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Goal & Motivation

Call-by-Push-Value is:
• A syntax : that extends the λ-calculus with sums and

control over evaluation order (= compatible with
side-effects), that decomposes both call-by-value and
call-by-name evaluation strategies.

• A model : an axiomatic notion of denotational semantics
(= interpret derivations as mathematical objects) that
unifies various pre-existing notions of models for effects.

History: British school of denotational semantics. First the
models (Scott, Moggi, Fiore), then the syntax (Levy).
(λ-calculus: first the syntax, then the models!)
Period: 1990-2000... and 20 more years to digest!
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Goal & Motivation

Opinionated:
• Not a historical presentation, instead focus on basic

concepts.
• Show how Call-by-push-value could have arisen

(instructively!) from the proof theory of intuitionistic
logic, using the same analysis performed for classical
logic in the same time period by the French school of
proof theory (Girard, Danos-Joinet-Schellinx).
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Some course material (optional!)
. https://hal.inria.fr/hal-01528857
Not everything!

• System LJη
p without “!” (Figures 1 & 2, pp. 4-5)

• Expressing the λ-calculus in call-by-value and
call-by-name (Figure 4, p. 7)

It might help to have them handy during the course. Then to
get more into the technical details:

• Confluence (§3.3, p. 18)
• Strong normalisation (§5, p. 37)
• Focusing (§6.4, p. 42)

These sections stand alone and can be read by skipping the
rest (which focuses a lot on categorical semantics, which I
will not have the time to present).

https://hal.inria.fr/hal-01528857
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Curry-Howard in trouble

• Gentle reminders
• From natural deduction to sequent calculus
• Blind spots of the Curry-Howard correspondence
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Natural deduction andλ-calculus

Proof theory studies the structure of proofs in the details. So
we focus on less expressive logics. Much less: propositional
logic!
We fix a set of formulae for the rest of the course:

A ::= X | A → B | A∧B | A∨B | > | ⊥
• Implication (→) “implies”
• Conjunction (∧) “and”
• Disjunction (∨) “or”
• Truth (>) “true”
• Falsity (⊥) “false”



Curry-Howard in trouble Sequent calculus for Curry-Howard Stop worrying and love evaluation order

Natural deduction andλ-calculus

introduction elimination

hypothesis A

conjunction A B—
A∧B

A∧B—
A

A∧B—
B

disjunction A—
A∨B

B—
A∨B

A∨B A → C B → C—
C

implication

[A] · · · [A]
...
B

—
A → B

A → B A—
B

truth —>
falsity ⊥—

A
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Natural deduction andλ-calculus

“Cut-elimination” (Gentzen):

[A] · · · [A]
...
B

—
A → B

...
A

}
π

—
B

B

...
A

}
π · · ·

...
A

}
π

...
B

along with other rules for other pairs of introduction &
elimination rules.
⇒ Consistency (no proof of ⊥).
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Natural deduction andλ-calculus

Howard’s “formulae-as-type notion of construction”:
Cut-elimination = reduction in λ-calculus

x : [A] · · · x : [A]

t

{ ...
B

—
λx.t : A → B

...
A

}
u

—
(λx.t)u : B

B

...
A

}
u · · ·

...
A

}
u

t[u/x] :

{ ...
B

I will assume familiarity with binders, substitution...
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Natural deduction andλ-calculus

introduction elimination
—
Γ, x : A ` x : A

Γ` t : A Γ` u : B—
Γ` (t,u) : A∧B

Γ` t : A∧B—
Γ`π1(t) : A

Γ` t : A∧B—
Γ`π2(t) : B

Γ` t : A i—
Γ` ιi(t) : A1 ∨ A2

Γ` t : A∨B Γ, x : A ` u : C Γ, y : B ` v : C
—

δ(t, x.u, y.v) : C
Γ, x : A ` t : B—
Γ`λx.t : A → B

Γ` t : A → B Γ` u : A—
Γ` t u : B

—
Γ` () :>

Γ` t :⊥—
Γ` t : A
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Natural deduction andλ-calculus

(λx.t)u B t[u/x]

π1(t,u)B t

π2(t,u)B u

δ(ι1(t), x.u, y.v)B u[t/x]

δ(ι2(t), x.u, y.v)B v[t/y]
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Natural deduction andλ-calculus

Good properties of “constructions”?
About logic:

• Normalisation?: The normal form always exists (i.e. the
logic is consistent).

• Analyticity?: The normal form contains “explicit
information” in some sense.



Curry-Howard in trouble Sequent calculus for Curry-Howard Stop worrying and love evaluation order

Natural deduction andλ-calculus

Good properties of “constructions”?
About reductions → (obtained by extending B to sub-terms):

• Confluence?: If u ←∗ t →∗ v then there exists w such
that u →∗ w ←∗ v (in particular: if w does not reduce,
then it is the unique one).

• Standardisation?: Any series of reduction t →∗ u can be
rewritten by applying reductions in a
leftmost-outermost order (the leftmost-outermost
strategy always finds the normal form).
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Natural deduction andλ-calculus

Problem 1
All this goes very nicely when you only have to deal with
negative connectives (e.g. →).
But it becomes very difficult technically when one has to
deal with positive connectives (e.g. ∨).
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Natural deduction andλ-calculus
The reason is that in order to reach informative normal
forms, one has to consider additional reductions called
commuting conversions:

δ(t, x1.u1, x2.u2)v B δ(t, x1.(u1 v), x2.(u2 v))

πi(δ(t, x1.u1, x2.u2)) B δ(t, x1.πi(u1), x2.πi(u2))

δv(δ(t, x1.u1, x2.u2)) B δ(t, x1.δv(u1), x2.δv(u2))

where δv(t)= δ(t, y1.v1, y2.v2).
Cf. the anomaly in the rule:

Γ` t : A∨B Γ, x : A ` u : C Γ, y : B ` v : C—
δ(t, x.u, y.v) : C
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Deductive systems & proof equalities

“Notion of construction”, a shift in point of view:

A—
A∨B

B—
A∨B
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Deductive systems & proof equalities

“Notion of construction”, a shift in point of view:

A—
A∨ A

A—
A∨ A
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Deductive systems & proof equalities

“Notion of construction”, a shift in point of view:

t : A—
ι1(t) : A∨ A

t : A—
ι2(t) : A∨ A
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Deductive systems & proof equalities

“Notion of construction”, a shift in point of view:

t : A—
ι1(t) : A∨ A

t : A—
ι2(t) : A∨ A

ι1() 6= ι2()
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Deductive systems & proof equalities

We now care about equalities between proofs. We have a
deductive system.
Deductive system:

• Set of formulae |D|
• For all A,B ∈ |D|, a set of proofs D(A,B)
• For all A,B,C ∈ |D|, a function

·◦ :D(B,C)×D(A,B)→D(A,C)
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Deductive systems & proof equalities

Example: a category.
• idA ∈D(A, A)
• idA ·◦ f = f
• f ·◦ idA = f
• f ·◦ (g ·◦h)= ( f ·◦ g) ·◦h
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Deductive systems & proof equalities

x : A ` t : B
y : B ` u : C z : C ` v : D
——

y : B ` (λz.v)u : D
——

x : A ` (λy.(λz.v)u)t : D
vs.

x : A ` t : B y : B ` u : C
——

x : A ` (λy.u)t : C z : C ` v : D
——

x : A ` (λz.v)((λy.u)t) : D

(λy.(λz.v)u)t = (λz.v)((λy.u)t)
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Deductive systems & proof equalities

Good properties of “constructions”?
About equality in D:

• Non-degenerate?: Not all sets D(A,B) have at most one
element. (The booleans true and false are distinct.)

• A category?
• Universal properties?

D(A∨B,C)∼=D(A,C)×D(B,C)

i.e. extensionality or “eta” rules.
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Deductive systems & proof equalities

Problem 2
Having too many equations leads to nonsense for
computation. E.g. asking for both a category and all
universal properties:

u[tA∨B/y]= δ(t, xA
1 .u[ι1(x1)/y], xB

2 .u[ι2(x2)/y])

Impossibility results in certain cases (becomes degenerate).
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Deductive systems & proof equalities
In “A formulae-as-types notion of construction”, Bill Howard
proposed a connection between reduction and
cut-elimination. However:

• Howard did not mention commuting conversions, only
stated without proof the normalisation result for sums
on closed terms. Gentzen’s cut-elimination is in fact not
a theorem of natural deduction, but of sequent calculus,
which Gentzen invented because natural deduction was
too hard to work with directly.

• Gentzen’s cut-elimination in its original formulation is
not designed to define a meaningful notion of equality
between proofs.

The Curry-Howard correspondence was incomplete.
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Sequent calculus for Curry-Howard

• Gentzen’s sequent calculus
• The backbone of Curry-Howard for sequent calculus:

the µ-µ̃ system
• Dealing with connectives : polarisation and focusing
• Proof-theoretic results
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Sequent calculus
A sequent is a list of formulae, of the following form:

A1, ... , An ` B1, ... ,Bm

shortened
Γ`∆

Γ= A1, ... , An is the antecedent, and ∆= B1, ... ,Bm is the
succedent.
The meaning of the sequent is as follows: if all the formulae
of the antecedent are true, then at least one formula of the
succedent is true. In other words it is equivalent to:

(A1 ∧·· ·∧ An)→ (B1 ∨·· ·∨Bm)

Sequent calculus is a formulation of logic where all the rules
for connectives are introduction rules (on the left or on the
right).
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Sequent calculus

I will consider logics that only use one of the following two
forms:

• Intuitionistic sequent

A1, ... , An ` B

• Classical sequent

` A1, ... , An
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Sequent calculus
The rules for the connectives of intuitionistic sequent
calculus (LJ) are given as follows (Logical Group):

right introduction rules left introduction rules

Γ` A Γ`B— (`∧)
Γ` A∧B

Γ, A`∆— (∧1 `)
Γ, A∧B`∆

Γ,B`∆— (∧2 `)
Γ, A∧B`∆

Γ` A— (`∨1)
Γ` A∨B

Γ`B— (`∨2)
Γ` A∨B

Γ, A`∆ Γ,B`∆— (∨`)
Γ, A∨B`∆

Γ, A`B— (`→)
Γ` A → B

Γ` A Γ′,B`∆— (→`)
Γ,Γ′, A → B`∆

— (`>)
Γ`>

— (⊥`)
Γ,⊥`∆



Curry-Howard in trouble Sequent calculus for Curry-Howard Stop worrying and love evaluation order

Sequent calculus

The backbone of sequent calculus is formed by the
Identity Group:

• The axiom rule:
— (ax)
A` A

• The cut rule:

Γ` A,∆ Γ′, A`∆′
— (cut)

Γ,Γ′`∆,∆′

(where ∆ is empty for intuitionistic logic)
All the power of logical consequence in sequent calculus is
located in the cut rule.
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Sequent calculus
The Structural Group deals with the bookkeeping of
multiplicities of formulae.

• The weakening rules:

Γ`∆— (w`)
Γ, A`∆

(
Γ`∆— (`w)
Γ` A,∆

)
• The contraction rules:

Γ, A, A`∆— (c`)
Γ, A`∆

(
Γ` A, A,∆— (` c)
Γ` A,∆

)
• The exchange rules:

Γ, A,B,Γ′`∆— (ex`)
Γ,B, A,Γ′`∆

(
Γ`∆, A,B,∆′
— (` ex)
Γ`∆,B, A,∆′

)
(Substructural logics, like linear logic, try to remove these.)
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Sequent calculus

Summary
• Identity Group: backbone of logic
• Structural Group: bookkeeping of formulae
• Logical Group: introduction rules for connectives
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Sequent calculus
With the cut rule, all the elimination rules are derivable
starting from the left-introduction rules.

• Elimination rule for →:

Γ` A → B
Γ` A

— (ax)
B ` B— (→`)

Γ, A → B`B— (cut)
Γ,Γ`B— (c`)
Γ`B

• Elimination rule for ∨:

Γ` A∨B
Γ, A`C Γ,B`C— (∨`)

Γ, A∨B`C— (cut)
Γ,Γ`C— (c`)
Γ`C
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Sequent calculus

Gentzen’s cut-elimination. The cut rule is admissible in the
system without the cut rule. That is to say, for any derivation
that uses the cut rule, one can find a derivation that does
not use the cut rule.



Curry-Howard in trouble Sequent calculus for Curry-Howard Stop worrying and love evaluation order

The µ-µ̃ subsystem
The backbone of Curry-Howard for sequent calculus (=
computational interpretation of the Identity Group).
Three categories of terms t, e, c associated with three kinds
of judgements:

Γ` t : A |∆
Γ | e : A `∆
c : (Γ`∆)

The formula A is principal.
The antecedent Γ= (x1 : A1, ... , xn : An) and the succedent
∆= (α1 : A1, ... ,αn : An) give the types of variables that might
appear in t, e and c.
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The µ-µ̃ subsystem
Identity group:

— (`ax)
x : A` x : A | — (ax`)|α : A`α : A

c : (Γ`α : A,∆)— (`µ)
Γ`µα.c : A |∆

c : (Γ, x : A`∆)— (µ̃`)
Γ | µ̃x.c : A`∆

Γ` t : A |∆ Γ′ | e : A`∆′
— (cut)〈t ‖ e〉 : (Γ,Γ′`∆,∆′)

t ::= x
∣∣µα.c

e ::=α
∣∣ µ̃x.c

c ::= 〈t ‖ e〉
New binders µ, µ̃; infinity of variables x (y, z ... ) and α

(β,γ ... ).
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The µ-µ̃ subsystem

Activation:

c : (Γ, x : A`∆)— (`µ)
Γ | µ̃x.c : A`∆

c : (Γ`α : A,∆)— (µ̃`)
Γ`µα.c : A |∆

Deactivation:

Γ` t : A |∆ — (ax`)|α : A`α : A— (cut)〈t ‖α〉 : (Γ`α : A,∆)

— (`ax)
x : A` x : A | Γ | e : A`∆— (cut)〈x ‖ e〉 : (Γ, x : A`∆)
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The µ-µ̃ subsystem

Activating then deactivating amounts to doing nothing:

〈µα.c ‖β〉B c[β/α]

〈y ‖ µ̃x.c〉B c[y/x]

Deactivating then activating amounts to doing nothing:

µα.〈t ‖α〉B t (α ∉ t)

µ̃x.〈x ‖ e〉B e (x ∉ t)

µ-µ̃ is a system to let you freely choose and switch between
principal formulae. Its reduction rules do the bookkeeping.
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The µ-µ̃ subsystem

Do we have a category?

Γ` t : A |
c : (x : A `α : B) | e : B `∆
——〈µα.c ‖ e〉 : (x : A `∆)

——〈
t
∥∥ µ̃x.〈µα.c ‖ e〉〉 : (Γ`∆)

vs.
Γ` t : A | c : (x : A `α : B)
——〈t ‖ µ̃x.c〉 : (Γ`α : B) | e : B `∆
——〈

µα.〈t ‖ µ̃x.c〉∥∥ e
〉

: (Γ`∆)
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The µ-µ̃ subsystem
〈
t
∥∥ µ̃x.〈µα.c ‖ e〉〉=? 〈

µα.〈t ‖ µ̃x.c〉∥∥ e
〉

Yes whenever either:

〈t ‖ µ̃x.c〉 = c[t/x]

for t, c arbitrary, or:

〈µα.c ‖ e〉 = c[e/α]

for c, e arbitrary.
1. Choose either (but the choice is arbitrary),
2. Choose both, but then we have the weird equality:

c[µ̃x.c′/α]= 〈µα.c ‖ µ̃x.c′〉 = c′[µα.c/x] ,

3. Do not choose (make no assumption about associativity
for the moment).
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The µ-µ̃ subsystem
Do not choose: distinguish between terms that one can
substitute with from ones that one cannot.
Introduce new categories V ,S along with the rules:

〈V ‖ µ̃x.c〉B c[V /x] 〈µα.c ‖S〉B c[S/α]

We have so far:

V ::= x

t ::=V
∣∣µα.c

S ::=α

e ::= S
∣∣ µ̃x.c

c ::= 〈t ‖ e〉
“Values” & “Stacks”: first step towards Call-by-push-value,
simply by refusing to make an assumption!
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The µ-µ̃ subsystem

What about the Structural Group? e.g.

Γ, x : A, y : A ` t : B |— (c`)
Γ, x : A ` t[y/x] : B |

Γ` t : B |— (w`)
Γ, x : A ` t : B |

Merge renaming, collapsing and reordering of variables into
a single rule indexed by a structure map σ :Γ,∆→Γ′,∆′

substituting variables for variables:

Γ` t : A |∆—
Γ′ ` t[σ] : A |∆′

Γ | e : A `∆—
Γ′ | e[σ] : A `∆′

c : (Γ`∆)—
c[σ] : (Γ′ `∆′)

Simplifies a lot of things technically & easier to extend to
linear logics.
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Focalisation & polarisation

It remains for us to deal with the Logical Group (the
connectives!).
Main insight (from Danos, Joinet and Shellinx): start with
the η rules, and define the remaining reduction in order to
be compatible with them.
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Focalisation & polarisation

η rules in sequent calculus:

— (ax)
A → B` A → B

=
— (ax)
A` A

— (ax)
B`B— (→`)

A → B, A`B— (`→)
A → B` A → B

— (ax)
A∨B` A∨B

=
— (ax)
A` A— (`∨1)
A` A∨B

— (ax)
B`B— (`∨2)
B` A∨B— (∨`)

A∨B` A∨B
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Focalisation & polarisation
Idea: pattern-matching!

Γ` t : A i |—
Γ` ιi(t) : A1 ∨ A2 |

c1 : (Γ, x : A`∆) c2 : (Γ, y : B`∆)—
Γ | µ̃[x.c1 | y.c2] : A∨B`∆

—|α : A∨B` A∨B
=

—
x : A` x : A |—
x : A` ι1(x) : A∨B |—〈ι1(x) ‖α〉 : (x : A`α : A∨B)

—
y : B` y : B |—
y : B` ι2(y) : A∨B |—〈ι2(y) ‖α〉 : (y : B`α : A∨B)—| µ̃[

x.〈ι1(x) ‖α〉 ∣∣ y.〈ι2(y) ‖α〉] : A∨B`α : A∨B



Curry-Howard in trouble Sequent calculus for Curry-Howard Stop worrying and love evaluation order

Focalisation & polarisation
Idea: pattern-matching!

Γ` t : A | Γ′ | e : B`∆—
Γ,Γ′ | t·e : A → B`∆

c : (Γ, x : A`α : B)—
Γ`µ(x·α).c : A → B |

—
x : A → B` x : A → B |

=
—
y : A` y : A | —|α : B`α : B—

y : A | y·α : A → B`α : B—〈x ‖ y·α〉 : (x : A → B, y : A`α : B)—
x : A → B`µ(y·α).〈x ‖ y·α〉 : A → B |
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Focalisation & polarisation

V ::= x

t ::=V
∣∣µα.c

∣∣µ(x·α).c
∣∣ ιi(t)

S ::=α

e ::= S
∣∣ µ̃x.c

∣∣ µ̃[x.c | y.c′]
∣∣ t·e

c ::= 〈t ‖ e〉

S =η µ̃
[
x.〈ι1(x) ‖S〉 ∣∣ y.〈ι2(y) ‖S〉] (x, y ∉ S)

V =η µ(y·α).〈V ‖ y·α〉 (y,α ∉V )



Curry-Howard in trouble Sequent calculus for Curry-Howard Stop worrying and love evaluation order

Focalisation & polarisation

Which reduction rules?

〈ιi(t) ‖ µ̃[x1.c1 | x2.c2]〉B? ci[t/xi]

〈µ(x·α).c ‖ t·e〉B? c[t/x, e/α]

Problematic as before! Implies substitution with arbitrary t
or e.
Better:

〈ιi(V ) ‖ µ̃[x1.c1 | x2.c2]〉B ci[V /xi]

〈µ(x·α).c ‖V ·S〉B c[V /x,S/α]
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Focalisation & polarisation
Now what about:

〈ιi(t) ‖ µ̃[x1.c1 | x2.c2]〉B? 〈t ‖ µ̃xi.ci〉
〈µ(x·α).c ‖ t·e〉B? 〈

t
∥∥ µ̃x.〈µα.c ‖ e〉〉

This is actually definable from the rules we have just set up
assuming µ̃[x1.c1 | x2.c2] ∈ S and µ(x·α).c ∈V :

ιi(t)
def= µα.

〈
t
∥∥ µ̃x.〈ιi(x) ‖α〉〉

t·e def= µ̃y.
〈

t
∥∥∥ µ̃x.

〈
µα.〈y ‖ x·α〉∥∥ e

〉〉
Focalisation is the phenomenon by which introduction rules
hide cuts.
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Focalisation & polarisation

V ::= x
∣∣ ιi(V )

∣∣µ(x·α).c

t ::=V
∣∣µα.c

S ::=α
∣∣ V ·S ∣∣ µ̃[x.c | y.c′]

e ::= S
∣∣ µ̃x.c

c ::= 〈t ‖ e〉

〈ιi(V ) ‖ µ̃[x1.c1 | x2.c2]〉B ci[V /xi]

〈µ(x·α).c ‖V ·S〉B c[V /x,S/α]
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Focalisation & polarisation
Final question: how to reduce a binder against a binder?

〈µα.c ‖ µ̃x.c′〉B?

Hint: be compatible with η rules.
If the common type of x and α is A → B then:

〈µα.c ‖ µ̃x.c′〉 = 〈
µ(y·β).〈µα.c ‖ y·β〉∥∥ µ̃x.c′

〉
We are forced to reduce as follows:

〈µα.c ‖ µ̃x.c′〉B c′[µα.c/x]

If the common type is A∨B then:

〈µα.c ‖ µ̃x.c′〉=〈
µα.c

∥∥ µ̃[
y1.〈ι1(y1) ‖ µ̃x.c′〉 ∣∣ y2.〈ι2(y2) ‖ µ̃x.c′〉]〉

We are forced to reduce as follows:

〈µα.c ‖ µ̃x.c′〉B c[µ̃x.c′/α]
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Focalisation & polarisation

Polarisation: let the order of reduction be determined by the
polarity of the formula∗.
Distinguish positive from negative cuts and binders:

V ::= x
∣∣ ιi(V )

∣∣µ(x·α).c
∣∣µ�α.c

t ::=V
∣∣µ+α.c

S ::=α
∣∣ V ·S ∣∣ µ̃[x.c | y.c′]

∣∣ µ̃+x.c

e ::= S
∣∣ µ̃�x.c

c ::= 〈t ‖ e〉+ ∣∣ 〈t ‖ e〉�

(∗: beware, the polarity is not always determined by η expansions!)
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Focalisation & polarisation
What about pairs?
In fact pairs can be treated either as positives or as
negatives. We consider them separate connectives (⊗ pos.
and & neg.)

Γ` t : A | Γ′`u : B |— (`⊗)
Γ,Γ′` t⊗u : A⊗B |

c : (Γ, x : A, y : B`∆)— (⊗`)
Γ | µ̃(x⊗y).c : A⊗B`∆

c : (Γ`α : A) c′ : (Γ`β : B)
— (`&)

Γ`µ<α.c;β.c′> : A & B |
Γ | e : A i `∆)— (&i `)

Γ |πi·e : A1 & A2 `∆
Then ∧ (= comma on the left of `) is defined by cases

A∧B A+ A−
B+ A⊗B A⊗B
B− A⊗B A & B



Curry-Howard in trouble Sequent calculus for Curry-Howard Stop worrying and love evaluation order

Stop worrying and love evaluation order

• Mission accomplished
• Computational interpretation as abstract machines
• Impossibility results: learn to live with evaluation

order!
• Direct vs. indirect models
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Results
Rewriting

The rewriting system is very simple (it is an orthogonal
higher-order rewriting system). We get for free:

• Confluence (cf. course material, §3.3, p. 18)
• Standardisation

by using theorems from the literature (or application by
hand of the traditional proofs for the λ-calculus without
sums).
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Results
Logic: normalisation

The type system fits very well proofs by logical
relations/predicates based on orthogonality, so for instance
we get a proof of:

• Strong normalisation: all reduction paths are finite (cf.
course material, §5, p. 37)

again using a proof that is a generalisation of that for
System F. (I forgot to mention: our sequent calculus extends
to second order for free, with quantifiers ∀ negative and ∃
positive.)
We can state cut-elimination: for any derivation, there is an
equivalent derivation whose only uses of the cut rule are
deactivations.
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Results
Logic: focusing

The standard focusing proof-search algorithm is obtained by
looking at the shape of η-expanded normal terms.
(Completeness proof included!)
See course material (§6.4, p. 42) for details and perspectives
for this term-based technique.
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Results
Logic: constructive classical logic

This method was originally applied to Gentzen’s classical
sequent calculus LK in the seminal paper by Danos, Joinet
and Shellinx (“A new deconstructive logic: Linear Logic”,
Journal of Symbolic Logic, 1997).
They reconstructed a constructive interpretation of classical
logic invented by Girard closely related to call/cc.
They did not have a term interpretation, only pure sequents,
so the paper is hard to read and the technical details very
tedious—Curry-Howard for sequent calculus saves us here!
Applying focusing, we get the conservativity of classical logic
over intuitionistic logic for purely positive formulae. (An
example of analyticity of cut-free proofs.)
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Computational relevance
Gentzen-Landin correspondence

• Gerhard Gentzen (1909-1945): natural deduction and
sequent calculus, cut-elimination theorem.

• Peter J. Landin (1930-2009): SECD machine, control
operators to model jumps. (Among others!)
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Computational relevance
Gentzen-Landin correspondence

Remember the derivation of natural deduction rules from
sequent calculus rules.

λx.t def= µ(x·α).〈t ‖α〉
t u def= µα.〈t ‖ u·α〉

〈t u ‖S〉B 〈t ‖ u·S〉
〈λx.t ‖V ·S〉B 〈

t[V /x]
∥∥ S

〉
Push-enter abstract machines.
Exercise! Convince yourself that the positive and negative
interpretations of the λ-calculus with sums (cf. course
material, Figure 4, p. 7) compute respectively in
call-by-value and call-by-name.
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Computational relevance
Categorical semantics?

In the end, can we get a non-degenerate categorical
interpretation? Here are two examples of impossibility
results if we assume associativity of composition:

• Classical logic. Consider the equality:

c C 〈µ_.c ‖ µ̃_.c′〉B c′

for c, c′ arbitrary!
• Recursion. Consider the function not :>∨>→>∨>

that sends true on false and false on true. Its fixed point
is a boolean equal to its own negation.

They have non-degenerate models of Call-by-push-value
(respectively CPS and domains).
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Computational relevance
Direct vs. indirect semantics

There are two ways around.
• Either model the deductive system directly: axiomatize

polarisation as a category but where some
associativities fail.

• Or ask for two categories plus some structure to
mediate between the two. Namely, an adjunction
between a category of “values” and a category of “stacks”
(so-called adjunction model). One has to specify a
non-trivial interpretation of the deductive system into
this notion of model, so the model is indirect.
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Computational relevance
Direct vs. indirect semantics

There is a correspondence between the two approaches! It is
based on identifying a semantic notion of values and stacks:

• Thunkables = algebraic values: ∀c,〈t ‖ µ̃x.c〉 = c[t/x]
• Linears = algebraic stacks: ∀c,〈µα.c ‖ e〉 = c[e/α]
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