c) Polarity 𝜛(𝑡) ∈ {+, ⊝}

𝜋 𝜛(𝜋)
𝛼⊝, 𝑉⋅𝜋 ⊝
𝛼+, ̃𝜇𝑥+.𝑐, ̃𝜇(𝑥, 𝑦).𝑐 +

(d) Polarity 𝜛(𝜋) ∈ {+, ⊝}

⟨(𝑡⊝ 𝑢)𝜀 ‖𝜋𝜀⟩[𝜎] ≻𝑝 {⟨𝑡⊝ ‖𝑉⋅𝜋𝜀⟩[𝜎] if 𝑢 = 𝑉
⟨𝑢∥ ̃𝜇𝑥+.⟨𝑡⊝ ‖𝑥+⋅𝜋𝜀⟩⟩[𝜎] otherwise

⟨𝜆𝑥.𝑡 ‖𝑉⋅𝜋⟩[𝜎] ≻𝑝 ⟨𝑡[𝑉/𝑥]‖𝜋⟩[𝜎]
⟨let 𝑞 be 𝑡+ in 𝑢‖𝜋⟩[𝜎] ≻𝑝 ⟨𝑡+ ∥ ̃𝜇𝑞.⟨𝑢‖𝜋⟩⟩[𝜎]

⟨𝑉+ ‖ ̃𝜇𝑥+.𝑐⟩[𝜎] ≻𝑝 𝑐[𝑉+/𝑥+][𝜎]
⟨(𝑡+, 𝑢)‖𝜋⟩[𝜎] ≻𝑝 ⟨𝑡+ ∥ ̃𝜇𝑥+.⟨(𝑥+, 𝑢)‖𝜋⟩⟩[𝜎] if 𝑡+ ≠ 𝑉
⟨(𝑉, 𝑡+)‖𝜋⟩[𝜎] ≻𝑝 ⟨𝑡+ ∥ ̃𝜇𝑥+.⟨(𝑉, 𝑥+)‖𝜋⟩⟩[𝜎] if 𝑡+ ≠ 𝑉

⟨(𝑉, 𝑊)‖ ̃𝜇(𝑥, 𝑦).𝑐⟩[𝜎] ≻𝑝 𝑐[𝑉/𝑥, 𝑊/𝑦][𝜎]
⟨ℓ‖𝑡⊝⋅𝜋+⟩[𝜋⊝, 𝜎] ≻𝑝 ⟨𝑡⊝ ‖ j𝜋+ ⋅𝜋⊝⟩[𝜎]

⟨j𝜋+ ‖𝜋⟩[𝜎] ≻𝑝 ⟨[𝜋]‖𝜋+⟩[𝜎]
⟨send‖[𝜋𝜀]⋅𝑡𝜀 ⋅𝜋 ′

⊝⟩[𝜎] ≻𝑝 ⟨𝑡𝜀 ‖𝜋𝜀⟩[𝜋 ′
⊝, 𝜎]

⟨𝐷→ ‖[𝑉⋅𝜋]⋅𝜋+⟩[𝜎] ≻𝑝 ⟨(𝑉, [𝜋])‖𝜋+⟩[𝜎]
⟨𝐷⊥ ‖[𝜋⊝]⋅𝑡𝜀 ⋅𝜋 ′

𝜀⟩[𝜎] ≻𝑝 ⟨𝑡𝜀 ‖𝜋 ′
𝜀⟩[𝜋⊝, 𝜎]

⟨𝐷∀ ‖𝑉⋅𝜋 ′⟩[𝜎] ≻𝑝 ⟨𝑉 ‖𝜋 ′⟩[𝜎]
(e) Rules of reduction

Figure IV.3: Abstract machine for the λℓ calculus



212 Chapter IV On the constructive interpretation of an involutive negation

IV.3.5 shows how the operator 𝒞 can be simulated with ℓ.
The role of the λℓ calculus is to show how the λC calculus can

be extended so as to correspond to a natural deduction with an
involutive negation. This is why two constraints guided the design of
the calculus:

1. Negation must be there as a connective;

2. There must be a clear distinction between on the one hand quasi-
proof terms, in other words programs, and on the other hand
terms that appear during the evaluation in a machine.

Quasi-proof terms of the λℓ calculus are defined in Figure IV.1 on
page 209. This calculus extends the λC calculus with a control op-
erator ℓ that refines the 𝒞 operator. Both terms and stacks have
polarities determined by the function 𝜛; let us write 𝑡+, 𝑡⊝, 𝜋+ or 𝜋⊝
to refer to a term or a stack of a given polarity.

A polarised predicate calculus is given in Figure IV.2 on page 210.
New types ∼ and ⊥ refine the interpretation of negation. The latter is
interpreted depending on the polarity of 𝐴:�

�
�
�¬𝐴 ≝ {∼𝑁 if 𝐴 = 𝑁

𝑃 → ⊥ if 𝐴 = 𝑃

Figure IV.3 defines the evaluation of terms with a machine that
extends Krivine’s. Initial stacks are infinitely many constants 𝛼, 𝛽…
that have a fixed polarity.

The two above constraints prevail at times over simplicity. For
instance, to ensure that we can statically determine a polarity for
each term, application is annotated with the expected polarity of the
result:

(𝑡 𝑢)+ or (𝑡 𝑢)⊝.
We omit this annotation when it can be deduced from context.
(This issue finds a formal solution through sequent calculus in Sec-
tion IV.4, at the price of relaxing constraint #2.)
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IV.3.1 Negating a positive: polarised arrows
The negation of a positive formula 𝑃 is given with 𝑃 → ⊥. Let us first
explain the polarised arrow.

The application is in call by value, by which we mean that in 𝑡 𝑢,
the argument 𝑢 is evaluated first, when it is not already a value:�� ��⟨𝑡⊝ 𝑢+ ‖𝜋⟩ ≻𝑝 ⟨𝑢+ ∥ ̃𝜇𝑥+.⟨𝑡⊝ ‖𝑥+⋅𝜋⟩⟩ if 𝑢+ is not a value

⟨𝑡⊝ 𝑉 ‖𝜋⟩ ≻𝑝 ⟨𝑡⊝ ‖𝑉⋅𝜋⟩

In particular, stacks captured by control operators are guaranteed to
be of the form 𝑉⋅𝜋 where 𝑉 is a value.

Example IV.3. In this context, polarisation means that given three
terms:

Γ ⊢ 𝑡+ ∶ 𝑃
Γ, 𝑥+ ∶ 𝑃 ⊢ 𝑢⊝ ∶ 𝑁
Γ, 𝑦⊝ ∶ 𝑁 ⊢ 𝑣 ∶ 𝐴

there are two ways of composing them:

(𝜆𝑦⊝.𝑣)(𝜆𝑥+.𝑢⊝ 𝑡+)⊝

(𝜆𝑥+.(𝜆𝑦⊝.𝑣)𝑢⊝) 𝑡+

which correspond to the following distinct behaviours:

⟨(𝜆𝑦⊝.𝑣)(𝜆𝑥+.𝑢⊝ 𝑡+)⊝ ‖𝜋⟩ ≻∗
𝑝 ⟨𝑣[(𝜆𝑥+.𝑢⊝ 𝑡+)⊝/𝑦⊝]‖𝜋⟩

⟨(𝜆𝑥+.(𝜆𝑦⊝.𝑣)𝑢⊝) 𝑡+ ‖𝜋⟩ ≻∗
𝑝 ⟨𝑡+ ∥ ̃𝜇𝑥+.⟨(𝜆𝑦⊝.𝑣)𝑢⊝ ‖𝜋⟩⟩

Thus, for lack of associativity of composition, the λℓ calculus es-
capes from the following argument of category theory, which his-
torically opposed the existence of non-boolean categorical models
of classical logic: as it is well-known, a cartesian-closed category
never has a dualising object ⊥, that is to say which satisfies a natural
isomorphism ⊥⊥𝐴 ≃ 𝐴, unless it is a boolean algebra.
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This follows more generally from the difficulty of interpreting neg-
ation already in intuitionistic logic: in a bi-cartesian-closed category,
there is at most one morphism from any object to the initial ob-
ject [LS86, p.67].

IV.3.2 Falsity: delimited control
We assume that execution happens in a machine of the following
form: �� ��⟨𝑡 ‖𝜋⟩[𝜋1

⊝,… , 𝜋𝑛
⊝]

where 𝜎 = 𝜋1
⊝,… , 𝜋𝑛

⊝ is a list of negative stacks.
As a consequence, the notation 𝑐 ≻𝑝 𝑐′ is an abbreviation which

denotes:
∀𝜎 , 𝑐[𝜎] ≻𝑝 𝑐′[𝜎]

In typed settings we may expect these stacks to be of type ⊥. The list
𝜎 interacts with control operators: we shall see that the send operator
lets it grow whereas the operator ℓ lets it shrink.

We can think of 𝜎 as a list of exception handlers, with terms of
type ⊥ being handled by raising an exception. (This interpretation
is inspired from the decomposition of delimited control operators of
Herbelin et al. [AHS04, HG08])

The goal is to reconcile the stack stop of the λC calculus with equa-
tions of extensionality that we will introduce in Section IV.4. The
natural equation in this context, indeed, which the λℓ calculus re-
jects:

∀𝜋 (stop ≃ 𝜋)
identifies all the terms of of the λC calculus, as we will explain.

Recall that the stack stop appears during the reduction of the λC
calculus as a context of type ⊥ (Figure I.12 on page 81):

⟨𝒞 ‖𝑡⋅𝜋⟩ ≻𝑛 ⟨𝑡 ‖k𝜋⋅stop⟩

As we shall see below, the operator ℓ replaces stop with the head of
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the list 𝜎:
⟨ℓ‖𝑡⋅𝜋⟩[𝜋 ′

⊝, 𝜎] ≻𝑝 ⟨𝑡 ‖ j𝜋⋅𝜋 ′
⊝⟩[𝜎]

IV.3.3 Negating a negative: inspectable stacks
In order to interpret the negation of a negative formula 𝑁, we intro-
duce the positive type ∼𝑁 of inspectable stacks.

An inspectable stack is:

a value that denotes a captured stack and that exports
accessors to its components.

An inspectable stack is denoted with 𝑉+ = [𝜋] (Figure IV.3a). The
constants 𝐷→, 𝐷∀ and 𝐷⊥ let us access the components of an inspect-
able stack: �

�

�

�
𝐷→ ∶ ∼(𝐴 → 𝐵) → 𝐴 ⊗ ∼𝐵
𝐷∀ ∶ ∼(∀𝑥 𝐴) → ∃𝑥 ∼𝐴
𝐷⊥ ∶ ∼⊥ → 𝐴 → 𝐴

⟨𝐷→ ‖[𝑉⋅𝜋1]⋅𝜋2⟩ ≻𝑝 ⟨(𝑉, [𝜋1])‖𝜋2⟩
⟨𝐷∀ ‖[𝜋1]⋅𝜋2⟩ ≻𝑝 ⟨[𝜋1]‖𝜋2⟩

⟨𝐷⊥ ‖[𝜋⊝]⋅𝑡⋅𝜋 ′⟩ ≻𝑝 ⟨𝑡 ‖𝜋 ′⟩[𝜋⊝]

It is therefore important to distinguish the type ∼𝑁 from the type
𝑁 → ⊥ of continuations, in the sense of functions that do not return.

Also, a captured stack can be positive, which gives a value of the
positive type ∼𝑃. However we provide no accessor.

Remark That captured contexts are more primitive than continuations
is obvious in programming languages, with the examples of the operation
getcontext in the language C or the operation thisContext in the language
Smalltalk, where the contents of captured contexts can be accessed.
Clements gives a theoretical status to the idea of high-level access to

the components of the contexts [Cle06]. This allows for instance the port-
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able, high-level, implementation of a debugger. Now this idea appears
again through a theoretical question about type isomorphisms.

Example IV.4. We can combine 𝐷∀ and 𝐷→ to get a proof of:

¬∀x(𝐴 → 𝑁) → ∃x (𝐴 ⊗¬𝑁)

Take 𝐵 = 𝑁 in the following:

𝐷∀→ ≝ 𝜆𝑥+.let 𝑦+ be𝐷∀ 𝑥+ in𝐷→ 𝑦+

𝐷∀→ ∶ ∼∀x(𝐴 → 𝐵) → ∃x (𝐴 ⊗ ∼𝐵)
⟨𝐷∀→ ‖[𝑉⋅𝜋]⋅𝜋+⟩[𝜎] ≻∗

𝑝 ⟨(𝑉, [𝜋])‖𝜋+⟩[𝜎]

Proof. In the following derivation we omit contexts Γ.

—𝐷∀ [𝑥+ ∶ ∼∀x(𝐴 → 𝐵)]—(→𝑒)𝐷∀ 𝑥+ ∶ ∃x ∼(𝐴 → 𝐵)

—𝐷→ [𝑦+ ∶ ∼(𝐴 → 𝐵)]—(→𝑒)𝐷→ 𝑦+ ∶ 𝐴 ⊗ ∼𝐵—(∃𝑖)𝐷→ 𝑦+ ∶ ∃x (𝐴 ⊗ ∼𝐵)—(∃𝑒)
let 𝑦+ be𝐷∀ 𝑥+ in𝐷→ 𝑦+ ∶ ∃x (𝐴 ⊗ ∼𝐵)—(→𝑖)𝐷∀→ ∶ ∼∀x(𝐴 → 𝐵) → ∃x (𝐴 ⊗ ∼𝐵)

We have the reduction:

⟨𝐷∀→ ‖[𝑉⋅𝜋]⋅𝜋+⟩[𝜎]
≻𝑝 ⟨let 𝑦+ be𝐷∀ [𝑉⋅𝜋] in𝐷→ 𝑦+‖𝜋+⟩[𝜎]
≻𝑝 ⟨𝐷∀ [𝑉⋅𝜋]∥ ̃𝜇𝑦+.⟨𝐷→ 𝑦+‖𝜋+⟩⟩[𝜎]
≻𝑝 ⟨𝐷∀ ∥[𝑉⋅𝜋]⋅ ̃𝜇𝑦+.⟨𝐷→ 𝑦+‖𝜋+⟩⟩[𝜎]
≻𝑝 ⟨[𝑉⋅𝜋]∥ ̃𝜇𝑦+.⟨𝐷→ 𝑦+‖𝜋+⟩⟩[𝜎]
≻𝑝 ⟨𝐷→ [𝑉⋅𝜋]‖𝜋+⟩[𝜎]
≻𝑝 ⟨𝐷→ ‖[𝑉⋅𝜋]⋅𝜋+⟩[𝜎]
≻𝑝 ⟨(𝑉, [𝜋])‖𝜋+⟩[𝜎] ∎

The immediateness of the operation is in sharp contrast with its
homologue of the λC calculus given in Example I.9. The essential
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difference is that 𝐷∀→ accesses the components of a stack which is
already captured, whereas the term of the λC calculus contains two
control operators.2

Example IV.5. We can combine 𝐷→ and 𝐷⊥ to obtain a proof in
particular of ¬¬𝑃 → 𝑃 (take 𝐴 = 𝑃):

𝐷¬ ≝ 𝜆𝑥+.let (𝑦𝜀, 𝑧+) be𝐷→ 𝑥+ in (𝐷⊥ 𝑧+ 𝑦𝜀)𝜀

𝐷¬ ∶ ∼(𝐴 → ⊥) → 𝐴
⟨𝐷¬ ‖[𝑉𝜀⋅𝜋⊝]⋅𝜋 ′

𝜀⟩[𝜎] ≻∗
𝑝 ⟨𝑉𝜀 ‖𝜋 ′

𝜀⟩[𝜋⊝, 𝜎]

The term 𝐷¬ keeps 𝜋⊝ at the head of the list 𝜎 . A variant erases 𝜋⊝:

𝐷′
¬ ≝ 𝜆𝑥+.let (𝑦𝜀, 𝑧+) be𝐷→ 𝑥+ in 𝑦𝜀

𝐷′
¬ ∶ ∼(𝐴 → ⊥) → 𝐴 avec 𝜀 = 𝜛(𝐴)

⟨𝐷′
¬ ‖[𝑉𝜀⋅𝜋⊝]⋅𝜋 ′

𝜀⟩[𝜎] ≻∗
𝑝 ⟨𝑉𝜀 ‖𝜋 ′

𝜀⟩[𝜎]

Proof. In the following derivation, we omit contexts Γ.

[𝑥+ ∶ ∼(𝐴 → ⊥)]
——

𝐷→ 𝑥+ ∶ 𝐴 ⊗ ∼⊥

[𝑧+ ∶ ∼⊥]
——

𝐷⊥ 𝑧+ ∶ 𝐴 → 𝐴 [𝑦𝜀 ∶ 𝐴]—(→𝑒)(𝐷⊥ 𝑧+𝑦𝜀)𝜀 ∶ 𝐴—(⊗𝑒)
let (𝑦𝜀, 𝑧+) be𝐷→ 𝑥+ in (𝐷⊥ 𝑧+𝑦𝜀)𝜀 ∶ 𝐴—(→𝑖)𝐷¬ ∶ ∼(𝐴 → ⊥) → 𝐴

(where 𝜀 = 𝜛(𝐴)).
We have the reduction:

⟨𝐷¬ ‖[𝑉𝜀 ⋅𝜋⊝]⋅𝜋 ′
𝜀⟩[𝜎]

≻𝑝 ⟨let (𝑦𝜀, 𝑧+) be𝐷→ [𝑉𝜀 ⋅𝜋⊝] in (𝐷⊥ 𝑧+𝑦𝜀)𝜀 ‖𝜋 ′
𝜀⟩[𝜎]

≻𝑝 ⟨𝐷→ [𝑉𝜀 ⋅𝜋⊝]∥ ̃𝜇(𝑦𝜀, 𝑧+).⟨(𝐷⊥ 𝑧+𝑦𝜀)𝜀 ‖𝜋 ′
𝜀⟩⟩[𝜎]

2The new term would be simpler still if we took the trouble of introducing a no-
tion of subtyping. The behaviour of 𝐷∀ indeed corresponds to a subtyping
rule ∼(∀𝑥 𝐴) <∶ ∃𝑥 ∼𝐴.
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≻𝑝 ⟨𝐷→ ∥[𝑉𝜀 ⋅𝜋⊝]⋅ ̃𝜇(𝑦𝜀, 𝑧+).⟨(𝐷⊥ 𝑧+𝑦𝜀)𝜀 ‖𝜋 ′
𝜀⟩⟩[𝜎]

≻𝑝 ⟨(𝑉𝜀 , [𝜋⊝])∥ ̃𝜇(𝑦𝜀, 𝑧+).⟨(𝐷⊥ 𝑧+𝑦𝜀)𝜀 ‖𝜋 ′
𝜀⟩⟩[𝜎]

≻𝑝 ⟨(𝐷⊥ [𝜋⊝] 𝑉𝜀)𝜀 ‖𝜋 ′
𝜀⟩[𝜎]

≻𝑝 ⟨𝐷⊥ [𝜋⊝]‖𝑉𝜀 ⋅𝜋 ′
𝜀⟩[𝜎]

≻𝑝 ⟨𝐷⊥ ‖[𝜋⊝]⋅𝑉𝜀 ⋅𝜋 ′
𝜀⟩[𝜎]

≻𝑝 ⟨𝑉𝜀 ‖𝜋 ′
𝜀⟩[𝜋⊝, 𝜎] ∎

The isomorphism ¬¬𝑃 ≃ 𝑃 will discriminate between 𝐷¬ and 𝐷′
¬:

indeed, the invertible morphism is going to be 𝐷¬ and not 𝐷′
¬.

IV.3.4 Capturing and installing stacks
Given a captured stack [𝜋], the stack is re-installed as the context of
another term 𝑡 by the constant send:

⟨send‖[𝜋]⋅𝑡⋅𝜋 ′
⊝⟩[𝜎] ≻𝑝 ⟨𝑡 ‖𝜋⟩[𝜋 ′

⊝, 𝜎]

In other words, the constant send converts a captured stack into a
continuation: �� ��send ∶ ∼𝐴 → 𝐴 → ⊥
The stack 𝜋 ′

⊝, supposedly of type ⊥ according to the type of send, is
added on top of 𝜎 .

The operator responsible for the apparition of inspectable stacks is
ℓ: �� ��ℓ ∶ (𝐴 → ⊥) → ∼𝐴

The notation ℓ𝑥.𝑡⊝ stands for (ℓ 𝜆𝑥.𝑡⊝)+. It evaluates 𝑡⊝ until 𝑥 comes
in head position, that is to say in front of a stack 𝜋. When this
happens, the operator ℓ captures 𝜋 and supplies the inspectable stack
[𝜋] to the context where ℓ was applied. Last, the operator ℓ falls
back to the head of the list 𝜎 in case 𝑡⊝ returns without using 𝑥.3

3This comes as an explanation to the fact that Murthy’s computational inter-
pretation of LC must evaluate “under the 𝜆-abstraction” [Mur92]. Murthy was,
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This operation is formally described by introducing the j operator.
The operator ℓ saves in j the context 𝜋+ in which ℓ is applied, and
installs the head 𝜋⊝ as the new context:

⟨ℓ‖𝑡⊝⋅𝜋+⟩[𝜋⊝, 𝜎] ≻𝑝 ⟨𝑡⊝ ‖ j𝜋+⋅𝜋⊝⟩[𝜎]

Once the operator j𝜋+ comes in head position, it captures the stack
and restores the context 𝜋+:

⟨j𝜋+ ‖𝜋⟩[𝜎] ≻𝑝 ⟨[𝜋]‖𝜋+⟩[𝜎]

Example IV.6. Using ℓ, we derive an operator 𝒜 (abort) which
interprets the rule Ex Falso Quodlibet:

𝒜𝜀 ≝ 𝜆𝑥⊝.let (𝑦𝜀, 𝑧+) be𝐷→ ℓ_.𝑥⊝ in 𝑦𝜀

𝒜𝜀 ∶ ⊥ → 𝐴 (where 𝜀 = 𝜛(𝐴))
⟨𝒜𝜀 ‖𝑡⊝⋅𝜋𝜀⟩[𝜋 ′

⊝, 𝜎] ≻∗
𝑝 ⟨𝑡⊝ ‖𝜋 ′

⊝⟩[𝜎]

Proof. There is the derivation:

—𝐷→

—
ℓ

𝑥⊝ ∶ ⊥—(→𝑖)𝜆_.𝑥⊝ ∶ (𝐴 → 𝐵) → ⊥—(→𝑒)ℓ 𝜆_.𝑥⊝ ∶ ∼(𝐴 → 𝐵)—(→𝑒)𝐷→ ℓ_.𝑥⊝ ∶ 𝐴 ⊗ ∼𝐵 [𝑦𝜀 ∶ 𝐴]—(⊗𝑒)
let (𝑦𝜀, 𝑧+) be𝐷→ ℓ_.𝑥⊝ in 𝑦𝜀 ∶ 𝐴—(→𝑖)𝒜𝜀 ∶ ⊥ → 𝐴

There also is the reduction:

⟨𝒜𝜀 ‖𝑡⊝⋅𝜋𝜀⟩[𝜋 ′
⊝, 𝜎]

≻𝑝 ⟨let (𝑦𝜀, 𝑧+) be𝐷⊗ ℓ_.𝑡⊝ in 𝑦𝜀 ‖𝜋𝜀⟩[𝜋 ′
⊝, 𝜎]

≻𝑝 ⟨𝐷⊗ ℓ_.𝑡⊝ ∥ ̃𝜇(𝑦𝜀, 𝑧+).⟨𝑦𝜀 ‖𝜋𝜀⟩⟩[𝜋 ′
⊝, 𝜎]

≻𝑝 ⟨ℓ_.𝑡⊝ ∥ ̃𝜇𝑥+.⟨𝐷⊗ ∥𝑥+⋅ ̃𝜇(𝑦𝜀, 𝑧).⟨𝑦𝜀 ‖𝜋𝜀⟩⟩⟩[𝜋 ′
⊝, 𝜎]

in advance of his time, in fact describing the behaviour of a variant of ℓ.
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≻𝑝 ⟨ℓ ∥𝜆_.𝑡⊝⋅ ̃𝜇𝑥+.⟨𝐷⊗ ∥𝑥+⋅ ̃𝜇(𝑦𝜀, 𝑧).⟨𝑦𝜀 ‖𝜋𝜀⟩⟩⟩[𝜋 ′
⊝, 𝜎]

≻𝑝 ⟨𝜆_.𝑡⊝ ∥ j ̃𝜇𝑥+.⟨𝐷⊗ ∥𝑥+⋅ ̃𝜇(𝑦𝜀 ,𝑧).⟨𝑦𝜀 ‖𝜋𝜀 ⟩⟩⋅𝜋 ′
⊝⟩[𝜎]

≻𝑝 ⟨𝑡⊝ ‖𝜋 ′
⊝⟩[𝜎] ∎

Example IV.7. By combining 𝜆𝑥𝑦.𝑦𝑥 ∶ 𝐴 → ((𝐴 → ⊥) → ⊥) with ℓwe
obtain a proof of 𝑃 → ¬¬𝑃 (take 𝐴 = 𝑃):

𝐸 ∶ 𝐴 → ∼(𝐴 → ⊥)
𝐸 ≝ 𝜆𝑥.ℓ𝑦⊝.(𝑦⊝ 𝑥)⊝

⟨𝐸‖𝑉⋅𝜋+⟩[𝜋⊝, 𝜎] ≻∗
𝑝 ⟨[𝑉⋅𝜋⊝]‖𝜋+⟩[𝜎]

Proof. We have the reduction:

⟨𝐸‖𝑉⋅𝜋+⟩[𝜋⊝, 𝜎]
≻𝑝 ⟨ℓ𝑦⊝.(𝑦⊝ 𝑉)⊝ ‖𝜋+⟩[𝜋⊝, 𝜎]
≻𝑝 ⟨ℓ ‖𝜆𝑦⊝.(𝑦⊝ 𝑉)⊝⋅𝜋+⟩[𝜋⊝, 𝜎]
≻𝑝 ⟨𝜆𝑦⊝.(𝑦⊝ 𝑉)⊝ ‖ j𝜋+ ⋅𝜋⊝⟩[𝜎]
≻𝑝 ⟨(j𝜋+ 𝑉)⊝ ‖𝜋⊝⟩[𝜎]
≻𝑝 ⟨j𝜋+ ‖𝑉⋅𝜋⊝⟩[𝜎]
≻𝑝 ⟨[𝑉⋅𝜋⊝]‖𝜋+⟩[𝜎] ∎

Example IV.8. We obtain the elimination of double negation
¬¬𝑁 → 𝑁 as follows (take 𝐴 = 𝑁):

𝒯 ∶ (∼𝐴 → ⊥) → 𝐴
𝒯 ≝ 𝜆𝑥⊝.(𝐷¬ ℓ𝑦⊝.(𝑥⊝ (ℓ𝑦⊝)+))
⟨𝒯 ‖𝑡⊝⋅𝜋⟩[𝜋 ′

⊝, 𝜋″
⊝, 𝜎] ≻∗

𝑝 ⟨𝑡⊝ ‖[𝜋]⋅𝜋 ′
⊝⟩[𝜋″

⊝, 𝜎]
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Proof. We have the derivation:

—𝐷¬

—
ℓ

[𝑥⊝ ∶ ∼𝐴 → ⊥]

—
ℓ [𝑦⊝ ∶ 𝐴 → ⊥]—(→𝑒)(ℓ 𝑦⊝)+ ∶ ∼𝐴—(→𝑒)𝑥⊝ (ℓ 𝑦⊝)+ ∶ ⊥—(→𝑖)𝜆𝑦⊝.(𝑥⊝ (ℓ 𝑦⊝)+) ∶ (𝐴 → ⊥) → ⊥—(→𝑒)ℓ𝑦⊝.(𝑥⊝ (ℓ 𝑦⊝)+) ∶ ∼(𝐴 → ⊥)—(→𝑒)𝐷¬ ℓ𝑦⊝.(𝑥⊝ (ℓ 𝑦⊝)+) ∶ 𝐴—(→𝑖)𝒯 ∶ (∼𝐴 → ⊥) → 𝐴

We also have the reduction:

⟨𝒯 ‖𝑡⊝⋅𝜋⟩[𝜋 ′
⊝, 𝜋″

⊝, 𝜎]
≻𝑝 ⟨𝐷¬ ℓ𝑦⊝.(𝑡⊝ (ℓ 𝑦⊝)+)‖𝜋⟩[𝜋 ′

⊝, 𝜋″
⊝, 𝜎]

≻𝑝 ⟨ℓ𝑦⊝.(𝑡⊝ (ℓ 𝑦⊝)+)∥ ̃𝜇𝑥+.⟨𝐷¬ ‖𝑥+⋅𝜋⟩⟩[𝜋 ′
⊝, 𝜋″

⊝, 𝜎]
≻𝑝 ⟨ℓ ∥𝜆𝑦⊝.(𝑡⊝ (ℓ 𝑦⊝)+)⋅ ̃𝜇𝑥+.⟨𝐷¬ ‖𝑥+⋅𝜋⟩⟩[𝜋 ′

⊝, 𝜋″
⊝, 𝜎]

≻𝑝 ⟨𝜆𝑦⊝.(𝑡⊝ (ℓ 𝑦⊝)+)∥ j ̃𝜇𝑥+.⟨𝐷¬ ‖𝑥+⋅𝜋⟩⋅𝜋 ′
⊝⟩[𝜋″

⊝, 𝜎]
≻𝑝 ⟨𝑡⊝ (ℓ j ̃𝜇𝑥+.⟨𝐷¬ ‖𝑥+⋅𝜋⟩)+ ∥𝜋 ′

⊝⟩[𝜋″
⊝, 𝜎]

≻𝑝 ⟨(ℓ j ̃𝜇𝑥+.⟨𝐷¬ ‖𝑥+⋅𝜋⟩)+ ∥ ̃𝜇𝑥+.⟨𝑡⊝ ‖𝑥+⋅𝜋 ′
⊝⟩⟩[𝜋″

⊝, 𝜎]
≻𝑝 ⟨ℓ ∥ j ̃𝜇𝑥+.⟨𝐷¬ ‖𝑥+⋅𝜋⟩⋅ ̃𝜇𝑥+.⟨𝑡⊝ ‖𝑥+⋅𝜋 ′

⊝⟩⟩[𝜋″
⊝, 𝜎]

≻𝑝 ⟨j ̃𝜇𝑥+.⟨𝐷¬ ‖𝑥+⋅𝜋⟩ ∥ j ̃𝜇𝑥+.⟨𝑡⊝ ‖𝑥+⋅𝜋 ′
⊝⟩⋅𝜋″

⊝⟩[𝜎]
≻𝑝 ⟨[j ̃𝜇𝑥+.⟨𝑡⊝ ‖𝑥+⋅𝜋 ′

⊝⟩⋅𝜋″
⊝]∥ ̃𝜇𝑥+.⟨𝐷¬ ‖𝑥+⋅𝜋⟩⟩[𝜎]

≻𝑝 ⟨𝐷¬ ∥[j ̃𝜇𝑥+.⟨𝑡⊝ ‖𝑥+⋅𝜋 ′
⊝⟩⋅𝜋″

⊝]⋅𝜋⟩[𝜎]
≻𝑝 ⟨j ̃𝜇𝑥+.⟨𝑡⊝ ‖𝑥+⋅𝜋 ′

⊝⟩ ∥𝜋⟩[𝜋″
⊝, 𝜎]

≻𝑝 ⟨[𝜋]∥ ̃𝜇𝑥+.⟨𝑡⊝ ‖𝑥+⋅𝜋 ′
⊝⟩⟩[𝜋″

⊝, 𝜎]
≻𝑝 ⟨𝑡⊝ ‖[𝜋]⋅𝜋 ′

⊝⟩[𝜋″
⊝, 𝜎] ∎
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IV.3.5 Refining C
The following example shows that the operators ℓ and j refine the
operators 𝒞 and k. Assume that we have chosen a distinguished
negative stack constant stop.

Example IV.9. Let us take:

𝒞 ≝ 𝜆𝑥⊝.𝐷′
¬(ℓ 𝑥⊝)+

k𝜋𝜀 ≝ j ̃𝜇𝑥+.⟨𝐷′
¬ 𝑥+‖𝜋𝜀 ⟩

We have:

𝒞 ∶ ((𝑁 → ⊥) → ⊥) → 𝑁
⟨𝒞 ‖𝑡⊝⋅𝜋⊝⟩[stop, 𝜎] ≻∗

𝑝 ⟨𝑡⊝ ‖k𝜋⊝⋅stop⟩[𝜎]
⟨k𝜋𝜀 ‖𝑡𝜀⋅𝜋 ′

⊝⟩ ≻∗
𝑝 ⟨𝑡𝜀 ‖𝜋𝜀⟩

Proof. We have the following derivation:

𝑥⊝ ∶ (𝐴 → ⊥) → ⊥—
(ℓ 𝑥⊝)+ ∶ ∼(𝐴 → ⊥)—

𝐷′
¬(ℓ 𝑥⊝)+ ∶ 𝐴

We have the reductions:

⟨𝒞 ‖𝑡⊝⋅𝜋⊝⟩[stop, 𝜎]
≻𝑝 ⟨𝐷′

¬(ℓ 𝑡⊝)+ ‖𝜋⊝⟩[stop, 𝜎]
≻𝑝 ⟨(ℓ 𝑡⊝)+ ∥ ̃𝜇𝑥+.⟨𝐷′

¬ 𝑥+‖𝜋⊝⟩⟩[stop, 𝜎]
≻𝑝 ⟨(ℓ 𝑡⊝)+ ∥ ̃𝜇𝑥+.⟨𝐷′

¬ 𝑥+‖𝜋⊝⟩⟩[stop, 𝜎]
≻𝑝 ⟨ℓ ∥ 𝑡⊝⋅ ̃𝜇𝑥+.⟨𝐷′

¬ 𝑥+‖𝜋⊝⟩⟩[stop, 𝜎]
≻𝑝 ⟨𝑡⊝ ∥ j ̃𝜇𝑥+.⟨𝐷′

¬ 𝑥+‖𝜋⊝⟩⋅stop⟩[𝜎]
= ⟨𝑡⊝ ‖k𝜋⊝ ⋅stop⟩[𝜎]
⟨k𝜋⊝ ‖𝑡⊝⋅𝜋 ′

⊝⟩[𝜎]
≻𝑝 ⟨[𝑡⊝⋅𝜋 ′

⊝]∥ ̃𝜇𝑥+.⟨𝐷′
¬ 𝑥+‖𝜋⊝⟩⟩[𝜎]
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≻𝑝 ⟨𝐷′
¬ [𝑡⊝⋅𝜋 ′

⊝]‖𝜋⊝⟩[𝜎]
≻𝑝 ⟨𝐷′

¬ ‖[𝑡⊝⋅𝜋 ′
⊝]⋅𝜋⊝⟩[𝜎]

≻𝑝 ⟨𝑡⊝ ‖𝜋⊝⟩[𝜎] ∎

As a consequence, given an initial list 𝜎 = stop,… , stop which is
long enough, the reduction in the λℓ calculus simulates the reduc-
tion in the λC calculus in the following sense:

𝑐 ≻+
𝑛 𝑐′ ⇒ ∃𝑛 ∈ ℕ𝑐[stop𝑛] ≻+

𝑝 𝑐′

IV.4 The calculus Lpol,t̂p⊝

In this section we introduce the calculus Lpol,t̂p⊝ . In IV.4.1 we explain
its operations, and we show how they implement the λℓ calculus.
Then, in Section IV.4.2 on page 230 we introduce a CPS translation
and we prove that not all terms are identified. Finally, in IV.4.3 we
explain how Lpol,t̂p⊝ relates to other calculi with control operators.

We present the calculus Lpol,t̂p⊝ in Figure IV.4 on page 225. It
enriches Ln with:

• The positive conjunction ⊗, with the corresponding focusing
rules;

• The positive negation ∼, and the corresponding focusing rule;

• Alternate rules for ⊥ for which we introduce the operators t̂p and
𝜇t̂p.

The calculus Lpol,t̂p⊝ differs from the calculus Lpol,t̂p+ from Chapter III
in the fact that the term 𝜇t̂p.𝑐 is negative in Lpol,t̂p⊝ while it is positive
in Lpol,t̂p+ .

For conciseness we chose to leave aside the shifts of the calculus
Ldup from II, although there is no difficulty in adding them. The
calculus still has weak shifts, as we will see in Section IV.6.
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IV.4.1 Interpreting λℓ

Positive bindings
The binder ̃𝜇 allows us to derive the bindings let 𝑥 be 𝑡 in 𝑢. The term
let 𝑥+ be 𝑡+ in 𝑢 of the λℓ calculus is obtained through the definition:�� ��let 𝑥+ be 𝑡+ in 𝑢𝜀 ≝ 𝜇𝛼𝜀.⟨𝑡+ ∥ ̃𝜇𝑥+.⟨𝑢𝜀 ‖𝛼𝜀⟩⟩ ,

for any terms 𝑡+ and 𝑢 of Lpol,t̂p⊝ . The binder ̃𝜇 also decomposes pairs
of values. Thus we define similarly:�� ��let (𝑥, 𝑦) be 𝑡+ in 𝑢𝜀 ≝ 𝜇𝛼𝜀.⟨𝑡+ ∥ ̃𝜇(𝑥, 𝑦).⟨𝑢𝜀 ‖𝛼𝜀⟩⟩ .

Last, application is defined with:�� ��(𝑡⊝ 𝑢)𝜀 ≝ 𝜇𝛼𝜀.⟨𝑡⊝ ‖𝑢⋅𝛼𝜀⟩ .

Evaluation in call by value is enforced by the focusing rule (𝜍→1).
Indeed, it implies that if 𝑢+ is not a value, then we have:

⟨(𝑡⊝ 𝑢+)𝜀 ‖𝜋𝜀⟩ = ⟨𝜇𝛼𝜀.⟨𝑡⊝ ‖𝑢+⋅𝛼𝜀⟩∥𝜋𝜀⟩
⊳R𝑝

⟨𝜇𝛼𝜀.⟨𝑡⊝ ‖𝑢+⋅𝛼𝜀⟩∥𝜋𝜀⟩
⊳R𝑝

⟨𝑡⊝ ‖𝑢+⋅𝜋𝜀⟩
⊳R𝑝

⟨𝑢+ ∥ ̃𝜇𝑥+.⟨𝑡⊝ ‖𝑥+⋅𝜋𝜀⟩⟩

This coincides with the reduction rule of λℓ.

The operator 𝜇t̂p
As in the calculus Lpol,t̂p+ , the operator 𝜇t̂p implements the list of
stacks, which is defined inductively as follows:�

�
�
�

𝑐[] ≝ 𝑐
𝑐[𝜋1

⊝,… , 𝜋𝑛
⊝] ≝ ⟨𝜇t̂p.𝑐 ‖𝜋1

⊝⟩[𝜋2
⊝,… , 𝜋𝑛

⊝]
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�� ��… : Main additions to Figure I.10.

𝑡
⎧{
⎨{⎩

𝑡⊝ ⩴ 𝑥⊝ ∣ 𝜆𝑥.𝑡 ∣ 𝜇𝛼⊝.𝑐 ∣
�� ��𝜇t̂p.𝑐

𝑡+ ⩴
�� ��𝑥+ ∣ (𝑡, 𝑡) ∣ [𝑒] ∣ 𝜇𝛼+.𝑐

𝑡 ⊇ 𝑉
⎧{
⎨{⎩

𝑡⊝

𝑉+ ⩴
�� ��𝑥+ ∣ (𝑉, 𝑉) ∣ [𝜋]

𝑒
⎧{
⎨{⎩

𝑒⊝ ⩴ 𝛼⊝ ∣ 𝑡⋅𝑒 ∣ ̃𝜇𝑥⊝.𝑐 ∣
�� ��t̂p

𝑒+ ⩴
�� ��𝛼+ ∣ ̃𝜇𝑥+.𝑐 ∣ ̃𝜇(𝑥, 𝑦).𝑐 ∣ ̃𝜇[𝛼].𝑐

𝑒 ⊇ 𝜋{
𝜋⊝ ⩴ 𝛼⊝ ∣ 𝑉⋅𝜋
𝑒+

𝑐 ⩴
�� ��⟨𝑡+ ‖𝑒+⟩ ∣ ⟨𝑡⊝ ‖𝑒⊝⟩

(a) Terms, values, contexts, stacks, and commands

(𝑅 ̃𝜇) ⟨𝑉 ‖ ̃𝜇𝑥.𝑐⟩ ⊳R𝑝
𝑐[𝑉/𝑥]

(𝑅𝜇) ⟨𝜇𝛼.𝑐‖𝜋⟩ ⊳R𝑝
𝑐[𝜋/𝛼]

(𝑅→) ⟨𝜆𝑥.𝑡 ‖𝑉⋅𝜋⟩† ⊳R𝑝
⟨𝑡[𝑉/𝑥]‖𝜋⟩

(𝑅⊗) ⟨(𝑉, 𝑊)‖ ̃𝜇(𝑥, 𝑦).𝑐⟩† ⊳R𝑝
𝑐[𝑉/𝑥, 𝑊/𝑦]

(𝑅∼) ⟨[𝜋𝜀]‖ ̃𝜇[𝛼𝜀].𝑐⟩ ⊳R𝑝
𝑐[𝜋𝜀/𝛼𝜀]

(𝑅t̂p) 𝜇t̂p.⟨𝑡⊝ ‖ t̂p⟩‡ ⊳R𝑝
𝑡⊝

†When polarities match pairwise. ‡Even if t̂p occurs in 𝑡⊝

(𝜍⊗1) ⟨(𝑡+, 𝑢)‖𝑒+⟩† ⊳R𝑝
⟨𝑡+ ∥ ̃𝜇𝑥.⟨(𝑥, 𝑢)‖𝑒+⟩⟩

(𝜍⊗2) ⟨(𝑉, 𝑡+)‖𝑒+⟩† ⊳R𝑝
⟨𝑡+ ∥ ̃𝜇𝑦.⟨(𝑉, 𝑦)‖𝑒+⟩⟩

(𝜍∼) ⟨[𝑒⊝]‖𝑒+⟩‡ ⊳R𝑝
⟨𝜇𝛽⊝.⟨[𝛽⊝]‖𝑒+⟩∥𝑒⊝⟩

(𝜍→1) ⟨𝑢⊝ ‖𝑡+⋅𝑒⟩† ⊳R𝑝
⟨𝑡+ ∥ ̃𝜇𝑥.⟨𝑢⊝ ‖𝑥⋅𝑒⟩⟩

(𝜍→2) ⟨𝑢⊝ ‖𝑉⋅𝑒⊝⟩‡ ⊳R𝑝
⟨𝜇𝛼.⟨𝑢⊝ ‖𝑉⋅𝛼⟩∥𝑒⊝⟩

†When 𝑡+ is not a value. ‡When 𝑒⊝ is not a stack.

(b) Reduction rules

(𝐸 ̃𝜇) 𝑒 ⊳E𝑝
̃𝜇𝑥.⟨𝑥‖𝑒⟩ (𝐸⊗) 𝜋⊝ ⊳E𝑝

̃𝜇(𝑥, 𝑦).⟨(𝑥, 𝑦)‖𝜋⊝⟩
(𝐸𝜇) 𝑡 ⊳E𝑝

𝜇𝛼.⟨𝑡 ‖𝛼⟩ (𝐸∼) 𝑒+ ⊳E𝑝
̃𝜇[𝛼].⟨[𝛼]‖𝑒+⟩

(𝐸→) 𝑡⊝ ⊳E𝑝
𝜆𝑥.𝜇𝛼.⟨𝑡⊝ ‖𝑥⋅𝛼⟩ (𝐸t̂p) 𝑐 ⊳E𝑝

⟨𝜇t̂p.𝑐‖ t̂p⟩

(c) Expansion rules (new variables are fresh)

Figure IV.4: Lpol,t̂p⊝ : the calculus
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�� ��… : Main additions to Figure I.11.

𝐴, 𝐵
⎧{
⎨{⎩

𝑁, 𝑀 ⩴ 𝐴 → 𝐵 ∣ ∀x 𝑁 ∣ ⊥
𝑃, 𝑄 ⩴

�� ��𝑋(t1,… , t𝑛) ∣ 𝐴 ⊗ 𝐵 ∣ ∃𝑥 𝑃 ∣ ∼𝐴

(a) Formulae

�� ��𝑓 ∶ 𝐴 ⩴ 𝑓+ ∶ 𝑃 ∣ 𝑓 ⊝ ∶ 𝑁
for 𝑓 ∈ {𝑥, 𝛼, 𝑡, 𝑒}.

Γ = ⃗𝑥𝑖 ∶ ⃗𝐴𝑖 Δ = ⃗𝛼𝑗 ∶ ⃗𝐵𝑗
Γ ⊢ 𝑡 ∶ 𝐴 ∣ Δ Γ ∣ 𝑒 ∶ 𝐴 ⊢ Δ

𝑐 ∶ (Γ ⊢ Δ)

(b) Judgements

—(⊢ ax)Γ, 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴 ∣ Δ —(ax ⊢)Γ ∣ 𝛼 ∶ 𝐴 ⊢ 𝛼 ∶ 𝐴,Δ
𝑐 ∶ (Γ, 𝑥 ∶ 𝐴 ⊢ Δ)—( ̃𝜇 ⊢)Γ, ̃𝜇𝑥.𝑐 ∶ 𝐴 ⊢ Δ

𝑐 ∶ (Γ ⊢ 𝛼 ∶ 𝐴, Δ)—(⊢ 𝜇)Γ ⊢ 𝜇𝛼.𝑐 ∶ 𝐴 ∣ Δ
Γ ⊢ 𝑡 ∶ 𝐴 ∣ Δ Γ ∣ 𝑒 ∶ 𝐴 ⊢ Δ—(cut)

⟨𝑡 ‖𝑒⟩ ∶ (Γ ⊢ Δ)
(c) Group Identity and Structure

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵 ∣ Δ—(⊢ →)Γ ⊢ 𝜆𝑥.𝑡 ∶ 𝐴 → 𝐵 ∣ Δ
Γ ⊢ 𝑡 ∶ 𝐴 ∣ Δ Γ ∣ 𝑒 ∶ 𝐵 ⊢ Δ—(→ ⊢)Γ ∣ 𝑡⋅𝑒 ∶ 𝐴 → 𝐵 ⊢ Δ�

�
�
�Γ ⊢ 𝑡 ∶ 𝐴 ∣ Δ Γ ⊢ 𝑢 ∶ 𝐵 ∣ Δ—(⊢ ⊗)Γ ⊢ (𝑡, 𝑢) ∶ 𝐴 ⊗ 𝐵 ∣ Δ

�
�

�
�𝑐 ∶ (Γ, 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵 ⊢ Δ)

—(⊗ ⊢)Γ ∣ ̃𝜇(𝑥, 𝑦).𝑐 ∶ 𝐴 ⊗ 𝐵 ⊢ Δ�
�

�
�Γ ∣ 𝑒 ∶ 𝐴 ⊢ Δ—(⊢ ∼)Γ ⊢ [𝑒] ∶ ∼𝐴 ∣ Δ

�
�

�
�𝑐 ∶ (Γ ⊢ 𝛼 ∶ 𝐴, Δ)—(∼ ⊢)Γ ∣ 𝜇[𝛼].𝑐 ∶ ∼𝐴 ⊢ Δ

Γ ⊢ 𝑡⊝ ∶ 𝑁 ∣ Δ—(⊢ ∀1)∗

Γ ⊢ 𝑡⊝ ∶ ∀𝑥 𝑁 ∣ Δ
Γ ∣ 𝑒⊝ ∶ 𝑁[t/x] ⊢ Δ—(∀1 ⊢)Γ ∣ 𝑒⊝ ∶ ∀x 𝑁 ⊢ Δ�

�
�
�Γ ⊢ 𝑡+ ∶ 𝑃[t/x] ∣ Δ—(∃𝑖)Γ ⊢ 𝑡+ ∶ ∃𝑥 𝑃 ∣ Δ

�
�

�
�Γ ∣ 𝑒+ ∶ 𝑃 ⊢ Δ—(∃𝑒)∗

Γ ∣ 𝑒+ ∶ ∃𝑥 𝑃 ⊢ Δ�
�

�
�𝑐 ∶ (Γ ⊢ Δ)—(⊢ ⊥)Γ ⊢ 𝜇t̂p.𝑐 ∶ ⊥ ∣ Δ

—(⊥ ⊢)Γ ∣ t̂p ∶ ⊥ ⊢ Δ
∗: x ∉ fv(Γ,Δ).

(d) Group Logic.

Figure IV.5: Lpol,t̂p⊝ : typing rules
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The difference is that in Lpol,t̂p+ the elements of 𝜎 are negative terms,
that is to say positive contexts for Lpol,t̂p⊝ , while in Lpol,t̂p⊝ they are
negative stacks 𝜋⊝.

Similarly to the calculus Lpol,t̂p+ , reduction is possible only when 𝑐
is of the form ⟨𝑡⊝ ‖ t̂p⟩:

𝜇t̂p.⟨𝑡⊝ ‖ t̂p⟩ ⊳R𝑝
𝑡⊝

This rule holds even if t̂p appears in 𝑡⊝. In other words, the context t̂p
corresponds to the operation that extracts the head of the list:

⟨𝑡⊝ ‖ t̂p⟩[𝜋1
⊝, 𝜋2

⊝,… , 𝜋𝑛
⊝] →R𝑝 ⟨𝑡⊝ ‖𝜋1

⊝⟩[𝜋2
⊝,… , 𝜋𝑛

⊝]

Thus there exists a term ℓ and, for all positive context 𝑒+ a term j𝑒+ ,
that have the following reduction rules:

⟨ℓ‖𝑡⊝⋅𝑒+⟩[𝜋⊝, 𝜎] →+
R𝑝

⟨𝑡⊝ ‖ j𝑒+⋅𝜋⊝⟩[𝜎]
⟨j𝑒+ ‖𝜋⟩[𝜎] →+

R𝑝
⟨[𝜋]‖𝑒+⟩[𝜎]

Indeed, we once again solve the desired reductions:�
�

�
�

ℓ≝ 𝜆𝑥⊝.𝜇𝛼+.⟨𝑥⊝‖ j𝛼+⋅t̂p⟩
j𝑒+ ≝ 𝜇𝛼.⟨[𝛼]‖𝑒+⟩

Accessing stacks

The calculus Lpol,t̂p⊝ introduces the binder ̃𝜇[𝛼].𝑐 which is respons-
ible for accessing the stacks. We extend it to a λ abstraction as
follows:

𝜆[𝛼].𝑡 ≝ 𝜆𝑥.𝜇𝛽.⟨𝑥∥ ̃𝜇[𝛼].⟨𝑡 ‖𝛽⟩⟩
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Therefore we can define the following terms, by solving the rules of
reduction of the λℓ calculus:�

�

�

�

send ≝ 𝜆[𝛼𝜀].𝜆𝑥𝜀.𝜇t̂p.⟨𝑥𝜀 ‖𝛼𝜀⟩
𝐷→ = 𝜆[𝑥⋅𝛾].(𝑥, [𝛾])

≝ 𝜆[𝛼⊝].𝜇𝛽+.⟨𝜆𝑥.𝜇𝛾 .⟨(𝑥, [𝛾])‖𝛽+⟩∥𝛼⊝⟩
𝐷⊥ ≝ 𝜆[𝛼⊝].𝜆𝑥.𝜇𝛽.⟨𝜇t̂p.⟨𝑥‖𝛽⟩∥𝛼⊝⟩
𝐷∀ ≝ 𝜆[𝛼].[𝛼]

Translating λℓ in Lpol,t̂p⊝

In addition to the above definitions, stack constants of the λℓ calcu-
lus are interpreted by free co-variables of Lpol,t̂p⊝ .4 The definitions,
summarised in Figure IV.6 on the facing page, induce a translation of
λℓ into Lpol,t̂p⊝ defined by induction. We identify elements of λℓ to
their image in Lpol,t̂p⊝ .
Remark IV.10. Quasi-proof terms are mapped to terms with no free
co-variables.

From what we have seen, we easily conclude:

Proposition IV.11 (Simulation). If 𝑚 ≻𝑝 𝑚′ for two machines 𝑚 and
𝑚′ of the calculus λℓ, then 𝑚 →+

R𝑝
𝑚′ in the calculus Lpol,t̂p⊝ .

Definition IV.12. In λℓ, we define the compatible equivalence rela-
tion ≈𝑝 between quasi-proof terms with:

𝑡 ≈𝑝 𝑢 def⟺ 𝑡 ≃RE𝑝
𝑢

The equivalence is compatible with observational equivalence in
the following sense:

Proposition IV.13. Let 𝑛 ∈ ℕ. If for all 𝜋 and all 𝜎 of length ≥ 𝑛 one
4Interpreting such stack constants as open variables goes back to Hofmann and

Streicher [HS02].
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(𝑡⊝ 𝑢)𝜀 ≝ 𝜇𝛼𝜀.⟨𝑡⊝ ‖𝑢⋅𝛼𝜀⟩
let 𝑥+ be 𝑡+ in 𝑢𝜀 ≝ 𝜇𝛼𝜀.⟨𝑡+ ∥ ̃𝜇𝑥+.⟨𝑢𝜀 ‖𝛼𝜀⟩⟩
let (𝑥, 𝑦) be 𝑡+ in 𝑢𝜀 ≝ 𝜇𝛼𝜀.⟨𝑡+ ∥ ̃𝜇(𝑥, 𝑦).⟨𝑢𝜀 ‖𝛼𝜀⟩⟩
send ≝ 𝜆[𝛼𝜀].𝜆𝑥𝜀.𝜇t̂p.⟨𝑥𝜀 ‖𝛼𝜀⟩
ℓ ≝ 𝜆𝑥⊝.𝜇𝛼+.⟨𝑥⊝‖ j𝛼+⋅t̂p⟩
𝐷→ ≝ 𝜆[𝛼⊝].𝜇𝛽+.⟨𝜆𝑥.𝜇𝛾 .⟨(𝑥, [𝛾])‖𝛽+⟩∥𝛼⊝⟩
𝐷⊥ ≝ 𝜆[𝛼⊝].𝜆𝑥.𝜇𝛽.⟨𝜇t̂p.⟨𝑥‖𝛽⟩∥𝛼⊝⟩
𝐷∀ ≝ 𝜆[𝛼].[𝛼]
where 𝜆[𝛼].𝑡 ≝ 𝜆𝑥.𝜇𝛽.⟨𝑥∥ ̃𝜇[𝛼].⟨𝑡 ‖𝛽⟩⟩

(a) Quasi-proof terms

j𝑒+ ≝ 𝜇𝛼.⟨[𝛼]‖𝑒+⟩
𝛼𝜀 ≝ 𝛼𝜀 (free)
𝑐[] ≝ 𝑐
𝑐[𝜋1

⊝,… , 𝜋𝑛
⊝] ≝ ⟨𝜇t̂p.𝑐‖𝜋1

⊝⟩[𝜋2
⊝,… , 𝜋𝑛

⊝]
(b)Machines

Figure IV.6: Definition of the constructs of λℓ in Lpol,t̂p⊝

has ⟨𝑡 ‖𝜋⟩[𝜎] (≺𝑝 ∪ ≻𝑝)∗ ⟨𝑢‖𝜋⟩[𝜎] in the calculus λℓ, then one also has
𝑡 ≈𝑝 𝑢.

Proof. Indeed we have in particular in Lpol,t̂p⊝ , thanks to Proposition IV.11:

⟨𝑡 ‖𝛼0⟩[𝛼1,… , 𝛼𝑛] ≃RE𝑝
⟨𝑢‖𝛼0⟩[𝛼1,… , 𝛼𝑛]

Now if one has ⟨𝜇t̂p.𝑐 ‖𝛼⟩ ≃RE𝑝
⟨𝜇t̂p.𝑐′ ‖𝛼⟩ for some commands 𝑐 and 𝑐′, one
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also has 𝑐 ≃RE𝑝
𝑐′. Indeed one has by extensionality:

𝑐 ⊳∗
E𝑝

⟨𝜇𝛼.⟨𝜇t̂p.𝑐‖𝛼⟩∥ t̂p⟩

≃RE𝑝
⟨𝜇𝛼.⟨𝜇t̂p.𝑐′ ‖𝛼⟩∥ t̂p⟩

⊲∗
E𝑝

𝑐′

Thus we can conclude by induction ⟨𝑡 ‖ 𝛼0 ⟩ ≃RE𝑝
⟨𝑢 ‖ 𝛼0 ⟩ , and therefore

𝑡 ≃RE𝑝
𝑢. ∎

Last, we have:

Proposition IV.14. The reduction →R𝑝
is confluent.

Proof. The reduction ⊳R𝑝
is left-linear and has no critical pairs. ∎

IV.4.2 Coherence

We define a CPS translation for the calculus Lpol,t̂p⊝ that simulates
the reduction and preserves equivalences. We deduce that ≃RE𝑝

and
≈𝑝 do not identify all the terms.

Target of the CPS translation
The target of the CPS translation is the call-by-name λ calculus with
pairs considered by Herbelin and Ghilezan [HG08].�� ��𝑀, 𝑁 ⩴ 𝑥 ∣ 𝜆𝑥.𝑀 ∣ 𝑀 𝑁 ∣ (𝑀, 𝑁) ∣ let 𝑥 be𝑀 in𝑁 ∣ let (𝑥, 𝑦) be𝑀 in𝑁
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The calculus comes with the following reductions and expansions:

(𝜆𝑥.𝑀) 𝑁 ⊳R𝜆
𝑀[𝑁/𝑥]

let 𝑥 be𝑀 in𝑁 ⊳R𝜆
𝑁[𝑀/𝑥]

let (𝑥, 𝑦) be (𝑀, 𝑀′) in𝑁 ⊳R𝜆
𝑁[𝑀/𝑥, 𝑀′/𝑦]

𝐹[let (𝑥, 𝑦) be𝑀 in𝑁] ⊳R𝜆
let (𝑥, 𝑦) be𝑀 in𝐹[𝑁]

où 𝐹[ ] ⩴ [ ] 𝑀 ∣ let 𝑥 be [ ] in𝑀 ∣ let (𝑥, 𝑦) be [ ] in𝑀
𝑀 ⊳E𝜆

𝜆𝑥.𝑀 𝑥
𝑀 ⊳E𝜆

let (𝑥, 𝑦) be𝑀 in (𝑥, 𝑦)

The above calculus is less natural a target than the λ×v calculus used
in the previous chapter, in the sense that on the one hand we rely on
strict evaluation for pairs via the “let (𝑥, 𝑦) in …” binder in order to
obtain a simulation result, but on the other hand, our isomorphisms
are going to require the above η expansions5, which makes it a call-
by-name calculus.

This calculus does not identify all terms.

Proposition IV.15. We have 𝑥 ≄RE𝜆
𝑦 for any pair of distinct variables

𝑥 and 𝑦.

Proof. We consider the more standard λ calculus with surjective pairs
which is the λ calculus extended with pairs (𝑀, 𝑁), projections fst(𝑀)
and snd(𝑀) and rules fst(𝑀, 𝑁) ⊳𝜆SP 𝑀, snd(𝑀, 𝑁) ⊳𝜆SP 𝑁 and 𝑀 ⊳𝜆SP
(fst(𝑀), snd(𝑀)). It is easy to see that the following definition:

let (𝑥, 𝑦) be𝑀 in𝑁 ≝ (𝜆𝑧.(𝜆𝑥.𝜆𝑦.𝑁) fst(𝑧) snd(𝑧)) 𝑀

5The goal is to have the equation 𝑐 ⊳E𝑛 ⟨ 𝜇t̂p.𝑐 ‖ t̂p ⟩ for negative t̂p, the
absence of which was noticed in Section III.2.7 when the target language was
the λ×v calculus. For this purpose, the η expansion 𝑀 ⊳E𝜆

𝜆𝑥.𝑀 𝑥 is used at
places where 𝑀 is linear. This leaves us hope of giving up the call-by-name
λ calculus in favour of a refined λ×v calculus where this linearity is taken into
account. This would provide a unification with Chapter III, and also allow
us to extend the Lpol,t̂p⊝ calculus with additive connectives.
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induces a translation from Herbelin-Ghilezan’s λ calculus with pairs into
the λ calculus with surjective pairing that preserves equivalences. We con-
clude 𝑥 ≄RE𝜆

𝑦, since we have 𝑥 ≄𝜆SP 𝑦 (see for instance Støvring [Stø06]).
∎

The translation
We define in Figure IV.7 on the next page the CPS translation of the
calculus Lpol,t̂p⊝ into Herbelin-Ghilezan’s λ calculus with pairs. We
assume that 𝑥+, 𝑥⊝, 𝛼+, 𝛼⊝, 𝑘… represent distinct subsets of variables
of the λ calculus with pairs.

A value or a stack translates into a λ-term. A negative term or a
positive context translates into a linear function from λ-terms into
λ-terms (notation 𝜑, 𝜓). By linear we mean the naive (syntactic)
notion based on counting occurrences, which simply ensures that
the translation hides no duplication or erasure of the source terms.

A positive term or a negative context translates into a linear func-
tional from the previous functions 𝜑, 𝜓 into λ-terms. Then the com-
mand translates into the application of the linear functional to the
linear function. In this aspect, the CPS translation is similar to the
definition of distributions in mathematics, with the analogy between
𝑡+ or 𝑒⊝ and distributions, and between 𝑡⊝ or 𝑒+ and test functions.

This formulation with functionals is a reformulation of one-pass
CPS transforms (see Danvy and Filinski [DF90]).6

Lemma IV.16. Let (𝑓 , 𝜅) be a pair of a value and a variable or of
a stack and a co-variable, with 𝑓 and 𝜅 of the same polarity. We
write ⟦𝑓 ⟧ = valV⟦𝑓 ⟧ or ⟦𝑓 ⟧ = valπ⟦𝑓 ⟧ depending on the case. For any
command 𝑐, any term or context 𝑔, any context 𝑒, any value 𝑉, any stack

6Few such translations would require functionals of higher order than ours, an
exception being Danvy and Nielsen’s [DN05].
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cps⟦⟨𝑡+ ‖𝑒+⟩⟧ ≝ cps+⟦𝑡+⟧(cps⊝⟦𝑒+⟧)
cps⟦⟨𝑡⊝ ‖𝑒⊝⟩⟧ ≝ cps+⟦𝑒⊝⟧(cps⊝⟦𝑡⊝⟧)

(a) cps⟦⋅⟧ ∶ 𝑐 → 𝑀

cps+⟦𝑉+⟧(𝜑) ≝ 𝜑(valV⟦𝑉+⟧)
cps+⟦𝜇𝛼+.𝑐⟧(𝜑) ≝ let 𝛼+ be 𝜆𝑘.𝜑(𝑘) incps⟦𝑐⟧
cps+⟦(𝑡+, 𝑢)⟧(𝜑)† ≝ cps+⟦𝑡+⟧(𝜓) where 𝜓 ∶ 𝑀 ↦ let 𝑥+ be𝑀 incps+⟦(𝑥+, 𝑢)⟧(𝜑)
cps+⟦(𝑉, 𝑡+)⟧(𝜑)† ≝ cps+⟦𝑡+⟧(𝜓) where 𝜓 ∶ 𝑀 ↦ let 𝑥+ be𝑀 incps+⟦(𝑉, 𝑥+)⟧(𝜑)
cps+⟦[𝑒⊝]⟧(𝜑)‡ ≝ cps+⟦𝑒⊝⟧(𝜓) where 𝜓 ∶ 𝑀 ↦ let 𝛼⊝ be𝑀 incps+⟦[𝛼⊝]⟧(𝜑)

cps+⟦𝜋⊝⟧(𝜑) ≝ 𝜑(valπ⟦𝜋⊝⟧)
cps+⟦ ̃𝜇𝑥⊝.𝑐⟧(𝜑) ≝ let 𝑥⊝ be 𝜆𝑘.𝜑(𝑘) incps⟦𝑐⟧
cps+⟦𝑡+⋅𝑒⟧(𝜑)† ≝ cps+⟦𝑡+⟧(𝜓) où 𝜓 ∶ 𝑀 ↦ let 𝑥+ be𝑀 incps+⟦𝑥+⋅𝑒⟧(𝜑)
cps+⟦𝑉⋅𝑒⊝⟧(𝜑)‡ ≝ cps+⟦𝑒⊝⟧(𝜓) où 𝜓 ∶ 𝑀 ↦ let 𝛼⊝ be𝑀 incps+⟦𝑉⋅𝛼⊝⟧(𝜑)
cps+⟦t̂p⟧(𝜑) ≝ 𝜆𝑘.𝜑(𝑘)
†If 𝑡+ is not a value
‡If 𝑒⊝ is not a stack.

(b) cps+⟦⋅⟧(𝜑) ∶ 𝑡+ ∪ 𝑒⊝ → 𝑀

cps⊝⟦𝑥⊝⟧(𝑀) ≝ 𝑥⊝ 𝑀
cps⊝⟦𝜇𝛼⊝.𝑐⟧(𝑀) ≝ let 𝛼⊝ be𝑀 incps⟦𝑐⟧
cps⊝⟦𝜆𝑥.𝑡⟧(𝑀) ≝ let (𝑥, 𝑘) be𝑀 incps⊝⟦𝑡⟧(𝑘)
cps⊝⟦𝜇t̂p.𝑐⟧(𝑀) ≝ cps⟦𝑐⟧ 𝑀
cps⊝⟦𝑡+⟧(𝑀) ≝ cps+⟦𝑡+⟧(𝜑) où 𝜑 ∶ 𝑁 ↦ 𝑀 𝑁

cps⊝⟦𝛼+⟧(𝑀) ≝ 𝛼+𝑀
cps⊝⟦ ̃𝜇𝑥+.𝑐⟧(𝑀) ≝ let 𝑥+ be𝑀 incps⟦𝑐⟧
cps⊝⟦ ̃𝜇(𝑥, 𝑦).𝑐⟧(𝑀) ≝ let (𝑥, 𝑦) be𝑀 incps⟦𝑐⟧
cps⊝⟦ ̃𝜇[𝛼].𝑐⟧(𝑀) ≝ let 𝛼 be𝑀 incps⟦𝑐⟧
cps⊝⟦𝑒⊝⟧(𝑀) ≝ cps+⟦𝑒⊝⟧(𝜑) où 𝜑 ∶ 𝑁 ↦ 𝑀 𝑁

(c) cps⊝⟦⋅⟧(𝑀) ∶ 𝑡 ∪ 𝑒 → 𝑀

valV⟦𝑥+⟧ ≝ 𝑥+
valV⟦(𝑉, 𝑉 ′)⟧ ≝ (valV⟦𝑉⟧, valV⟦𝑉 ′⟧)
valV⟦[𝜋]⟧ ≝ valπ⟦𝜋⟧
valV⟦𝑡⊝⟧ ≝ 𝜆𝑘.cps⊝⟦𝑡⊝⟧(𝑘)

(d) valV⟦⋅⟧ ∶ 𝑉 → 𝑀

valπ⟦𝛼⊝⟧ ≝ 𝛼⊝

valπ⟦𝑉⋅𝜋⟧ ≝ (valV⟦𝑉⟧, valπ⟦𝜋⟧)
valπ⟦𝑒+⟧ ≝ 𝜆𝑘.cps⊝⟦𝑒+⟧(𝑘)

(e) valπ⟦⋅⟧ ∶ 𝜋 → 𝑀

Figure IV.7: Translation of Lpol,t̂p⊝ into the λ calculus with pairs



234 Chapter IV On the constructive interpretation of an involutive negation

𝜋, and any λ-term 𝑢, one has:

cps⟦𝑐⟧[⟦𝑓 ⟧/𝜅] →∗
R𝜆

cps⟦𝑐[𝑓/𝜅]⟧
cps+⟦𝑔⟧(𝜑)[⟦𝑓 ⟧/𝜅] →∗

R𝜆
cps+⟦𝑔[𝑓/𝜅]⟧(𝜓)
où 𝜓 ∶ 𝑀 ↦ 𝜑(𝑀)[⟦𝑓 ⟧/𝜅]

cps⊝⟦𝑔⟧(𝑀)[⟦𝑓 ⟧/𝜅] →∗
R𝜆

cps⊝⟦𝑔[𝑓/𝜅]⟧(𝑀[⟦𝑓 ⟧/𝜅])
valV⟦𝑉⟧[⟦𝑓 ⟧/𝜅] →∗

R𝜆
valV⟦𝑉[𝑓/𝜅]⟧

valπ⟦𝜋⟧[⟦𝑓 ⟧/𝜅] →∗
R𝜆

valπ⟦𝜋[𝑓/𝜅]⟧

Proof. By induction on the definition of the translation. Case valV⟦𝑥+⟧.
If 𝑥+ ≠ 𝜅 one has valV⟦𝑥+⟧[⟦𝑓 ⟧/𝜅] = 𝑥+[𝑓/𝜅]; otherwise one has:

valV⟦𝑥+⟧[⟦𝑓 ⟧/𝑥+] = 𝑥+[⟦𝑓 ⟧/𝑥+] = ⟦𝑓 ⟧

One concludes with 𝑓 = 𝑥+[𝑓/𝑥+] using the hypothesis that 𝑓 and 𝑥+ have
the same polarity. Case valπ⟦𝛼⊝⟧. Same reasoning. Case cps⊝⟦𝑥⊝⟧(𝑀).
By hypothesis, 𝑓 is a term of the same polarity as 𝑥⊝. Thus we have:

⟦𝑓 ⟧ = valV⟦𝑓 ⟧ = 𝜆𝑘.cps⊝⟦𝑓 ⟧(𝑘)

Hence:

cps⊝⟦𝑥⊝⟧(𝑀)[⟦𝑓 ⟧/𝑥⊝] = (𝜆𝑘.cps⊝⟦𝑓 ⟧(𝑘))𝑀[⟦𝑓 ⟧/𝑥⊝]
⊳R𝜆

cps⊝⟦𝑓 ⟧(𝑀[⟦𝑓 ⟧/𝑥⊝])

Case cps⊝⟦𝛼+⟧(𝑀). Same reasoning. The remaining cases are easily
deduced from induction hypothesis. ∎

Lemma IV.17.

1. For any 𝑐, 𝑐′ such that 𝑐 ⊳R𝑝
𝑐′, one has:

cps⟦𝑐⟧ →+
R𝜆

cps⟦𝑐′⟧ ;

2. For any 𝑡⊝, one has:

cps⊝⟦𝜇t̂p.⟨𝑡⊝ ‖ t̂p⟩⟧(𝑀) ⊳R𝜆
cps⊝⟦𝑡⊝⟧(𝑀) ;
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3. For any terms or contexts 𝑓 , 𝑓 ′ such that 𝑓 ⊳E𝑝
𝑓 ′, one has:

cps⊝⟦𝑓 ⟧(𝑀) ≃RE𝜆
cps⊝⟦𝑓 ′⟧(𝑀) ;

4. For any positive terms or negative contexts 𝑓 , 𝑓 ′ such that 𝑓 ⊳E𝑝
𝑓 ′,

one has:
cps+⟦𝑓 ⟧(𝜑) ≃RE𝜆

cps+⟦𝑓 ′⟧(𝜑) ;
5. For any command 𝑐, one has:

cps⟦𝑐⟧ ⊳E𝜆
cps⟦⟨𝜇t̂p.𝑐 ‖ t̂p⟩⟧ .

Proof. The proof relies on Lemma IV.16. (1.) Case ⟨𝑉 ‖ ̃𝜇𝑥.𝑐⟩ ⊳R𝑝
𝑐[𝑉/𝑥].

One has:

cps⟦⟨𝑉 ‖ ̃𝜇𝑥.𝑐⟩⟧ = let 𝑥 bevalV⟦𝑉⟧ incps⟦𝑐⟧
⊳R𝜆

cps⟦𝑐⟧[valV⟦𝑉⟧/𝑥]
→∗

R𝜆
cps⟦𝑐[𝑉/𝑥]⟧

Case ⟨𝜇𝛼.𝑐‖𝜋⟩ ⊳R𝑝
𝑐[𝜋/𝛼] and ⟨[𝜋]‖ ̃𝜇[𝛼].𝑐⟩ ⊳R𝑝

𝑐[𝜋/𝛼]. Same reasoning.

Case ⟨𝜆𝑥.𝑡 ‖ 𝑉⋅𝜋⟩ ⊳R𝑝
⟨𝑡[𝑉/𝑥] ‖ 𝜋⟩ with 𝑉 of the same polarity as 𝑥 and 𝑡 of

the same polarity as 𝜋. One has:

cps⟦⟨𝜆𝑥.𝑡 ‖𝑉⋅𝜋⟩⟧ = let (𝑥, 𝑘) be (valV⟦𝑉⟧, valπ⟦𝜋⟧) incps⊝⟦𝑡⟧(𝑘)
⊳R𝜆

cps⊝⟦𝑡⟧(𝑘)[valV⟦𝑉⟧/𝑥, valπ⟦𝜋⟧/𝑘]
→∗

R𝜆
cps⊝⟦𝑡[𝑉/𝑥]⟧(𝑘)[valπ⟦𝜋⟧/𝑘]

= cps⊝⟦𝑡[𝑉/𝑥]⟧(valπ⟦𝜋⟧)

We conclude depending on the polarity of 𝑡[𝑉/𝑥]:

cps⊝⟦𝑡⊝⟧(valπ⟦𝜋⟧) = cps⟦⟨𝑡⊝ ‖𝜋⟩⟧
cps⊝⟦𝑡+⟧(valπ⟦𝜋⟧) = cps+⟦𝑡+⟧(𝑀 ↦ 𝜆𝑘.cps⊝⟦𝜋⟧(𝑘)𝑀)

→R𝜆
cps+⟦𝑡+⟧(cps⊝⟦𝜋⟧(𝑀))

= cps⟦⟨𝑡+ ‖𝜋⟩⟧
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Case ⟨(𝑉, 𝑊) ‖ ̃𝜇(𝑥, 𝑦).𝑐⟩ ⊳R𝑝
𝑐[𝑉/𝑥, 𝑊/𝑦] with 𝑉 of the same polarity as 𝑥

and 𝑊 of the same polarity as 𝑦. Same reasoning.
Case (𝜍→1) ∶ ⟨ 𝑢⊝ ‖ 𝑡+⋅𝑒 ⟩ ⊳R𝑝

⟨ 𝑡+ ∥ ̃𝜇𝑥.⟨𝑢⊝ ‖𝑥⋅𝑒⟩ ⟩ with 𝑡+ not a value.
By definition, one has cps⟦ ⟨ 𝑢⊝ ‖ 𝑡+⋅𝑒 ⟩ ⟧ = cps+⟦𝑡+⟧(𝜑) where 𝜑 ∶ 𝑀 ↦
let 𝑥+ be𝑀 incps⟦⟨𝑢⊝ ‖ 𝑥⋅𝑒⟩⟧. Therefore one has 𝜑 = cps⊝⟦ ̃𝜇𝑥.⟨𝑢⊝ ‖ 𝑥+⋅𝑒⟩⟧
and furthermore cps⟦⟨𝑢⊝ ‖ 𝑡+⋅𝑒⟩⟧ = cps⟦⟨𝑡+ ∥ ̃𝜇𝑥.⟨𝑢⊝ ‖𝑥⋅𝑒⟩⟩⟧.
Other cases (𝜍). Same reasoning.

(2.) One has:

cps⊝⟦𝜇t̂p.⟨𝑡⊝ ‖ t̂p⟩⟧(𝑀) = (𝜆𝑘.cps⊝⟦𝑡⊝⟧(𝑘)) 𝑀
⊳R𝜆

cps⊝⟦𝑡⊝⟧(𝑀)

(3.) Case 𝑡⊝ ⊳E𝑝 𝜇𝛼⊝.⟨𝑡⊝ ‖𝛼⊝⟩. One has:

cps⊝⟦𝜇𝛼⊝.⟨𝑡⊝ ‖𝛼⊝⟩⟧(𝑀) = let 𝛼⊝ be𝑀 incps⊝⟦𝑡⊝⟧(𝛼⊝)
⊳R𝜆

cps⊝⟦𝑡⊝⟧(𝑀)

Case 𝑒+ ⊳E𝑝
̃𝜇𝑥+.⟨𝑥+‖𝑒+⟩ and 𝑡⊝ ⊳E𝑝 ̃𝜇[𝛼⊝].⟨[𝛼⊝]‖𝑒+⟩. Same reasoning.

Case 𝑡⊝ ⊳E𝑝 𝜆𝑥.𝜇𝛼.⟨𝑡⊝ ‖𝑥⋅𝛼⟩. One has depending on the polarity of 𝛼:

cps⊝⟦𝜆𝑥.𝜇𝛼⊝.⟨𝑡⊝ ‖𝑥⋅𝛼⊝⟩⟧(𝑀)
= let (𝑥, 𝑘) be𝑀 in let 𝛼⊝ be 𝑘 incps⊝⟦𝑡⊝⟧((𝑥, 𝜆𝑘′.(𝛼⊝ 𝑘′)))
cps⊝⟦𝜆𝑥.𝜇𝛼+.⟨𝑡⊝ ‖𝑥⋅𝛼+⟩⟧(𝑀)
= let (𝑥, 𝑘) be𝑀 in let 𝛼+ be 𝜆𝑘′.(𝑘 𝑘′) incps⊝⟦𝑡⊝⟧((𝑥, 𝛼+))

In both cases:

cps⊝⟦𝜆𝑥.𝜇𝛼.⟨𝑡⊝ ‖𝑥⋅𝛼⟩⟧(𝑀)
≃R𝜆

let (𝑥, 𝑘) be𝑀 in let 𝑦 be (𝑥, 𝜆𝑘′.(𝑘 𝑘′)) incps⊝⟦𝑡⊝⟧(𝑦)
←E𝜆

let (𝑥, 𝑘) be𝑀 in let 𝑦 be (𝑥, 𝑘) incps⊝⟦𝑡⊝⟧(𝑦)

⊲R𝜆
let 𝑦 be (let (𝑥, 𝑘) be𝑀 in (𝑥, 𝑘)) incps⊝⟦𝑡⊝⟧(𝑦)

←E𝜆
let 𝑦 be𝑀 incps⊝⟦𝑡⊝⟧(𝑦)

⊳R𝜆
cps⊝⟦𝑡⊝⟧(𝑀)
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Case 𝜋⊝ ⊳E𝜆
̃𝜇(𝑥, 𝑦).⟨(𝑥, 𝑦)‖𝜋⊝⟩. Same reasoning.

Case 𝑡+ ⊳E𝑝
𝜇𝛼+.⟨𝑡+ ‖𝛼+⟩ and 𝑒⊝ ⊳E𝑝 ̃𝜇𝑥⊝.⟨𝑥⊝ ‖ 𝑒⊝⟩. Same reasoning as (4.)

below.
(4.) Case 𝑡+ ⊳E𝑝

𝜇𝛼+.⟨𝑡+ ‖𝛼+⟩. One has:

cps+⟦𝜇𝛼+.⟨𝑡+ ‖𝛼+⟩⟧(𝜑) = let 𝛼+ be 𝜆𝑘.𝜑(𝑘) incps+⟦𝑡+⟧(𝑀 ↦ 𝛼+𝑀)
⊳R𝑝

cps+⟦𝑡+⟧(𝑀 ↦ 𝜆𝑘.𝜑(𝑘) 𝑀)

→R𝑝
cps+⟦𝑡+⟧(𝜑)

Case 𝑒⊝ ⊳E𝑝 ̃𝜇𝑥⊝.⟨𝑥⊝‖𝑒⊝⟩. Same reasoning.
(5.) We have indeed:

cps⟦⟨𝜇t̂p.𝑐 ‖ t̂p⟩⟧ = 𝜆𝑘.cps⟦𝑐⟧ 𝑘
⊲E𝜆

cps⟦𝑐⟧ ∎

Theorem IV.18 (Simulation). Let 𝑐 and 𝑐′ be two commands of the
calculus Lpol,t̂p⊝ .

1. If 𝑐 →R𝑝
𝑐′ then cps⟦𝑐⟧ →+

R𝜆
cps⟦𝑐′⟧.

2. If 𝑐 ≃RE𝑝
𝑐′ then cps⟦𝑐⟧ ≃RE𝜆

cps⟦𝑐′⟧.

Proof. By immediate induction on the definitions of →R𝑝
and ≃RE𝑝

, using
Lemma IV.17. ∎

A fortiori, the translation simulates the reduction of machines of
λℓ. We deduce the coherence of calculi λℓ and Lpol,t̂p⊝:

Corollary IV.19 (Coherence). If 𝑥 and 𝑦 are two distinct polarised
variables, then 𝑥 ≄RE𝑝

𝑦, and therefore also 𝑥 ≉𝑝 𝑦.

Proof. Let 𝑥 and 𝑦 be two distinct variables of the calculus Lpol,t̂p⊝ that
we can assume to be of the same polarity. In order to show 𝑥 ≄RE𝑝

𝑦,
it is sufficient by the rule ⊳E𝑝

to show for some 𝛼 of the proper polarity:
⟨ 𝑥 ‖ 𝛼 ⟩ ≄RE𝑝

⟨ 𝑦 ‖ 𝛼 ⟩ . Let such an a 𝛼. If 𝑧 ∈ {𝑥, 𝑦} is positive then
one has cps⟦ ⟨ 𝑧 ‖ 𝛼 ⟩ ⟧ = 𝛼 𝑧; otherwise one has cps⟦ ⟨ 𝑧 ‖ 𝛼 ⟩ ⟧ = 𝑧 𝛼.
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Yet according to Proposition IV.15, one has 𝑥 ≄RE𝜆
𝑦. Thus we also have

cps⟦⟨𝑥 ‖ 𝛼⟩⟧ ≄RE𝜆
cps⟦⟨𝑦 ‖ 𝛼⟩⟧; and therefore ⟨𝑥 ‖ 𝛼⟩ ≄RE𝑝

⟨𝑦 ‖ 𝛼⟩ using
Theorem IV.18. ∎

IV.4.3 Expressiveness of pure Lpol,t̂p⊝

Call-by-name delimited continuations / Saurin’s Λµ
The calculus Lpol,t̂p⊝ restricted to fully negative terms corresponds
to Herbelin and Ghilezan’s λµt̂pn calculus [HG08]. This is the calcu-
lus of Figure III.7 on page 179 with t̂p⊝ renamed as the t̂p operator
of the current section, and with Herbelin and Ghilezan’s equation
⟨𝜇t̂p.𝑐‖ t̂p⟩ ≃E𝑛

restored.
Herbelin and Ghilezan show that the calculus λµt̂pn is in corres-

pondence with the Λµ calculus of De Groote and Saurin [dG94,
Sau05]. As Saurin shows, Λµ answers positively the question of a
Böhm theorem. This property is false in the λC calculus, as David
and Py showed [DP01]. Incidentally, this raises the question of separ-
ation in Lpol,t̂p⊝ and λℓ.

Shift0/Reset0
Let us assume that the Lpol,t̂p⊝ calculus is extended with the duploid
syntax from Figure II.1 on page 119.

The presence of positives gives more expressiveness compared to
λµt̂pn. Thus, in the λµt̂pn calculus , doing t̂p followed by 𝜇t̂p does
nothing:

𝜇t̂p.⟨𝑡⊝ ‖ t̂p⟩ ≃RE𝑝
𝑡⊝

This explains, according to Herbelin and Ghilezan, the “at a first
glance surprising” absence of control delimiters in Λµ. In the pres-
ence of positives, however, we define a control delimiter as follows:

𝜇t̂p.⟨𝑡+ ∥ ̃𝜇𝑥+.⟨delay(𝑥+)‖ t̂p⟩⟩

where delay(𝑡+) ≝ 𝜇{𝛼+}.⟨𝑡+ ‖𝛼+⟩.
This allows us to define (variants of) the operators shift0 (𝒮0𝑘.𝑡)
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and reset0 (<⋅>0) of Danvy and Filinski [DF90] and Shan [Sha07]. The
two operators satisfy, in the λ calculus in call by value:

<𝑉>0 ⊳ 𝑉
<𝐸(𝒮0𝑥.𝑡)>0 ⊳ 𝑡[𝜆𝑥.<𝐸(𝑥)>0/𝑥]

We obtain such operators in the calculus Lpol,t̂p⊝ by defining opera-
tions that satisfy the following reductions:

⟨<𝑡+>0 ‖𝑒+⟩ ⊳∗
R𝑝

⟨𝑡+ ‖ t̂p0⟩[{𝑒+}]
⟨𝒮0𝑥+.𝑡+ ‖𝑒+⟩[{𝑒′

+}] ⊳∗
R𝑝

⟨𝑡+[{k𝑒+}/𝑥+]‖𝑒′
+⟩

where:
⟨𝑉+ ‖ t̂p0⟩[{𝑒+}] ⊳∗

R𝑝
⟨𝑉+ ‖𝑒+⟩

⟨k𝑒+ ‖𝑉+⋅𝑒′
+⟩ ⊳∗

R𝑝
⟨𝑉+ ‖𝑒+⟩[{𝑒′

+}]

In other words we take for any term 𝑡+ and any context 𝑒+:

t̂p0 ≝ ̃𝜇𝑥+.⟨delay(𝑥+)‖ t̂p⟩
<𝑡+>0 ≝ 𝜇𝛼+.⟨𝜇t̂p.⟨𝑡+ ‖ t̂p0⟩∥{𝛼+}⟩

k𝑒+ ≝ 𝜆𝑥+.𝜇𝛼+.⟨𝜇t̂p.⟨𝑥+‖𝑒+⟩∥{𝛼+}⟩
𝒮0𝑥+.𝑡+ ≝ 𝜇𝛼+.⟨𝜆𝑥+.delay(𝑡+)‖{k𝛼+}⋅t̂p⟩

These definitions are inspired from Materzok and Biernacki’s CPS
translation for 𝒮0𝑘.𝑡+ and <𝑡+>0 [MB11].

Reductions are obtained as follows. One has:

⟨<𝑉+>0 ‖𝛼+⟩ ⊳∗
R𝑝

⟨𝑡+ ‖ t̂p0⟩[{𝛼+}]
⊳∗
R𝑝

⟨𝑉+ ‖𝛼+⟩

Besides, let 𝑒+(⋅) be a context that has an adjoint term 𝑒+∗(⋅) in the
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following sense:

⟨𝑒+∗(𝑥+)‖𝛼+⟩ ⊳∗
R𝑝

⟨𝑥+‖𝑒+(𝛼+)⟩

One has:

⟨<𝑒+∗(𝒮0𝑘.𝑡+)>0 ‖𝛼+⟩ ⊳∗
R𝑝

⟨𝑒+∗(𝒮0𝑘.𝑡+)‖ t̂p0⟩[{𝛼+}]
→∗

R𝑝
⟨𝒮0𝑘.𝑡+ ‖𝑒+(t̂p0)⟩[{𝛼+}]

⊳∗
R𝑝

⟨𝑡+[k𝑒+(t̂p)/𝑘]‖𝛼+⟩

where:
k𝑒+(t̂p) ≃R𝑝

𝜆𝑥+.<𝑒+∗(𝑥+)>0

Indeed, one has:

⟨k𝑒+(t̂p0) ‖𝑦+⋅𝛼+⟩ ⊳R𝑝
⟨𝑦+‖𝑒+(t̂p0)⟩[{𝛼+}] ⊲R𝑝

⟨𝜆𝑥+.<𝑒+∗(𝑥+)>0 ‖𝑦+⋅𝛼+⟩

Thus, we implemented in Lpol,t̂p⊝ the reduction behaviour of 𝒮0 as
follows:

<𝑒+∗(𝒮0𝑥.𝑡)>0 ⊳∗
R𝑝

𝑡[k𝑒+(t̂p)/𝑥]

where k𝑒+(t̂p) is equivalent to 𝜆𝑥.<𝑒+∗(𝑥)>0 which takes part in the
original definition.

A variant of Felleisen’s last operator

Felleisen proposed in a note at the end of [AH08] to consider an
operator G that satisfies the following reduction rule:

<𝐸(𝒢 𝑓 )> ⊳ <𝑓 [𝐸]>

where < ⋅> represents a control delimited and where [𝐸] represents
an encoding of the context 𝐸 inside the values of the language. This
encoding is made at runtime by a “meta-function”.
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The operator 𝒯 of λℓ and Lpol,t̂p⊝ is a variant of 𝒢7:

⟨𝒯 𝑡⊝ ‖𝜋⟩[𝜋 ′
⊝, 𝜎] ⊳∗

R𝑝
⟨𝑡⊝ ‖[𝜋]⋅𝜋 ′

⊝⟩[𝜎]

that is to say in Felleisen’s notation:

<𝜋∗(𝒯 𝑓 )> ⊳ 𝑓 [𝜋]

In the calculus λℓ, the operator 𝒯 is defined from the operator ℓ
and is typable (in a simple setting) with (∼𝐴 →⊥)→𝐴. Interestingly,
we could have derived ℓ starting from 𝒯 :

ℓ ≃RE𝑝
𝜆𝑥⊝.(𝒯 𝜆𝑦+.(𝑥⊝ (send 𝑦+ (𝒯 𝜆𝑧+.𝑧+))))

However, we cannot derive the type ℓ ∶ (𝐴 → ⊥) → ∼𝐴 from the one
of 𝒯 . This led us to choose ℓ over 𝒯 .

In fact, it is hard to find a logical8 counterpart to delimited con-
tinuations and to show that it brings added value compared to non-
delimited control, because delimited and non-delimited control are
equivalent at the level of provability — and this shows that we could
not have chosen 𝒯 over ℓ.

IV.5 Negation is involutive in λℓ and Lpol,t̂p⊝

We have defined negation depending on the polarity:

¬𝐴 = {∼𝑁 if 𝐴 = 𝑁
𝑃 → ⊥ if 𝐴 = 𝑃

We motivate this definition in terms of focusing in Section IV.5.1.
Then, in Section IV.5.2 we show how delimited control is responsible
7Notation: 𝒯 comes after 𝒮0, just as 𝒢 comes after ℱ .
8By logical, we mean a type system without annotations (see Chapter III on

page 153). Murthy introduced “pseudo-classical types” inspired by Girard’s
LC [Mur92] but with annotations.
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for the good behaviour of ⊥ in our untyped setting.
In Section IV.5.3, we define and motivate what we mean with iso-

morphic in a polarised setting. Finally, in Section IV.5.4 we show that
there is an isomorphism between 𝐴 and ¬¬𝐴 for both 𝐴 positive and
𝐴 negative.

IV.5.1 Rules of negation are focused
As observed in Section IV.1, negation is not involutive in the λC
calculus because there are two distinct ways of introducing double
negation on the left. In Lpol,t̂p⊝ , the left-introduction rule of the
double negation of a negative is obtained with [𝑒⊝]⋅t̂p:

Γ ∣ 𝑒⊝ ∶ 𝑁 ⊢ Δ—(⊢ ∼)Γ ⊢ [𝑒⊝] ∶ ∼𝑁 ∣ Δ —(⊥ ⊢)Γ ∣ t̂p ∶ ⊥ ⊢ Δ—(→ ⊢)Γ ∣ [𝑒⊝]⋅t̂p ∶ ∼𝑁 → ⊥ ⊢ Δ

The version with cuts of this rule coincides with the one without
cuts: �

�
�
�⟨𝑡⊝ ‖[𝑒⊝]⋅t̂p⟩ ≃R𝑝

⟨𝜇𝛼⊝.⟨𝑡⊝ ‖[𝑒⊝]⋅t̂p⟩∥𝑒⊝⟩ .

Proof. This is obvious when 𝑒⊝ is a stack. When 𝑒⊝ is not a stack, one has:

⟨𝑡⊝ ‖[𝑒⊝]⋅t̂p⟩ ⊳R𝑝
⟨[𝑒⊝]∥ ̃𝜇𝑥+.⟨𝑡⊝ ‖𝑥+⋅t̂p⟩⟩

⊳R𝑝
⟨𝜇𝛼⊝.⟨[𝛼⊝]∥ ̃𝜇𝑥+.⟨𝑡⊝ ‖𝑥+⋅t̂p⟩⟩∥𝑒⊝⟩

→R𝑝
⟨𝜇𝛼⊝.⟨𝑡⊝ ‖[𝛼⊝]⋅t̂p⟩∥𝑒⊝⟩ ∎

This identification is a consequence of the following two focusing
reduction rules.

Right-introduction of the negation of a negative hides a cut
In other words:�

�
�
�⟨[𝑒⊝]‖𝑒′⟩ ⊳R𝑝

⟨𝜇𝛼⊝.⟨[𝛼⊝]‖𝑒′⟩∥𝑒⊝⟩ when 𝑒⊝ is not a stack.
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This means that if 𝑒⊝ is not a stack, then [𝑒⊝] is not a value. It
is a term which is evaluated in a strict fashion into the first stack
encountered during the evaluation of 𝑒⊝.

Left-introduction of the negation of a positive hides a cut
In other words:�

�
�
�⟨𝑡⊝ ‖𝑢+⋅t̂p⟩ ⊳R𝑝

⟨𝑢+ ∥ ̃𝜇𝑥+.⟨𝑡⊝ ‖𝑥+⋅t̂p⟩⟩ when 𝑢+ is not a value.

This corresponds to the fact that the arguments to a function are
called by value.

For the same reasons, the two ways of introducing the double neg-
ation of a positive on the right coincide. That the rules of negation
hide cuts constitutes the main idea of the involutive negation.9

IV.5.2 Delimited control for falsity

The rules of units are delicate in an untyped setting. Yet ⊥ is essential
to define negation as an implication:

Γ ⊢ 𝑃,Δ —(⊥ ⊢)⊥ ⊢—(→ ⊢)Γ,𝑃 → ⊥ ⊢ Δ

Γ,𝑃 ⊢ Δ—(⊢ ⊥)Γ,𝑃 ⊢ ⊥,Δ—(⊢→)Γ ⊢ 𝑃 → ⊥,Δ

In comparison, the impredicative encoding (∀𝑋 𝑋) does not let us
derive the rule (⊥ ⊢), as already underlined by Ariola and Her-
belin [AH03]. As a consequence, negation defined as 𝐴 → ∀𝑋 𝑋
would not be the negation of sequent calculus.

9This already appears in the careful reading of the works of Girard [Gir91, Gir93]
and Danos, Joinet and Schellinx [DJS97].
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The rules
The rules for falsity are given with the context t̂p and its binder:

—(⊥ ⊢)
∣ t̂p ∶ ⊥ ⊢

𝑐 ∶ (Γ ⊢ Δ)—(⊢ ⊥)Γ ⊢ 𝜇t̂p.𝑐 ∶ ⊥ ∣ Δ

Thus we can derive the rules of negation:

Γ ⊢ 𝑡+ ∶ 𝑃 ∣ Δ—(¬)Γ ∣ 𝑡+⋅t̂p ∶ 𝑃 → ⊥ ⊢ Δ
Γ ∣ 𝑒+ ∶ 𝑃 ⊢ Δ—(¬)Γ ⊢ 𝜆𝑥+.𝜇t̂p.⟨𝑥+‖𝑒+⟩ ∶ 𝑃 → ⊥ ∣ Δ

The rewriting rules that concerns t̂p and 𝜇t̂p are the following ones:

(𝑅t̂p) 𝜇t̂p.⟨𝑡⊝ ‖ t̂p⟩ ⊳R𝑝
𝑡⊝

(𝐸t̂p) 𝑐 ⊳E𝑝
⟨𝜇t̂p.𝑐‖ t̂p⟩

The observation that the presence of a specific constant tp for the
rule (⊥ ⊢) simplifies and enhances the theory of the 𝒞 operator
([FFKD87, FH92, Par92]) is due to Ariola, Herbelin and Sabry [AH03,
AHS04, AH08]. The extension of tp into t̂p and the addition of the
operator 𝜇t̂p to model delimited control operators in call by value
is due to the same authors [AHS04, Her05, AHS09]. Our variant is
inspired from Herbelin and Ghilezan [HG08].

A unit in an untyped setting
One can see t̂p as a corrected unit by removing the hypothesis that
the rule (⊥ ⊢) is given by a stack. Indeed let us consider a language
𝑝′ obtained by replacing t̂p by a constant tp that has the following
rules:

(𝑅tp) ⟨𝜇tp.𝑐‖ tp⟩ ⊳R𝑝′ 𝑐
(𝐸tp) 𝑡⊝ ⊳E𝑝′ 𝜇tp.⟨𝑡⊝ ‖ tp⟩
(𝑅𝜇) ⟨𝜇𝛼⊝.𝑐‖ tp⟩ ⊳R𝑝′ 𝑐[tp/𝛼⊝]

The first two rules are equivalent to the ones of t̂p, while the third
one corresponds to the hypothesis that tp is a stack. We first deduce
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the following:

Proposition IV.20. For all 𝑐 and 𝜋⊝ one has:

𝜇tp.𝑐 ≃𝑝′ 𝜇𝛼⊝.𝑐 (𝛼⊝ ∉ fv(𝑐))
𝜋⊝ ≃𝑝′ tp .

Proof. First we have for any 𝑐 and 𝛼⊝ ∉ fv(𝑐):

𝜇tp.𝑐 ←R𝑝′ 𝜇tp.⟨𝜇𝛼⊝.𝑐‖ tp⟩ ⊲E𝑝′ 𝜇_.𝑐

Now let 𝜋⊝ be a stack. One has:

𝜋⊝ ⊳E𝑝′ ̃𝜇𝑥⊝.⟨𝑥⊝‖𝜋⊝⟩

→E𝑝′ ̃𝜇𝑥⊝.⟨𝜇tp.⟨𝑥⊝‖ tp⟩∥𝜋⊝⟩

≃𝑝′ ̃𝜇𝑥⊝.⟨𝜇𝛼⊝.⟨𝑥⊝‖ tp⟩∥𝜋⊝⟩

→R𝑝′ ̃𝜇𝑥⊝.⟨𝑥⊝‖ tp⟩

⊲E𝑝′ tp ∎

These equations are very natural… but only in a typed setting.
Indeed, in an untyped setting, all commands become equivalent,
and therefore also all the terms.

Proposition IV.21. For any two commands 𝑐 and 𝑐′ one has 𝑐 ≃𝑝′ 𝑐′.

Proof. Let 𝑐 and 𝑐′ be two commands. One has:

𝑦+⋅ ̃𝜇𝑦+.𝑐 ≃𝑝′ tp ≃𝑝′ 𝑦+⋅ ̃𝜇𝑦+.𝑐′

From this we conclude 𝑐 ≃𝑝′ 𝑐′:

𝑐 ⊲∗
R𝑝′ ⟨𝜆𝑥+.𝑥+‖𝑦+⋅ ̃𝜇𝑦+.𝑐⟩

≃𝑝′ ⟨𝜆𝑥+.𝑥+‖𝑦+⋅ ̃𝜇𝑦+.𝑐′⟩
⊳∗
R𝑝′ 𝑐′ ∎
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By removing the hypothesis that tp is a value, we obtain t̂p and
the calculus becomes coherent, as we showed in Corollary IV.19. It
remains to show that we have indeed ¬¬𝐴 ≃ 𝐴.

IV.5.3 Isomorphisms in a polarised setting
Definition IV.22. Two types (or formulae) 𝐴 and 𝐵 are isomorphic
if they have the same polarity and there exist two terms:

𝑥 ∶ 𝐴 ⊢ 𝜙(𝑥) ∶ 𝐵
𝑦 ∶ 𝐵 ⊢ 𝜓(𝑦) ∶ 𝐴

with:

let 𝑦 be𝜙(𝑥) in𝜓(𝑦) ≃ 𝑥
let 𝑥 be𝜓(𝑦) in𝜙(𝑥) ≃ 𝑦

In this case we write 𝐴 ≅𝜙,𝜓 𝐵.
In the calculus Lpol,t̂p⊝ , we take ≃ = ≃RE𝑝

above. In the λℓ calculus,
we take ≃ = ≈𝑝.

Proposition IV.23. If we have 𝐴 ≅𝜙,𝜓 𝐵 in the calculus Lpol,t̂p⊝ , such
that 𝜙 and 𝜓 are given by quasi-proof terms of λℓ, then one has 𝐴 ≅𝜙,𝜓 𝐵
in the calculus λℓ.

Proof. If 𝜙(𝑥) and 𝜓(𝑦) are quasi-proof terms, then it is also the case
of let 𝑦 be𝜙(𝑥) in𝜓(𝑦) and of let 𝑥 be𝜓(𝑦) in𝜙(𝑥). Therefore by hypothesis
and definition one has:

let 𝑦 be𝜙(𝑥) in𝜓(𝑦) ≈𝑝 𝑥
let 𝑥 be𝜓(𝑦) in𝜙(𝑥) ≈𝑝 𝑦 ∎

Motivation
Definition IV.22 is motivated in the language of duploids of Chapter II
as follows. Suppose that two morphisms 𝜙 ∶ 𝐴 → 𝐵 and 𝜓 ∶ 𝐵 → 𝐴
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define an isomorphism in a duploid 𝒟 , in the following sense:

𝜓 ◉𝜙 = id𝐴
𝜙 ◉𝜓 = id𝐵

Such an isomorphism is not enough to freely identify 𝐴 with 𝐵:
Consider 𝐴 = 𝑁 and 𝐵 = ⇓𝑁 with 𝜙 = wrap𝑁 and 𝜓 = unwrap𝑁 , or
symmetrically 𝐴=𝑃 and 𝐵=⇑𝑃. The issue is that we don’t necessarily
have:

∀𝑓 , 𝑔, (𝑓 ◉𝜓) ◉ (𝜙 ◉ 𝑔) = 𝑓 ◉ 𝑔
∀𝑓 , 𝑔, (𝑓 ◉𝜙) ◉ (𝜓 ◉ 𝑔) = 𝑓 ◉ 𝑔 (IV.2)

Lemma IV.24. Under the condition (IV.2), 𝜙 is thunkable if and only if
𝜓 is thunkable, and 𝜙 is linear if and only if 𝜓 is linear.

Proof. By symmetry, it is enough to show one of the four implications.
Suppose that 𝜙 is linear. On a:

∀𝑓 , 𝑔 ∶ 𝜓 ◉ (𝑓 ◉ 𝑔) = 𝜓 ◉ (((𝜙 ◉𝜓) ◉ 𝑓 ) ◉ 𝑔) since 𝜙 ◉𝜓 = id𝐵

= 𝜓 ◉ (𝜙 ◉ ((𝜓 ◉ 𝑓 ) ◉ 𝑔)) since 𝜙 is linear

= (𝜓 ◉𝜙) ◉ (𝜓 ◉ 𝑓 ) ◉ 𝑔 with (IV.2)

= (𝜓 ◉ 𝑓 ) ◉𝑔 since 𝜓 ◉𝜙 = id𝐴

hence 𝜓 is linear. ∎

For such a strengthened notion of isomorphism, there are two
possibilities:

• 𝐴 and 𝐵 have the same polarity. Then the equations (IV.2) are
satisfied by ∘∘- or ∙∙-associativity. This notion coincides with the
one of isomorphism in the categories 𝒫 , 𝒩 .

• 𝐴 and 𝐵 have different polarities, say 𝐴 = 𝑃 and 𝐵 = 𝑁. Then
𝜙 ∶ 𝑃 → 𝑁 is both thunkable and linear. As a consequence, 𝜓 is
also both thunkable and linear according to Lemma IV.24.
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This suggests two modifications to the definition of an isomorphism
in a duploid:

1. 𝐴 and 𝐵 have the same polarity; or:
2. 𝜙 and 𝜓 are both thunkable and linear.

It is easy to see that condition #2 is also enough to obtain (IV.2).
Laurent, Quatrini and Tortora de Falco [LQTdF05] have studied

a notion of isomorphism similar to (a syntactic approximation of)
condition #2 in (cut-free) LC10; for which there is no such iso-
morphism if 𝐴 and 𝐵 do not have the same polarity. We extend
their argument with Proposition IV.44: in the context of the Lpol,t̂p⊝

calculus, no term 𝑥 ∶ 𝑁 ⊢ 𝑡 ∶ 𝑃 is both linear (in 𝑁) and thunkable
(in 𝑃).

We adopted above the first (weaker) notion of isomorphism.

IV.5.4 Proof of the involution
We prove in this section that there exists an isomorphism between 𝐴
and ¬¬𝐴 first in Lpol,t̂p⊝ and then in λℓ, in the sense of IV.22.

We insist that the proofs are entirely algebraic. In particular, we
need no hypothesis about the syntax being non-extensible or a par-
ticular typed setting being strongly normalising. As a consequence,
the isomorphism remains true in all extensions of the calculi and
of their type systems. (A counter-example to this property is an
isomorphism such as ∀𝑋 (𝐴 → 𝑋) → 𝑋 ≅ 𝐴 in System F.)
10In fact the authors consider Danos, Joinet and Schellinx’s LK𝜂

𝑝 [DJS97]. It
is the same system as LC except that the stoup of LC is less constrained
than the η restriction of LK𝜂

𝑝. By same, we mean that we can define (in the
terminology of the respective authors):

• Connectives of LK𝜂
𝑝 in LC by coercing polarities: 𝐴∧𝑚 𝐵 ≝ (𝐴∧𝑉)∧(𝐵∧𝑉),

etc.
• Connectives of LC in LK𝜂

𝑝 by case analysis: 𝐴𝑞 ∧ 𝐵𝑞 ≝ 𝐴𝑞 ∧𝑚 𝐵𝑞, 𝐴𝑡 ∧ 𝐵𝑡 ≝
𝐴𝑡 ∧𝑎 𝐵𝑡 , etc.
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Case ¬¬𝑃 ≅ 𝑃
Definition IV.25. We define the following notation:

̃𝜇[𝑥⋅t̂p].𝑐 ≝ ̃𝜇[𝛼⊝].⟨𝜆𝑥.𝜇t̂p.𝑐‖𝛼⊝⟩

This construct has the following introduction rule:

𝑐 ∶ (Γ, 𝑥 ∶ 𝐴 ⊢ Δ)
——Γ ∣ ̃𝜇[𝑥⋅t̂p].𝑐 ∶ ∼(𝐴 → ⊥) ⊢ Δ

Lemma IV.26. One has:

⟨[𝑉⋅t̂p]‖ ̃𝜇[𝑥⋅t̂p].𝑐⟩ ≃RE𝑝
𝑐[𝑉/𝑥]

̃𝜇[𝑥⋅t̂p].⟨[𝑥⋅t̂p]‖𝑒+⟩ ≃RE𝑝
𝑒+

Proof. One has:

⟨[𝑉⋅t̂p]‖ ̃𝜇[𝑥⋅t̂p].𝑐⟩
→∗

R𝑝
⟨𝜇𝛼⊝.⟨[𝑉⋅𝛼⊝]‖ ̃𝜇[𝑥⋅t̂p].𝑐⟩∥ t̂p⟩

→R𝑝
⟨𝜇𝛼⊝.⟨𝜆𝑥.𝜇t̂p.𝑐‖𝑉⋅𝛼⊝⟩∥ t̂p⟩

→R𝑝
⟨𝜇𝛼⊝.⟨𝜇t̂p.𝑐[𝑉/𝑥]‖𝛼⊝⟩∥ t̂p⟩

←E𝑝
⟨𝜇t̂p.𝑐[𝑉/𝑥]‖ t̂p⟩

←E𝑝
𝑐[𝑉/𝑥]

̃𝜇[𝑥⋅t̂p].⟨[𝑥⋅t̂p]‖𝑒+⟩
= ̃𝜇[𝛼⊝].⟨𝜆𝑥.𝜇t̂p.⟨[𝑥⋅t̂p]‖𝑒+⟩∥𝛼⊝⟩
→∗

R𝑝
̃𝜇[𝛼⊝].⟨𝜆𝑥.𝜇t̂p.⟨𝜇𝛽⊝.⟨[𝑥⋅𝛽⊝]‖𝑒+⟩∥ t̂p⟩∥𝛼⊝⟩

→R𝑝
̃𝜇[𝛼⊝].⟨𝜆𝑥.𝜇𝛽⊝.⟨[𝑥⋅𝛽⊝]‖𝑒+⟩∥𝛼⊝⟩

←R𝑝
̃𝜇[𝛼⊝].⟨𝜆𝑥.𝜇𝛽⊝.⟨𝜇𝛼⊝.⟨[𝛼⊝]‖𝑒+⟩∥𝑥⋅𝛽⊝⟩∥𝛼⊝⟩

→R𝑝
̃𝜇[𝛼⊝].⟨𝜇𝛼⊝.⟨[𝛼⊝]‖𝑒+⟩∥𝛼⊝⟩

≃RE𝑝
𝑒+ ∎
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Proposition IV.27 (𝑃 ≅ ¬¬𝑃 in Lpol,t̂p⊝). We define:

𝜙+(𝑥+) ≝ [𝑥+⋅t̂p]
𝜓+(𝑦+) ≝ 𝜇𝛼+.⟨𝑦+∥ ̃𝜇[𝑥+⋅t̂p].⟨𝑥+‖𝛼+⟩⟩

In Lpol,t̂p⊝ , one has 𝑃 ≅𝜙+,𝜓+
∼(𝑃 → ⊥).

Proof. Indeed one has:

𝑥+ ∶ 𝑃 ⊢ [𝑥+⋅t̂p] ∶ ∼(𝑃 → ⊥)
𝑦+ ∶ ∼(𝑃 → ⊥) ⊢ 𝜇𝛼+.⟨𝑦+∥ ̃𝜇[𝑥+⋅t̂p].⟨𝑥+‖𝛼+⟩⟩ ∶ 𝑃

Besides, one has:

⟨let 𝑦+ be𝜙+(𝑥+) in𝜓+(𝑦+)‖𝛼+⟩

⊳R𝑝
⟨[𝑥+⋅t̂p]∥ ̃𝜇𝑦+.⟨𝜇𝛼+.⟨𝑦+∥ ̃𝜇[𝑥+⋅t̂p].⟨𝑥+‖𝛼+⟩⟩∥𝛼+⟩⟩

→R𝑝
⟨[𝑥+⋅t̂p]∥ ̃𝜇𝑦+.⟨𝑦+∥ ̃𝜇[𝑥+⋅t̂p].⟨𝑥+‖𝛼+⟩⟩⟩

→E𝑝
⟨[𝑥+⋅t̂p]∥ ̃𝜇[𝑥+⋅t̂p].⟨𝑥+‖𝛼+⟩⟩

≃RE𝑝
⟨𝑥+‖𝛼+⟩

⟨let 𝑥+ be𝜓+(𝑦+) in𝜙+(𝑥+)‖𝛽+⟩
⊳R𝑝

⟨𝜇𝛼+.⟨𝑦+∥ ̃𝜇[𝑥+⋅t̂p].⟨𝑥+‖𝛼+⟩⟩∥ ̃𝜇𝑥+.⟨[𝑥+⋅t̂p]‖𝛽+⟩⟩

≃RE𝑝
⟨𝑦+∥ ̃𝜇[𝑥+⋅t̂p].⟨[𝑥+⋅t̂p]‖𝛽+⟩⟩

←∗
E𝑝

⟨𝑦+‖𝛽+⟩ ∎

Corollary IV.28 (𝑃 ≅ ¬¬𝑃 in λℓ). One takes, referring to the terms
defined in Figure IV.2e on page 210:

𝜙′
+(𝑥+) ≝ (𝐸 𝑥+)+

𝜓 ′
+(𝑦+) ≝ (𝐷¬ 𝑦+)+

In λℓ, one has 𝑃 ≅𝜙′
+,𝜓 ′

+
∼(𝑃 → ⊥).
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Proof. We proved in sections IV.3.4 and IV.3.3:

𝑥+ ∶ 𝑃 ⊢ (𝐸 𝑥+)+ ∶ ∼(𝑃 → ⊥)
𝑦+ ∶ ∼(𝑃 → ⊥) ⊢ (𝐷¬ 𝑦+)+ ∶ 𝑃

We also proved in particular:

⟨(𝐸 𝑥+)+ ‖𝛼+⟩[𝛽⊝] ≻∗
𝑝 ⟨[𝑥+⋅𝛽⊝]‖𝛼+⟩

⟨(𝐷¬ [𝑥+⋅𝛼⊝])+ ‖𝛽+⟩ ≻∗
𝑝 ⟨𝑥+‖𝛽+⟩[𝛼⊝]

According to Proposition IV.11, these reductions are equivalences between
commands of Lpol,t̂p⊝ . As a consequence one has by extensionality in
Lpol,t̂p⊝:

(𝐸 𝑥+)+ ≃RE𝑝
[𝑥+⋅t̂p] = 𝜙+(𝑥+)

(𝐷¬ 𝑦+)+ ≃RE𝑝
𝜇𝛽+.⟨𝑦+∥ ̃𝜇[𝑥+⋅t̂p].⟨𝑥+‖𝛽+⟩⟩ = 𝜓+(𝑦)

According to Proposition IV.27, one therefore has 𝑃 ≅𝜙′
+,𝜓 ′

+
∼(𝑃 → ⊥) in

Lpol,t̂p⊝ . Since both 𝜙′
+ and 𝜓 ′

+ are quasi-proof terms, we have according to
Proposition IV.23 𝑃 ≅𝜙′

+,𝜓 ′
+

∼(𝑃 → ⊥) in λℓ. ∎

Case ¬¬𝑁 ≅ 𝑁
Definition IV.29. We define the following notation:

𝜆[𝛼⊝].𝑡 ≝ 𝜆𝑥+.𝜇𝛽.⟨𝑥+∥ ̃𝜇[𝛼⊝].⟨𝑡 ‖𝛽⟩⟩

This construction has the following derived rule:

Γ ⊢ 𝑡 ∶ 𝐴 ∣ 𝛼⊝ ∶ 𝑁,Δ
——Γ ⊢ 𝜆[𝛼⊝].𝑡 ∶ (∼𝑁) → 𝐴

Lemma IV.30. One has:

⟨𝜆[𝛼⊝].𝜇t̂p.𝑐‖[𝜋⊝]⋅t̂p⟩ ≃RE𝑝
𝑐[𝜋⊝/𝛼⊝]

𝜆[𝛼⊝].𝜇t̂p.⟨𝑡+ ‖[𝛼⊝]⋅t̂p⟩ ≃RE𝑝
𝑡+
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Proof. Indeed:

⟨𝜆[𝛼⊝].𝜇t̂p.𝑐‖[𝜋⊝]⋅t̂p⟩
= ⟨𝜆𝑥+.𝜇𝛽⊝.⟨𝑥+∥ ̃𝜇[𝛼⊝].⟨𝜇t̂p.𝑐‖𝛽⊝⟩⟩∥[𝜋⊝]⋅t̂p⟩

→R𝑝
⟨𝜇𝛽⊝.⟨𝜆𝑥+.𝜇𝛽⊝.⟨𝑥+∥ ̃𝜇[𝛼⊝].⟨𝜇t̂p.𝑐‖𝛽⊝⟩⟩∥[𝜋⊝]⋅𝛽⊝⟩∥ t̂p⟩

→∗
R𝑝

⟨𝜇𝛽⊝.⟨[𝜋⊝]∥ ̃𝜇[𝛼⊝].⟨𝜇t̂p.𝑐‖𝛽⊝⟩⟩∥ t̂p⟩

→R𝑝
⟨𝜇𝛽⊝.⟨𝜇t̂p.𝑐[𝜋⊝/𝛼⊝]‖𝛽⊝⟩∥ t̂p⟩

←E𝑝
⟨𝜇t̂p.𝑐[𝜋⊝/𝛼⊝]‖ t̂p⟩

←E𝑝
𝑐[𝜋⊝/𝛼⊝]

𝜆[𝛼⊝].𝜇t̂p.⟨𝑡+ ‖[𝛼⊝]⋅t̂p⟩
→R𝑝

𝜆[𝛼⊝].𝜇t̂p.⟨𝜇𝛽⊝.⟨𝑡+ ‖[𝛼⊝]⋅𝛽⊝⟩∥ t̂p⟩

→R𝑝
𝜆[𝛼⊝].𝜇𝛽⊝.⟨𝑡+ ‖[𝛼⊝]⋅𝛽⊝⟩

→R𝑝
𝜆𝑥+.𝜇𝛽⊝.⟨𝑥+∥ ̃𝜇[𝛼⊝].⟨𝑡+ ‖[𝛼⊝]⋅𝛽⊝⟩⟩

←R𝑝
𝜆𝑥+.𝜇𝛽⊝.⟨𝑥+∥ ̃𝜇[𝛼⊝].⟨[𝛼⊝]∥ ̃𝜇𝑥+.⟨𝑡+ ‖𝑥+⋅𝛽⊝⟩⟩⟩

←E𝑝
𝜆𝑥+.𝜇𝛽⊝.⟨𝑥+∥ ̃𝜇𝑥+.⟨𝑡+ ‖𝑥+⋅𝛽⊝⟩⟩

→R𝑝
𝜆𝑥+.𝜇𝛽⊝.⟨𝑡+ ‖𝑥+⋅𝛽⊝⟩

←E𝑝
𝑡+ ∎

Proposition IV.31 (𝑁 ≅ ¬¬𝑁 in Lpol,t̂p⊝). Let us take:

𝜙⊝(𝑥⊝) ≝ 𝜆[𝛼⊝].𝜇t̂p.⟨𝑥⊝‖𝛼⊝⟩
𝜓⊝(𝑦⊝) ≝ 𝜇𝛼⊝.⟨𝑦⊝‖[𝛼⊝]⋅t̂p⟩

In the calculus Lpol,t̂p⊝ , one has:

𝑁 ≅𝜙⊝,𝜓⊝
(∼𝑁) → ⊥
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Proof. Indeed one has:

𝑥⊝ ∶ 𝑁 ⊢ 𝜆[𝛼⊝].𝜇t̂p.⟨𝑥⊝‖𝛼⊝⟩ ∶ (∼𝑁) → ⊥
𝑦⊝ ∶ (∼𝑁) → ⊥ ⊢ 𝜇𝛼⊝.⟨𝑦⊝‖[𝛼⊝]⋅t̂p⟩

One also has:

⟨let 𝑦⊝ be𝜙⊝(𝑥⊝) in𝜓⊝(𝑦⊝)‖𝛼⊝⟩
⊳R𝑝

⟨𝜆[𝛼⊝].𝜇t̂p.⟨𝑥⊝‖𝛼⊝⟩∥ ̃𝜇𝑦⊝.⟨𝜇𝛼⊝.⟨𝑦⊝‖[𝛼⊝]⋅t̂p⟩∥𝛼⊝⟩⟩

→∗
R𝑝

⟨𝜆[𝛼⊝].𝜇t̂p.⟨𝑥⊝‖𝛼⊝⟩∥[𝛼⊝]⋅t̂p⟩
≃RE𝑝

⟨𝑥⊝ ‖𝛼⊝⟩

⟨let 𝑥⊝ be𝜓⊝(𝑦⊝) in𝜙⊝(𝑥⊝)‖𝛽⊝⟩
⊳R𝑝

⟨𝜇𝛼⊝.⟨𝑦⊝‖[𝛼⊝]⋅t̂p⟩∥ ̃𝜇𝑥⊝.⟨𝜆[𝛼⊝].𝜇t̂p.⟨𝑥⊝‖𝛼⊝⟩∥𝛽⊝⟩⟩

→∗
R𝑝

⟨𝜆[𝛼⊝].𝜇t̂p.⟨𝑦⊝‖[𝛼⊝]⋅t̂p⟩∥𝛽⊝⟩

≃RE𝑝
⟨𝑦⊝ ‖𝛽⊝⟩ ∎

Corollary IV.32 (𝑁 ≅ ¬¬𝑁 in λℓ). We define according to Figure IV.2e
on page 210:

𝜙′
⊝(𝑥⊝) ≝ 𝜆𝑦+.(send 𝑦+𝑥⊝)⊝

𝜓 ′
⊝(𝑦⊝) ≝ (𝒯 𝑦⊝)⊝

In λℓ, one has 𝑁 ≅𝜙′⊝,𝜓 ′⊝
∼𝑁 → ⊥.

Proof. We proved in sections IV.3.4 and IV.3.3:

𝑥⊝ ∶ 𝑁 ⊢ 𝜆𝑦+.(send 𝑦+𝑥⊝)⊝ ∶ ∼𝑁 → ⊥
𝑦⊝ ∶ ∼𝑁 → ⊥ ⊢ (𝒯 𝑦⊝)⊝ ∶ 𝑁

Besides one has:

⟨𝜆𝑦+.(send 𝑦+𝑥⊝)⊝ ‖[𝛼⊝]⋅𝛽⊝⟩ ≻∗
𝑝 ⟨𝑥⊝ ‖𝛼⊝⟩[𝛽⊝]

⟨(𝒯 𝑦⊝)⊝ ‖𝛼⊝⟩[𝛽⊝, 𝛾⊝] ≻∗
𝑝 ⟨𝑦⊝ ‖[𝛼⊝]⋅𝛽⊝⟩[𝛾⊝]
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According to Proposition IV.11, these reductions are equivalences of com-
mands of Lpol,t̂p⊝ . As a consequence one again has by extensionality in
Lpol,t̂p⊝:

𝜆𝑦+.(send 𝑦+𝑥⊝)⊝ ≃RE𝑝
𝜆[𝛼⊝].𝜇t̂p.⟨𝑥⊝‖𝛼⊝⟩ = 𝜙⊝(𝑥⊝)

(𝒯 𝑦⊝)⊝ ≃RE𝑝
𝜇𝛼⊝.⟨𝑦⊝‖[𝛼⊝]⋅t̂p⟩ = 𝜓⊝(𝑦⊝)

According to Proposition IV.31, one therefore has 𝑁 ≅𝜙′⊝,𝜓 ′⊝
∼𝑁 → ⊥ in

Lpol,t̂p⊝ . Again, since 𝜙′
⊝ and 𝜓 ′

⊝ are quasi-proof terms, one has according
to Proposition IV.23 𝑁 ≅𝜙′⊝,𝜓 ′⊝

∼𝑁 → ⊥ in λℓ. ∎

IV.6 A semantic characterisation of the
stoup

This section is a study of the equations of the untyped calculus
Lpol,t̂p⊝ , and in particular the notion of thunkability of terms and
linearity of contexts from Chapter II. We should mention that the
development of this section is not specific to Lpol,t̂p⊝ and can be
generalised, for instance to the calculus Lpol,t̂p+ .

Linearity and thunkability are typically approximated in various
ways. The notion of value and stack is the simplest, and has the least
structure. For instance, we do not ask that the syntactic compos-
ite let 𝑥 be𝑉1 in𝑉2 of two values be a value. The stoup is a syntactic
device which, in LC [Gir91], describes with hindsight a generalisation
of values and stacks. It amounts (modulo duality) to add, to values
made from products and sums, an operation of composition and op-
erations such as distributivity. In counterpart, this syntactic notion
is more delicate to manipulate formally [LQTdF05].

We use the notions of linearity and thunkability to define a se-
mantic notion of stoup, in the sense that the notion is attached to
properties rather than to the form, and also that it is likely not recurs-
ive as we will conjecture. This is a concise syntactic account, as well
as an extension to the polarised case, of the structure of thunkable
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and central morphisms studied separately by Führmann [Füh99] and
Selinger [Sel01].

First, in IV.6.1 we explain why restrictions knows as “A-normal
forms”, “monadic normal forms” or “η restriction” are harmful in our
context. Then in sections IV.6.2 and IV.6.3 we characterise thunkable
and linear terms in terms of commutation properties and substitu-
tion properties. Then in Section IV.6.4 we apply the results to prove
that additional expansion rules are derivable with certain restric-
tions. Last, in Section IV.6.5 we show that the notion of thunkable
terms and linear context provide an over-approximation of Girard’s
stoup.

IV.6.1 On A-normal forms
In the study of systems with focalisation, rules of reduction 𝜍 (Fig-
ure IV.4b), such as the following ones:

⟨(𝑡+, 𝑢+)‖𝑒+⟩
⊳R𝑝

⟨𝑡+ ∥ ̃𝜇𝑥+.⟨(𝑥+, 𝑢+)‖𝑒+⟩⟩

→R𝑝
⟨𝑡+ ∥ ̃𝜇𝑥+.⟨𝑢+ ∥ ̃𝜇𝑦+.⟨(𝑥+, 𝑦+)‖𝑒+⟩⟩⟩

(when 𝑡+ and 𝑢+ are not values), were from the beginning replaced
with a restriction of the constructs to values (e.g. (𝑉, 𝑊)), with the
exceptions of works such as Wadler’s [Wad03].

The restriction appeared under various formulations [Gir91, FSDF93,
HD94, DJS97, CH00]. In particular, Flanagan et al. introduced to this
effect the terminology A-normal form [FSDF93]; Hatcliff and Danvy
understood the role of Moggi’s monadic model and called itmonadic
normal form [HD94]; and Danos, Joinet and Schellinx understood
that 𝜍-like rules are a necessary consequence of η rules and coined
the terminology η restriction [DJS97].

The argument in favour of the restriction is that the proofs that
correspond to (𝑡, 𝑢), [𝑒⊝] and 𝑡⋅𝑒 are still derivable in the restricted
system. Indeed, when the pair (𝑉, 𝑊) is restricted to values, it is
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possible to define (𝑡, 𝑢) for any 𝑡 and 𝑢 as follows:

(𝑡, 𝑢) ≝ 𝜇𝛼+.⟨𝑡 ∥ ̃𝜇𝑥.⟨𝑢∥ ̃𝜇𝑦.⟨(𝑥, 𝑦)‖𝛼+⟩⟩⟩

In what follows, the restriction is not acceptable. Indeed, we are
going to substitute variables with thunkable and linear terms. For
want of a recursive characterisation of these notions, substitution
must therefore be defined for arbitrary terms and contexts, which is
not the case in the presence of a restriction to A-normal forms.

IV.6.2 Equalities of commutation
Let us define the following shifting operations.

Definition IV.33. We take:

delay(𝑡𝜀) ≝ 𝜆_.𝑡𝜀 (with _ negative )
force𝜀(𝑡⊝) ≝ 𝑡 𝜆𝑥.𝑥 ≝ 𝜇𝛼𝜀.⟨𝑡⊝ ‖𝜆𝑥.𝑥⋅𝛼𝜀⟩
wrap∗

𝜀(𝑒+) ≝ ̃𝜇𝑥𝜀.⟨(𝜆𝑦.𝑦, 𝑥𝜀)‖𝑒+⟩
unwrap∗(𝑒𝜀) ≝ ̃𝜇(_, 𝑥𝜀).⟨𝑥𝜀 ‖𝑒𝜀⟩ (with _ negative )

For 𝑡𝜀 one thus has 𝑡𝜀 ≃RE𝑝 force𝜀(delay(𝑡𝜀)); while for any 𝑒𝜀 one
has 𝑒𝜀 ≃RE𝑝 wrap∗

𝜀(unwrap∗(𝑒𝜀)). Indeed:

force𝜀(delay(𝑡𝜀)) = 𝜇𝛼𝜀.⟨𝜆_.𝑡𝜀 ‖𝜆𝑥.𝑥⋅𝛼𝜀⟩
→R𝑝

𝜇𝛼𝜀.⟨𝑡𝜀 ‖𝛼𝜀⟩
←E𝑝

𝑡𝜀

wrap∗
𝜀(unwrap∗(𝑒𝜀)) = ̃𝜇𝑥𝜀.⟨(𝜆𝑦.𝑦, 𝑥𝜀)∥ ̃𝜇(_, 𝑥𝜀).⟨𝑥𝜀 ‖𝑒𝜀⟩⟩

→R𝑝
̃𝜇𝑥𝜀.⟨𝑥𝜀 ‖𝑒𝜀⟩

←E𝑝
𝑒𝜀

These are not the shifting operations of the duploid but rather the
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operations of weak shifts, in the sense that we can have:

delay(force𝜀(𝑥⊝)) ≄RE𝑝
𝑥⊝

unwrap∗(wrap∗
𝜀(𝑥+)) ≄RE𝑝

𝑥+

Still, weak shifts are enough for our purposes.

Freshness clauses
In what follows 𝜇𝑞 refers to a binder among 𝜇𝛼, 𝜆𝑥.𝜇𝛼 and ̃𝜇𝑞 refers to
one among ̃𝜇𝑥, ̃𝜇(𝑥, 𝑦), ̃𝜇[𝛼⊝]. We define v(𝑞) as the set of variables
that appear in 𝜇𝑞 or ̃𝜇𝑞 (depending on the case). We define pairwise
freshness as follows:

• 𝑞 # 𝑓 when v(𝑞) ∩ fv(𝑓 ) = ∅;
• 𝑓 # 𝑓 ′ when fv(𝑓 ) ∩ fv(𝑓 ′) = ∅;
• 𝑞 # 𝑞′ when v(𝑞) ∩v(𝑞′) = ∅.

We now introduce a definition to simplify the statement of freshness
clauses for variables.

Definition IV.34 (Bindings).

1. A simple binding (notation {𝑓/𝑞}) is given by a pair (𝑓 , 𝑞) of the
form (𝑡, ̃𝜇𝑞) or (𝑒, 𝜇𝑞) together with one of the following:

• 𝑓 is a positive term and ̃𝜇𝑞 is of the form ̃𝜇𝑥+, ̃𝜇(𝑥, 𝑦), ̃𝜇[𝛼⊝];
• 𝑓 is a negative term and ̃𝜇𝑞 is of the form ̃𝜇𝑥⊝;
• 𝑓 is a positive context and 𝜇𝑞 is of the form 𝜇𝛼+;
• 𝑓 is a negative context and 𝜇𝑞 is of the form 𝜇𝛼⊝, 𝜆𝑥.𝜇𝛼.

2. A double binding (notation {𝑓1/𝑞1, 𝑓2/𝑞2}) is a pair (𝑓1, 𝑞1), (𝑓2, 𝑞2)
of simple bindings that satisfies 𝑞1 # 𝑓2, 𝑞2 # 𝑓1 and 𝑞1 # 𝑞2.

Equalities of commutation for values
Values and stacks verify certain equalities of commutation:
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Lemma IV.35. Let 𝑐 be a command. For any double binding
{𝑉/𝑞, 𝑒/𝑞′}, one has:

⟨𝜇𝑞′.⟨𝑉 ‖ ̃𝜇𝑞.𝑐⟩∥𝑒⟩ ≃RE𝑝
⟨𝑉 ∥ ̃𝜇𝑞.⟨𝜇𝑞′.𝑐‖𝑒⟩⟩

For any double binding of the form {𝜋/𝑞, 𝑡/𝑞′}, one has:

⟨𝜇𝑞.⟨𝑡 ‖ ̃𝜇𝑞′.𝑐⟩∥𝜋⟩ ≃RE𝑝
⟨𝑡 ∥ ̃𝜇𝑞′.⟨𝜇𝑞.𝑐‖𝜋⟩⟩

Proof. If {𝑉/𝑞, 𝑒/𝑞′} is a double binding then one has:

⟨𝜇𝑞′.⟨𝑉 ‖ ̃𝜇𝑞.𝑐⟩∥𝑒⟩ ⊲R𝑝
⟨𝑉 ∥ ̃𝜇𝑥.⟨𝜇𝑞′.⟨𝑥‖ ̃𝜇𝑞.𝑐⟩∥𝑒⟩⟩ since 𝑞′ # 𝑉

→E𝑝
⟨𝑉 ∥ ̃𝜇𝑞.⟨𝑞∥ ̃𝜇𝑥.⟨𝜇𝑞′.⟨𝑥‖ ̃𝜇𝑞.𝑐⟩∥𝑒⟩⟩⟩ since 𝑞 # 𝑒

→2
R𝑝

⟨𝑉 ∥ ̃𝜇𝑞.⟨𝜇𝑞′.𝑐‖𝑒⟩⟩ since 𝑞′ # 𝑞

Same reasoning for {𝜋/𝑞, 𝑡/𝑞′}. ∎

Thunkable terms, in the terminology of Chapter II, and linear
contexts, behave like values and stacks. So we are mainly interested
in commutation properties of the form:

⟨𝜇𝑞′.⟨𝑡 ‖ ̃𝜇𝑞.𝑐⟩∥𝑒⟩ ≃RE𝑝
⟨𝑡 ∥ ̃𝜇𝑞.⟨𝜇𝑞′.𝑐‖𝑒⟩⟩ (IV.3)

for a given 𝑡 or a given 𝑒.

Bound variables convention. As is standard, we implicitly assumed
so far Barendregt’s variable convention: bound variables are chosen
to be distinct from free variables. We stress that in the context of an
equation of the form (IV.3), this implies that {𝑡/𝑞, 𝑒/𝑞′} is a double
binding. Therefore the hypothesis that we consider double bindings
remains implicit in the remainder of the section.
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IV.6.3 Thunkable terms, linear contexts
The properties/definitions that follow characterise thunkable terms
and linear contexts.

Proposition IV.36 (Characterisation of thunkable terms). Let 𝑡 be a
term. The following properties are equivalent:

1. For all 𝑐, 𝑒, 𝑞, 𝑞′,
�
�

�
�⟨𝜇𝑞′.⟨𝑡 ‖ ̃𝜇𝑞.𝑐⟩∥𝑒⟩ ≃RE𝑝

⟨𝑡 ∥ ̃𝜇𝑞.⟨𝜇𝑞′.𝑐‖𝑒⟩⟩ ;

2. For all 𝑒⊝,
�
�

�
�⟨delay(𝑡)‖𝑒⊝⟩ ≃RE𝑝

⟨𝑡 ∥ ̃𝜇𝑥.⟨delay(𝑥)‖𝑒⊝⟩⟩ ;

3. For all 𝑐, 𝑥,
�
�

�
�⟨𝑡 ‖ ̃𝜇𝑥.𝑐⟩ ≃RE𝑝

𝑐[𝑡/𝑥] .

Definition IV.37. A term is thunkable if it satisfies one of the above
equivalent properties.

Proof. (1. ⇒ 2.) Let 𝑒⊝ be a negative context. One has:

⟨𝑡 ∥ ̃𝜇𝑥.⟨delay(𝑥)‖𝑒⊝⟩⟩

→E𝑝
⟨𝑡 ∥ ̃𝜇𝑥.⟨𝜆_.𝜇𝛼.⟨𝑥‖𝛼⟩∥𝑒⊝⟩⟩

≃RE𝑝
⟨𝜆_.𝜇𝛼.⟨𝑡 ∥ ̃𝜇𝑥.⟨𝑥‖𝛼⟩⟩∥𝑒⊝⟩ according to 1.

←∗
E𝑝

⟨delay(𝑡)‖𝑒⊝⟩

(2. ⇒ 3.) Let 𝑐, 𝑥. By considering force𝜀(delay(𝑢𝜀)) ≃RE𝑝 𝑢𝜀 one has:

⟨𝑡 ‖ ̃𝜇𝑥.𝑐⟩
≃RE𝑝

⟨𝑡 ‖ ̃𝜇𝑥.𝑐[force(delay(𝑥))/𝑥]⟩

←R𝑝
⟨𝑡 ∥ ̃𝜇𝑥.⟨delay(𝑥)‖ ̃𝜇𝑦⊝.𝑐[force(𝑦⊝)/𝑥]⟩⟩

≃RE𝑝
⟨delay(𝑡)‖ ̃𝜇𝑦⊝.𝑐[force(𝑦⊝)/𝑥]⟩ en supposant 2.

→R𝑝
𝑐[force(delay(𝑡))/𝑥]

≃RE𝑝
𝑐[𝑡/𝑥]
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whence the result.
(3. ⇒ 1.) Let 𝑐, 𝑒, 𝑞, 𝑞′ such that {𝑡/𝑞, 𝑒/𝑞′} is a double binding. Let

𝑥 ∉ fv(𝑐, 𝑒). One has 𝑥 # 𝑒, hence {𝑥/𝑞, 𝑒/𝑞′} is a double binding. Thus
using Lemma IV.35 one has:

⟨𝜇𝑞′.⟨𝑥‖ ̃𝜇𝑞.𝑐⟩∥𝑒⟩ ≃RE𝑝
⟨𝑥∥ ̃𝜇𝑞.⟨𝜇𝑞′.𝑐‖𝑒⟩⟩

Therefore:

⟨𝜇𝑞′.⟨𝑡 ‖ ̃𝜇𝑞.𝑐⟩∥𝑒⟩
= ⟨𝜇𝑞′.⟨𝑥‖ ̃𝜇𝑞.𝑐⟩∥𝑒⟩[𝑡/𝑥] since 𝑞′ # 𝑡, 𝑥 # 𝑒, 𝑥 # 𝑐

≃RE𝑝
⟨𝑡 ∥ ̃𝜇𝑥.⟨𝜇𝑞′.⟨𝑥‖ ̃𝜇𝑞.𝑐⟩∥𝑒⟩⟩ assuming 3.

≃RE𝑝
⟨𝑡 ∥ ̃𝜇𝑥.⟨𝑥∥ ̃𝜇𝑞.⟨𝜇𝑞′.𝑐‖𝑒⟩⟩⟩ using the above

←E𝑝
⟨𝑡 ∥ ̃𝜇𝑞.⟨𝜇𝑞′.𝑐‖𝑒⟩⟩

whence the result. ∎

Proposition IV.38 (Characterisation of linear contexts). Let 𝑒 be a
context. The following properties are equivalent:

1. For all 𝑐, 𝑡, 𝑞, 𝑞′,
�
�

�
�⟨𝑡 ∥ ̃𝜇𝑞′.⟨𝜇𝑞.𝑐‖𝑒⟩⟩ ≃RE𝑝

⟨𝜇𝑞.⟨𝑡 ‖ ̃𝜇𝑞′.𝑐⟩∥𝑒⟩ ;

2. For all 𝑡+,
�
�

�
�⟨𝑡+ ‖unwrap∗(𝑒)⟩ ≃RE𝑝

⟨𝜇𝛼.⟨𝑡+ ‖unwrap∗(𝛼)⟩∥𝑒⟩ . ;

3. For all 𝑐, 𝛼,
�
�

�
�⟨𝜇𝛼.𝑐‖𝑒⟩ ≃RE𝑝

𝑐[𝑒/𝛼] .

Definition IV.39. A context is linear if it satisfies one of the above
equivalent properties.

Proof. The proof is symmetric to the previous one. (1. ⇒ 2.) Let 𝑡+ be a
positive term. Equation 2. corresponds to the following case of property
1.:

⟨𝜇𝛼.⟨𝑡+ ∥ ̃𝜇(_, 𝑥).⟨𝑥‖𝛼⟩⟩∥𝑒⟩ ≃RE𝑝
⟨𝑡+ ∥ ̃𝜇(_, 𝑥).⟨𝜇𝛼.⟨𝑥‖𝛼⟩∥𝑒⟩⟩

(2. ⇒ 3.) Consider 𝑐, 𝛼. By considering wrap∗
𝜀(unwrap∗(𝑒′

𝜀))≃RE𝑝 𝑒′
𝜀one
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has:
⟨𝜇𝛼.𝑐‖𝑒⟩
≃RE𝑝

⟨𝜇𝛼.𝑐[wrap∗(unwrap∗(𝛼))/𝛼]‖𝑒⟩

←R𝑝
⟨𝜇𝛼.⟨𝜇𝛽+.𝑐[wrap∗(𝛽+)/𝛼]‖unwrap∗(𝛼)⟩∥𝑒⟩

≃RE𝑝
⟨𝜇𝛽+.𝑐[wrap∗(𝛽+)/𝛼]‖unwrap∗(𝑒)⟩ d’après 2.

→R𝑝
𝑐[wrap∗(unwrap∗(𝑒))/𝛼]

≃RE𝑝
𝑐[𝑒/𝛼]

whence the result.
(3. ⇒ 1.) Let 𝑐, 𝑡, 𝑞, 𝑞′ such that {𝑒/𝑞, 𝑡/𝑞′} is a double binding. One has:

⟨𝑡 ∥ ̃𝜇𝑞′.⟨𝜇𝑞.𝑐‖𝑒⟩⟩
≃RE𝑝

⟨𝜇𝛼.⟨𝑡 ∥ ̃𝜇𝑞′.⟨𝜇𝑞.𝑐‖𝛼⟩⟩∥𝑒⟩ en supposant 3., car 𝑞′ # 𝑒

≃RE𝑝
⟨𝜇𝛼.⟨𝜇𝑞.⟨𝑡 ‖ ̃𝜇𝑞′.𝑐⟩∥𝛼⟩∥𝑒⟩ par le lemme IV.35

←E𝑝
⟨𝜇𝑞.⟨𝑡 ‖ ̃𝜇𝑞′.𝑐⟩∥𝑒⟩

Whence the result. ∎

The above properties are an extension to terms with pattern-
matching of Proposition II.15 about duploids, for which we only
need weak shifts already, if we examine the proof.

Definition IV.40. (Terminology inspired from Führmann [Füh99],
Selinger [Sel01])

• 𝑡 is central if one has
�
�

�
�⟨𝑢∥ ̃𝜇𝑞′.⟨𝑡 ‖ ̃𝜇𝑞.𝑐⟩⟩ ≃RE𝑝

⟨𝑡 ∥ ̃𝜇𝑞.⟨𝑢‖ ̃𝜇𝑞′.𝑐⟩⟩
(∀𝑐, 𝑢, 𝑞, 𝑞′).

• 𝑒 is central if one has
�
�

�
�⟨𝜇𝑞′.⟨𝜇𝑞.𝑐‖𝑒⟩∥𝑒′⟩ ≃RE𝑝

⟨𝜇𝑞.⟨𝜇𝑞′.𝑐‖𝑒′⟩∥𝑒⟩
(∀𝑐, 𝑒′, 𝑞, 𝑞′).
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Now we define the following notations:�
�

�
�

𝑐{𝑡/𝑞} ≝ ⟨𝑡 ‖ ̃𝜇𝑞.𝑐⟩
𝑐{𝑒/𝑞} ≝ ⟨𝜇𝑞.𝑐 ‖𝑒⟩

for all simple bindings {𝑡/𝑞} and {𝑒/𝑞′}. Notice that this nota-
tion is less useful, because it artificially distinguishes 𝑐{𝜇𝑞′.𝑐′/𝑞} and
𝑐′{𝜇𝑞.𝑐/𝑞′} although it is the same command.

With these definitions, the previous properties are stated as the
commutation of double bindings:

• 𝑡 thunkable ⇔ ∀(𝑐, 𝑒, 𝑞, 𝑞′) 𝑐{𝑡/𝑞}{𝑒/𝑞′} ≃RE𝑝
𝑐{𝑒/𝑞′}{𝑡/𝑞}.

• 𝑡 central ⇔ ∀(𝑐, 𝑢, 𝑞, 𝑞′) 𝑐{𝑡/𝑞}{𝑢/𝑞′} ≃RE𝑝
𝑐{𝑢/𝑞′}{𝑡/𝑞}.

• 𝑒 linear ⇔ ∀(𝑐, 𝑡, 𝑞, 𝑞′) 𝑐{𝑒/𝑞}{𝑡/𝑞′} ≃RE𝑝
𝑐{𝑡/𝑞′}{𝑒/𝑞}.

• 𝑒 central ⇔ ∀(𝑐, 𝑒′, 𝑞, 𝑞′) 𝑐{𝑒/𝑞}{𝑒′/𝑞′} ≃RE𝑝
𝑐{𝑒′/𝑞′}{𝑒/𝑞}.

Proposition IV.41.

1. If 𝑡 is thunkable and 𝑡 ≃RE𝑝
𝑢 then 𝑢 is thunkable. If 𝑒 is linear and

𝑒 ≃RE𝑝
𝑒′ then 𝑒′ is linear;

2. Any value is thunkable and central; any stack is linear and central;
3. Any thunkable term and any linear context is central;
4. (Thanks to the operations 𝜆𝑥.𝑡 and 𝑡⋅𝜋:) Any central context is

linear.
5. (Thanks to the operations [𝑒⊝] and ̃𝜇[𝛼⊝].𝑐:) Any central term is

thunkable.
6. Let {𝑓/𝜅} be a simple binding with 𝑓 linear/thunkable (depending

on the case) and 𝜅 a variable.

a) If 𝑡 is thunkable then 𝑡[𝑓/𝜅] is thunkable;
b) If 𝑒 is linear then 𝑒[𝑓/𝜅] is linear.
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Proof.

1. Immediate through the first characterisation of thunkable/linear.
2. This is lemma IV.35 which extends to the cases of 𝑡, 𝑒 central with same

proofs.
3. Let 𝑡 be thunkable. Then let 𝑐, 𝑢, 𝑞, 𝑞′ be such that {𝑡/𝑞, 𝑢/𝑞′} is a

double binding. One has:

𝑐{𝑡/𝑞}{𝑢/𝑞′} = 𝑐{𝑥/𝑞}{𝑢/𝑞′}[𝑡/𝑥] since 𝑞′ # 𝑡
≃RE𝑝

𝑐{𝑥/𝑞}{𝑢/𝑞′}{𝑡/𝑥} since 𝑡 is thunkable

≃RE𝑝
𝑐{𝑢/𝑞′}{𝑥/𝑞}{𝑡/𝑥} since 𝑥 is central

≃RE𝑝
𝑐{𝑢/𝑞′}{𝑥/𝑞}[𝑡/𝑥] since 𝑡 is thunkable

= 𝑐{𝑢/𝑞′}{𝑡/𝑞}

Hence 𝑡 is central. The proof that linear 𝑒 is central is the same.
4. Let 𝑒 be central. Let 𝑐, 𝑒, 𝑞, 𝑞′ be such that {𝑡/𝑞, 𝑒/𝑞′} is a double

binding. If 𝑡 is a value then one has 𝑐{𝑡/𝑞}{𝑒/𝑞′} ≃RE𝑝
𝑐{𝑒/𝑞′}{𝑡/𝑞} by

thunkability of 𝑡. Now assume that 𝑡 is a positive term which is not a
value. We consider 𝜋 a closed stack (for instance 𝜋 = ̃𝜇𝑥+. ⟨ 𝜆𝑦.𝑦 ‖ t̂p ⟩ ).
One has:

⟨𝜇𝑞′.⟨𝑡 ‖ ̃𝜇𝑞.𝑐⟩∥𝑒⟩

→E𝑝
⟨𝜇𝑞′.⟨𝑡 ∥ ̃𝜇𝑥+.⟨𝑥+‖ ̃𝜇𝑞.𝑐⟩⟩∥𝑒⟩

←2
R𝑝

⟨𝜇𝑞′.⟨𝜆𝑥+.𝜇_.⟨𝑥+‖ ̃𝜇𝑞.𝑐⟩∥𝑡⋅𝜋⟩∥𝑒⟩

≃RE𝑝
⟨𝜆𝑥+.𝜇_.⟨𝜇𝑞′.⟨𝑥+‖ ̃𝜇𝑞.𝑐⟩∥𝑒⟩∥ 𝑡⋅𝜋⟩ since 𝑒 is central

≃RE𝑝
⟨𝜆𝑥+.𝜇_.⟨𝑥+∥ ̃𝜇𝑞.⟨𝜇𝑞′.𝑐‖𝑒⟩⟩∥ 𝑡⋅𝜋⟩ since 𝑥+ is thunkable

→2
R𝑝

⟨𝑡 ∥ ̃𝜇𝑥+.⟨𝑥+∥ ̃𝜇𝑞.⟨𝜇𝑞′.𝑐‖𝑒⟩⟩⟩

←E𝑝
⟨𝑡 ∥ ̃𝜇𝑞.⟨𝜇𝑞′.𝑐‖𝑒⟩⟩

Hence 𝑒 is linear.
5. Let 𝑡 be central. Let 𝑐, 𝑒, 𝑞, 𝑞′ be such that {𝑡/𝑞, 𝑒/𝑞′} is a double
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binding. If 𝑒 is a stack then one has 𝑐{𝑡/𝑞}{𝑒/𝑞′} ≃RE𝑝
𝑐{𝑒/𝑞′}{𝑡/𝑞} by

linearity of 𝑒. Now assume that 𝑒 is a negative context which is not a
stack. One has:

⟨𝜇𝑞′.⟨𝑡 ‖ ̃𝜇𝑞.𝑐⟩∥𝑒⟩

→E𝑝
⟨𝜇𝛼⊝.⟨𝜇𝑞′.⟨𝑡 ‖ ̃𝜇𝑞.𝑐⟩∥𝛼⊝⟩∥𝑒⟩

←2
R𝑝

⟨[𝑒]∥ ̃𝜇[𝛼⊝].⟨𝜇𝑞′.⟨𝑡 ‖ ̃𝜇𝑞.𝑐⟩∥𝛼⊝⟩⟩

≃RE𝑝
⟨[𝑒]∥ ̃𝜇[𝛼⊝].⟨𝑡 ∥ ̃𝜇𝑞.⟨𝜇𝑞′.𝑐‖𝛼⊝⟩⟩⟩ since 𝛼⊝ is lienar

≃RE𝑝
⟨𝑡 ∥ ̃𝜇𝑞.⟨[𝑒]∥ ̃𝜇[𝛼⊝].⟨𝜇𝑞′.𝑐‖𝛼⊝⟩⟩⟩ since 𝑡 is central

→2
R𝑝

⟨𝑡 ∥ ̃𝜇𝑞.⟨𝜇𝛼⊝.⟨𝜇𝑞′.𝑐‖𝛼⊝⟩∥𝑒⟩⟩

←E𝑝
⟨𝑡 ∥ ̃𝜇𝑞.⟨𝜇𝑞′.𝑐‖𝑒⟩⟩

Hence 𝑡 is thunkable.

6. Let 𝑡 be thunkable. Assume that 𝜅 ∉ fv(𝑐)in the following:

𝑐{𝑡[𝑓/𝜅]/𝑥} = 𝑐{𝑡/𝑥}[𝑓/𝜅]
≃RE𝑝

𝑐{𝑡/𝑥}{𝑓/𝜅} since 𝑓 is linear/thunkable

≃RE𝑝
𝑐[𝑡/𝑥]{𝑓/𝜅} since 𝑡 is thunkable

≃RE𝑝
𝑐[𝑡/𝑥][𝑓/𝜅] since 𝑓 is linear/thunkable

= 𝑐[𝑡[𝑓/𝜅]/𝑥]

Hence the result. Same reasoning for 𝑒 linear. ∎

IV.6.4 Application to dual expansions

The goal is to show that the rules of Lpol,t̂p⊝ imply expansions dual to
the expansions ⊳E𝑝

, however restricted to thunkable or linear terms.
To begin with we define constructs hd (head), tl (tail), fst (first), snd
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(second) and [ ]−1 by solving the following equations in Lpol,t̂p⊝:

⟨hd(𝑉⋅𝜋)‖𝑒⟩ →∗
R𝑝

⟨𝑉 ‖𝑒⟩
⟨𝑡 ‖ tl(𝑉⋅𝜋)⟩ →∗

R𝑝
⟨𝑡 ‖𝜋⟩

⟨fst(𝑉, 𝑊)‖𝑒⟩ →∗
R𝑝

⟨𝑉 ‖𝑒⟩
⟨snd(𝑉, 𝑊)‖𝑒⟩ →∗

R𝑝
⟨𝑊 ‖𝑒⟩

⟨𝑡 ‖[]−1([𝜋⊝])⟩ →∗
R𝑝

⟨𝑡 ‖𝜋⊝⟩

These constructs have to be relativised to polarities as follows:

Definition IV.42. For any term 𝑡+, any context 𝑒⊝ and any 𝜀, 𝜀1, 𝜀2 ∈
{+, ⊝}, we define the following terms:�

�

�

�

hd𝜀1𝜀2(𝑒⊝) ≝ 𝜇𝛽𝜀1.⟨𝜇(𝑥𝜀1⋅𝛼𝜀2).⟨𝑥𝜀1 ‖𝛽𝜀1⟩∥𝑒⊝⟩
tl𝜀1𝜀2(𝑒⊝) ≝ ̃𝜇𝑦𝜀2.⟨𝜇(𝑥𝜀1⋅𝛼𝜀2).⟨𝑦𝜀2 ‖𝛼𝜀2⟩∥𝑒⊝⟩
fst𝜀1𝜀2(𝑡+) ≝ 𝜇𝛼𝜀1.⟨𝑡+ ∥ ̃𝜇(𝑥𝜀1, 𝑦𝜀2).⟨𝑥𝜀1 ‖𝛼𝜀1⟩⟩

snd𝜀1𝜀2(𝜋⊝) ≝ 𝜇𝛼𝜀2.⟨𝑡+ ∥ ̃𝜇(𝑥𝜀1, 𝑦𝜀2).⟨𝑦𝜀2 ‖𝛽𝜀2⟩⟩
[ ]−1(𝑉+) ≝ ̃𝜇𝑥⊝.⟨𝑉+ ∥𝜇[𝛼⊝].⟨𝑥⊝‖𝛼⊝⟩⟩

Now we show that the expansion rules of the Lpol,t̂p⊝ calculus:

𝑡⊝ ⊳E𝑝
𝜆𝑥.𝜇𝛼.⟨𝑡⊝ ‖𝑥⋅𝛼⟩

𝜋⊝ ⊳E𝑝
̃𝜇(𝑥, 𝑦).⟨(𝑥, 𝑦)‖𝜋⊝⟩

𝑒+ ⊳E𝑝
̃𝜇[𝛼⊝].⟨[𝛼⊝]‖𝑒+⟩

respectively imply dual rules which are restricted to linear and
thunkable terms:

𝑒⊝ ⊳F𝑝
(hd𝜀1𝜀2𝑒⊝)⋅(tl𝜀1𝜀2𝑒⊝) if 𝑒⊝ is linear

𝑡+ ⊳F𝑝
(fst𝜀1𝜀2𝑡+, snd𝜀1𝜀2𝑡+) if 𝑡+ is thunkable

𝑡+ ⊳F𝑝
[[ ]−1𝑡+] if 𝑡+ is thunkable
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Proposition IV.43 (Dual expansions). One has ⊳F𝑝
⊆ ≃RE𝑝

.

Proof. (Case (hd𝜀1𝜀2𝑒⊝)⋅(tl𝜀1𝜀2𝑒⊝)) Let 𝑒⊝ be a linear context. One has,
omitting polarity annotations:

(hd 𝑒⊝)⋅(tl 𝑒⊝)
⊳E𝑝

̃𝜇𝑥.⟨𝑥‖(hd 𝑒⊝)⋅(tl 𝑒⊝)⟩

≃RE𝑝
̃𝜇𝑥.⟨hd 𝑒⊝ ∥ ̃𝜇𝑦.⟨𝜇𝛼.⟨𝑥‖𝑦⋅𝛼⟩∥ tl 𝑒⊝⟩⟩ (IV.4)

≃RE𝑝
̃𝜇𝑥.⟨𝜇(𝑦⋅𝛽).⟨𝜇(𝑧⋅𝛼).⟨𝑥‖𝑦⋅𝛼⟩∥𝑒⊝⟩∥𝑒⊝⟩ (IV.5)

≃RE𝑝
̃𝜇𝑥.⟨𝜇𝛾 .⟨𝜇(𝑦⋅𝛽).⟨𝜇(𝑧⋅𝛼).⟨𝑥‖𝑦⋅𝛼⟩∥𝛾⟩∥𝛾⟩∥𝑒⊝⟩ (IV.6)

→E𝑝
→R𝑝

̃𝜇𝑥.⟨𝜇(𝑦⋅𝛼).⟨𝜇(𝑦⋅𝛽).⟨𝜇(𝑧⋅𝛼).⟨𝑥‖𝑦⋅𝛼⟩∥𝑦⋅𝛼⟩∥𝑦⋅𝛼⟩∥𝑒⊝⟩

→2
R𝑝

̃𝜇𝑥.⟨𝜇(𝑦⋅𝛼).⟨𝑥‖𝑦⋅𝛼⟩∥𝑒⊝⟩

←2
E𝑝

𝑒⊝

(IV.4) is by ̃𝜇 expansion if 𝜀1 = ⊝, 𝜍 reduction otherwise, and by 𝜇 expan-
sion if 𝜀2 = +, 𝜍 reduction otherwise.
(IV.5) uses the commutation of double bindings by applying Proposi-
tion IV.38 once with each body of hd 𝑒⊝ and tl 𝑒⊝, using the hypothesis that
𝑒⊝ is linear.
(IV.6) is also obtained with Proposition IV.38 with 𝑒⊝ linear.
The cases of (fst𝜀1𝜀2𝑡+, snd𝜀1𝜀2𝑡+) and [[ ]−1𝑡+] are proved in the same way.

∎

IV.6.5 Stoup
Proposition IV.44 (Stoup). Let 𝑐 be a command. The set:

{𝛼+ ∣ 𝜇𝛼+.𝑐 is thunkable} ∪ {𝑥⊝ ∣ ̃𝜇𝑥⊝.𝑐 is linear}

has at most one element.

Proof. By contradiction. Assume that 𝜇𝛼+.𝑐 is thunkable and ̃𝜇𝑥⊝.𝑐 is
linear at the same time. (The cases of two thunkable terms and two
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linear contexts are the same using the property that linear and thunkable
implies central.) We take 𝑐1 and 𝑐2 two commands such that 𝑐1 ≄RE𝑝

𝑐2;
for instance ⟨ 𝑦1 ‖ 𝛽 ⟩ and ⟨ 𝑦2 ‖ 𝛽 ⟩ for 𝑦1 ≠ 𝑦2 (see Corollary IV.19). One
therefore has 𝛼+, 𝑥⊝ ∉ fv(𝑐1, 𝑐2). We consider the following commands:

𝑐′
1 ≝ ⟨𝜇𝛼+.⟨𝜇_.𝑐1 ‖ ̃𝜇𝑥⊝.𝑐⟩∥ ̃𝜇_.𝑐2⟩

𝑐′
2 ≝ ⟨𝜇_.𝑐1 ∥ ̃𝜇𝑥⊝.⟨𝜇𝛼+.𝑐‖ ̃𝜇_.𝑐2⟩⟩

One has:

𝑐′
1 = ⟨𝜇𝛼+.⟨𝜇_.𝑐1 ‖ ̃𝜇𝑥⊝.𝑐⟩∥ ̃𝜇_.𝑐2⟩

≃RE𝑝
⟨𝜇𝛼+.𝑐1 ‖ ̃𝜇_.𝑐2⟩ by linearity of ̃𝜇𝑥⊝.𝑐

≃RE𝑝
𝑐1 since 𝛼+ ∉ fv(𝑐1)

𝑐′
2 = ⟨𝜇_.𝑐1 ∥ ̃𝜇𝑥⊝.⟨𝜇𝛼+.𝑐‖ ̃𝜇_.𝑐2⟩⟩

≃RE𝑝
⟨𝜇_.𝑐1 ‖ ̃𝜇𝑥⊝.𝑐2⟩ by thunkability of 𝜇𝛼+.𝑐

≃RE𝑝
𝑐2 since 𝑥⊝ ∉ fv(𝑐2).

Yet:
𝑐′
2 = ⟨𝜇_.𝑐1 ∥ ̃𝜇𝑥⊝.⟨𝜇𝛼+.𝑐‖ ̃𝜇_.𝑐2⟩⟩

⊲R𝑝
⟨𝜇𝛼+.⟨𝜇_.𝑐1 ∥ ̃𝜇𝑥⊝.⟨𝜇𝛼+.𝑐‖𝛼+⟩⟩∥ ̃𝜇_.𝑐2⟩

→R𝑝
⟨𝜇𝛼+.⟨𝜇_.𝑐1 ‖ ̃𝜇𝑥⊝.𝑐⟩∥ ̃𝜇_.𝑐2⟩ = 𝑐′

1

whence 𝑐1 ≃RE𝑝
𝑐2, which is impossible. ∎

This motivates a semantic redefinition of LC’s stoup.

Definition IV.45 (£ predicate). Short definition: Whenever a neg-
ative variable (respectively a positive co-variable) is underlined in
Γ £Δ, where Γ is a set of variables and Δ a set of co-variables, it means
that the associated command, associated term or associated context
is thunkable (resp. linear) in this variable.
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Long definition: we define the predicate £ as follows:

𝑐 ∶ (Γ,Λ £ Π,Δ) def⟺
⎧{{
⎨{{⎩

Λ = {𝑥⊝}, Π = ∅ and ̃𝜇𝑥⊝.𝑐 is linear
or
Λ = ∅, Π = {𝛼+} and 𝜇𝛼+.𝑐 is thunkable

and fv(𝑐) ⊆ ⨄{Λ, Γ, Δ, Π}
Γ,Λ £ 𝑡 ∣ Π,Δ def⟺ ⟨𝑡 ‖𝛼⟩ ∶ (Γ, Λ £ Π, 𝛼, Δ) (𝛼 ∉ fv(𝑡))
Γ,Λ ∣ 𝑒 £ Π,Δ def⟺ ⟨𝑥‖𝑒⟩ ∶ (Γ, 𝑥, Λ £ Π, Δ) (𝑥 ∉ fv(𝑒))

Γ £ 𝑡 ∣ Δ def⟺ 𝑡 is thunkable and fv(𝑡) ⊆ Γ ∪ Δ
Γ ∣ 𝑒 £ Δ def⟺ 𝑒 is thunkable and fv(𝑒) ⊆ Γ ∪ Δ

With this definition we can take advantage of the characterisations
IV.36 and IV.38. We show that we retrieve an over-approximation of
the stoup of LC [Gir91]:

Proposition IV.46. The predicate £ satisfies the rules of Figure IV.8 on
the next page.

Proof. In the proof, we implicitly use the property that thunkable terms
and linear contexts are closed under ≃RE𝑝

and under substitution with
linear/thunkable terms/contexts (Proposition IV.41).
Properties of identity type.
Axiom: one has Γ, 𝑥⊝ £ 𝑥⊝ ∣ ∅,Δ because this is equivalent to ̃𝜇𝑥⊝.⟨𝑥⊝ ‖ 𝛼⊝⟩
linear; yet one indeed has ̃𝜇𝑥⊝. ⟨ 𝑥⊝ ‖ 𝛼⊝ ⟩ ≃RE𝑝

𝛼⊝, which is linear. Same
reasoning for the variable 𝛼+.
Activation, underlined case: by definition.
Activation, non-underlined case: for ̃𝜇𝑥.𝑐, one has ⟨𝑥 ‖ ̃𝜇𝑥.𝑐⟩ ∶ (Γ, 𝑥,Λ £ Π,Δ)
through equivalence with hypothesis 𝑐 ∶ (Γ, 𝑥,Λ £ Π,Δ). Same reasoning
with 𝜇𝛼.𝑐.
Cut: assume that Γ,Λ £ 𝑡 ∣ Π,Δ and Γ′ ∣ 𝑒 £ Δ′ (the case of a cut between
Γ £ 𝑡 ∣ Δ and Γ′,Λ ∣ 𝑒 £ Π,Δ′ is symmetric). If Π = {𝛼+}, one has to show
𝜇𝛼+. ⟨ 𝑡 ‖ 𝑒 ⟩ thunkable (the case Λ = {𝑥⊝} is identical). One has by
hypothesis 𝜇𝛼+.⟨𝑡 ‖𝛽⟩ thunkable for 𝛽 ∉ fv(𝑡) and also 𝑒 linear. Besides, one
has 𝜇𝛼+.⟨𝑡 ‖ 𝑒⟩ = 𝜇𝛼+.⟨𝑡 ‖ 𝛽⟩[𝑒/𝛽] since the writing of the conclusion implies
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—
Γ, 𝑥⊝ £ 𝑥⊝ ∣ Δ

𝑐 ∶ (Γ, 𝑥⊝ £ ∅,Δ)
—

Γ ∣ ̃𝜇𝑥⊝.𝑐 £ Δ
𝑐 ∶ (Γ, 𝑥,Λ £ Π,Δ)
—

Γ,Λ ∣ ̃𝜇𝑥.𝑐 £ Π,Δ

—
Γ ∣ 𝛼+ £ 𝛼+,Δ

𝑐 ∶ (Γ,∅ £ 𝛼+,Δ)
—

Γ £ 𝜇𝛼+.𝑐 ∣ Δ
𝑐 ∶ (Γ,Λ £ Π, 𝛼,Δ)
—

Γ,Λ £ 𝜇𝛼.𝑐 ∣ Π,Δ

Γ £ 𝑡 ∣ Δ Γ′,Λ ∣ 𝑒 £ Π,Δ′
—

⟨𝑡 ‖𝑒⟩ ∶ (Γ ∪ Γ′,Λ £ Π,Δ ∪ Δ′)
Γ,Λ £ 𝑡 ∣ Π,Δ Γ′ ∣ 𝑒 £ Δ′
—

⟨𝑡 ‖𝑒⟩ ∶ (Γ ∪ Γ′,Λ £ Π,Δ ∪ Δ′)
(a) Properties of identity type

—fv(𝑉) ⊆ Γ ∪ Δ
Γ £ 𝑉 ∣ Δ

—fv(𝜋) ⊆ Γ ∪ Δ
Γ ∣ 𝜋 £ Δ

𝑐 ∶ (Γ,Λ £ Π,Δ)
—

𝑐 ∶ (Γ, 𝑥,Λ £ Π,Δ)
𝑐 ∶ (Γ,Λ £ Π,Δ)
—

𝑐 ∶ (Γ,Λ £ Π,Δ, 𝛼)

𝑐 ∶ (Γ, 𝑥𝜀, 𝑦𝜀,Λ £ Π,Δ)
—

𝑐[𝑥𝜀/𝑦𝜀] ∶ (Γ, 𝑥𝜀,Λ £ Π,Δ)
𝑐 ∶ (Γ, Λ £ Π, Δ, 𝛼𝜀, 𝛽𝜀)
—

𝑐[𝛼𝜀/𝛽𝜀] ∶ (Γ,Λ £ Π,Δ, 𝛼𝜀)
(b) Properties of structure type

Γ £ 𝑡 ∣ Δ Γ′ £ 𝑢 ∣ Δ′
—

Γ ∪ Γ′ £ (𝑡, 𝑢) ∣ Δ ∪ Δ′
𝑐 ∶ (Γ, 𝑥, 𝑦,Λ £ Π,Δ)
—

Γ,Λ ∣ ̃𝜇(𝑥, 𝑦).𝑐 £ Π,Δ

Γ £ 𝑡 ∣ Δ Γ ∣ 𝑒 £ Δ—
Γ ∪ Γ′ ∣ 𝑡⋅𝑒 £ Δ ∪ Δ′

𝑐 ∶ (Γ, 𝑥,Λ £ Π,Δ, 𝛼)
—

Γ,Λ £ 𝜇(𝑥⋅𝛼).𝑐 ∣ Π,Δ
Γ ∣ 𝑒⊝ £ Δ
—Γ £ [𝑒⊝] ∣ Δ

𝑐 ∶ (Γ,Λ £ Π,Δ, 𝛼⊝)
—

Γ,Λ ∣ 𝜇[𝛼⊝].𝑐 £ Π,Δ
(c) Property of logic type

Figure IV.8: Properties of linear and thunkable terms
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assumes that Δ ∪ Δ′ ⊇ fv(𝑒) and Π ∋ 𝛼 are disjoint. Hence the result by
substitution.
Properties of structure type.
A value is thunkable and a stack is linear: see Proposition IV.41.
Weakening: trivial.
Contraction: we have to show that if ̃𝜇𝑧⊝.𝑐 is linear with 𝑧 ∉ {𝑥𝜀, 𝑦𝜀} then
̃𝜇𝑧.𝑐[𝑥𝜀/𝑦𝜀] = ( ̃𝜇𝑧.𝑐)[𝑥𝜀/𝑦𝜀] is too; this is immediate by substitution since

𝑥𝜀 is thunkable. The cases 𝜇𝛾+.𝑐 instead of ̃𝜇𝑧⊝.𝑐 and/or 𝛼𝜀, 𝛽𝜀 instead of
𝑥𝜀, 𝑦𝜀 are identical.
Properties of logic type.
Cases (𝑡, 𝑢), 𝑡⋅𝑒 and [𝑒⊝]: immediate by substitution of 𝑥, 𝑦 and 𝛼 in (𝑥, 𝑦)
(thunkable), 𝑥⋅𝛼 and [𝛼] (linear).
Case ̃𝜇(𝑥, 𝑦).𝑐: Suppose 𝑐 ∶ (Γ, 𝑥, 𝑦,Λ £ Π,Δ). If Π = {𝛼+}, one has to show
𝜇𝛼+.⟨𝑧+ ‖ ̃𝜇(𝑥, 𝑦).𝑐⟩ thunkable for 𝑧+ ∉ fv(𝑐) (the case Λ = {𝑥⊝} is similar).
By hypothesis, 𝜇𝛼+.⟨(𝑥, 𝑦)‖ ̃𝜇(𝑥, 𝑦).𝑐⟩ ≃RE𝑝

𝜇𝛼+.𝑐 is thunkable. If we consider
𝑐1 ≃RE𝑝

𝑐2 the equation of commutation that characterises the thunkabil-
ity of the term, then this shows 𝑐1[(𝑥, 𝑦)/𝑧+] ≃RE𝑝

𝑐2[(𝑥, 𝑦)/𝑧+]. Thus we
also have ⟨ 𝑧+ ∥ ̃𝜇(𝑥, 𝑦).⟨(𝑥, 𝑦)‖ ̃𝜇𝑧+.𝑐1⟩ ⟩ ≃RE𝑝

⟨ 𝑧+ ∥ ̃𝜇(𝑥, 𝑦).⟨(𝑥, 𝑦)‖ ̃𝜇𝑧+.𝑐2⟩ ⟩ ,
hence the result by extensionality.
Cases ̃𝜇[𝛼⊝].𝑐 and 𝜇(𝑥⋅𝛼).𝑐: same reasoning. ∎

Remark IV.47. Contrarily to [Gir91], the following properties are
false:

∣ t̂p £ 𝑥⊝ £ 𝜇𝛼+.⟨𝑥⊝‖ t̂p⟩ ∣

The sensible conjecture that follows shows that the notion of
stoup that we just defined cannot be captured by syntax. The idea is
that a term that terminates without side-effects is equivalent to the
returned value, while a term that does not return would never be
thunkable; yet, termination is not recursively discriminable.

Conjecture IV.48. The set of thunkable terms is not recursive.

Proof sketch. Since all the negative terms are thunkable, this amounts to
showing that the set of thunkable positive terms is not recursive.
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Let us consider Λ the set of λ-terms (see for instance Barendregt [Bar84])
as well as:

𝐈 = {𝑀 ∈ Λ ∣ 𝑀 ≃𝛽𝜂 𝜆𝑥.𝑥}
𝛀 = {𝑀 ∈ Λ ∣ 𝑀 ≃𝛽𝜂 𝜔𝜔 = (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥)}

They are two sets of λ-terms closed under ≃𝛽𝜂 and disjoint, so they are
recursively inseparable [Bar84].

To each λ-term 𝑀 we associate a positive term test(𝑀) defined with:

test(𝑀) ≝ 𝜇𝛼+.⟨𝑡 ∥𝜇𝛽⊝.⟨()‖𝛼+⟩⋅𝛾⟩

where 𝑡 is the negative term that corresponds to 𝑀 through the encoding
of Figure I.13c on page 82. There is a converse function that associates 𝑀
to every positive term of the form test(𝑀) which is recursive; thus the
sets test(𝐈) and test(𝛀) are recursively inseparable.

Since the encoding of Figure I.13c preserves ≃𝛽𝜂 equivalence, one has
for all 𝑀 ∈ 𝐼:

test(𝑀) ≃RE𝑝
𝜇𝛼+.⟨𝜆𝑥⊝.𝑥⊝∥𝜇𝛽⊝.⟨()‖𝛼+⟩⋅𝛾⟩ ≃RE𝑝

()

Thus test(𝑀) is thunkable.
Conversely, it is reasonable to think that if 𝑀 ∈ Λ is such that test(𝑀) is

thunkable, then 𝑀 is solvable. (The development of rewriting techniques
for the calculi L, from which such a result would follow, is an open
problem.)

We conclude by noticing that if 𝑀 ∈ 𝛀, then test(𝑀) is not thunkable,
since 𝜔𝜔 and therefore 𝑀 are not solvable. The set of thunkable terms
separates test(𝐈) from test(𝛀), so it is not recursive. ∎

That test(𝑀) is thunkable whenever 𝑀 ≃𝛽𝜂 𝜆𝑥.𝑥 shows that the
semantic notion of stoup cannot be reduced to a notion of value as
developed through continuation calculi. The remainder of the proof
aims at showing that it can be reduced to no syntactic notion.
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Syntaxe etmodèles d’une composition non-associative des programmes et des preuves

La thèse contribue à la compréhension de la nature, du rôle et des mécanismes de la po-
larisation dans les langages de programmation, en théorie de la preuve et dans les mo-
dèles catégoriels. La polarisation correspond à l’idée que la condition d’associativité de
la composition peut être relâchée, comme on le montre à travers un résultat qui relie les
duploïdes, notre modèle direct de la polarisation, aux adjonctions. En conséquence, la po-
larisation sous-tend de nombreux modèles du calcul, ce que l’on souligne encore en mon-
trant comment les modèles par passage de continuation pour des opérateurs de contrôle
délimité se décomposent en trois étapes fondamentales. Elle explique également des phé-
nomènes de constructivité en théorie de la démonstration, ce que l’on illustre en donnant
une interprétation selon le principe de la formule comme type à la polarisation en général
et à une négation involutive en particulier.

Notre approche est basée sur une représentation interactive des démonstrations et des
programmes à base de termes (calcul L), qui met en évidence la structure des polarités.
Celle-ci est basée sur la correspondance entre les machines abstraites et les calculs de sé-
quents, et vise à synthétiser diverses directions : la modélisation du contrôle, de l’ordre
d’évaluation et des effets dans les langages de programmation, la quête d’un lien entre la
dualité catégorielle et les continuations, et l’approche interactive de la constructivité en
théorie de la preuve. On introduit notre technique en supposant uniquement une connais-
sance élémentaire du λ-calcul simplement typé et de la réécriture.

Syntax and Models of a non-Associative Composition of Programs and Proofs

The thesis is a contribution to the understanding of the nature, role, and mechanisms of
polarisation in programming languages, proof theory and categorical models. Polarisation
corresponds to the idea that we can relax the associativity of composition, as we show
by relating duploids, our direct model of polarisation, to adjunctions. As a consequence,
polarisation underlies many models of computation, which we further show by decompos-
ing continuation-passing-style models of delimited control in three fundamental steps. It
also explains constructiveness-related phenomena in proof theory, which we illustrate by
providing a formulae-as-types interpretation for polarisation in general and for an involut-
ive negation in particular.

The cornerstone of our approach is an interactive term-based representation of proofs
and programs (L calculi) which exposes the structure of polarities. It is based on the cor-
respondence between abstract machines and sequent calculi, and it aims at synthesising
various trends: the modelling of control, evaluation order and effects in programming lan-
guages, the quest for a relationship between categorical duality and continuations, and
the interactive notion of construction in proof theory. We give a gentle introduction to
our approach which only assumes elementary knowledge of simply-typed λ calculus and
rewriting.
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