An opinionated introduction to

Call-by-Push-Value

Guillaume Munch-Maccagnoni
inzía
Team Gallinette, Nantes

January 10th 2020
Coq Andes Summer School

Goal \& Motivation

Call-by-Push-Value is:

- A syntax : that extends the λ-calculus with sums and control over evaluation order (= compatible with side-effects), that decomposes both call-by-value and call-by-name evaluation strategies.
- A model : an axiomatic notion of denotational semantics (= interpret derivations as mathematical objects) that unifies various pre-existing notions of models for effects.
History: British school of denotational semantics. First the models (Scott, Moggi, Fiore), then the syntax (Levy).
(λ-calculus: first the syntax, then the models!)
Period: 1990-2000... and 20 more years to digest!

Goal \& Motivation

Opinionated:

- Not a historical presentation, instead focus on basic concepts.
- Show how Call-by-push-value could have arisen (instructively!) from the proof theory of intuitionistic logic, using the same analysis performed for classical logic in the same time period by the French school of proof theory (Girard, Danos-Joinet-Schellinx).

Some course material (optional!)

\triangleright https://hal.inria.fr/hal-01528857
Not everything!

- System LJ η_{p}^{η} without "!" (Figures 1 \& 2, pp. 4-5)
- Expressing the λ-calculus in call-by-value and call-by-name (Figure 4, p. 7)

It might help to have them handy during the course. Then to get more into the technical details:

- Confluence (§3.3, p. 18)
- Strong normalisation (§5, p. 37)
- Focusing (§6.4, p. 42)

These sections stand alone and can be read by skipping the rest (which focuses a lot on categorical semantics, which I will not have the time to present).

Curry-Howard in trouble

- Gentle reminders
- From natural deduction to sequent calculus
- Blind spots of the Curry-Howard correspondence

Natural deduction and λ-calculus

Proof theory studies the structure of proofs in the details. So we focus on less expressive logics. Much less: propositional logic!
We fix a set of formulae for the rest of the course:

$$
A::=X|A \rightarrow B| A \wedge B|A \vee B| \top \mid \perp
$$

- Implication (\rightarrow) "implies"
- Conjunction (\wedge) "and"
- Disjunction (v) "or"
- Truth (T) "true"
- Falsity (\perp) "false"

Natural deduction and λ-calculus

Natural deduction and λ-calculus

"Cut-elimination" (Gentzen):

$$
\begin{gathered}
{[A] \cdots[A]} \\
\vdots \\
B \\
\hline A \rightarrow B
\end{gathered}
$$

along with other rules for other pairs of introduction \& elimination rules.
\Rightarrow Consistency (no proof of \perp).

Natural deduction and λ-calculus

Howard's "formulae-as-type notion of construction":
Cut-elimination $=$ reduction in λ-calculus

($\boldsymbol{\lambda x . t) u : B}$
I will assume familiarity with binders, substitution...

Natural deduction and λ-calculus

introduction

elimination

$$
\begin{aligned}
& \overline{\Gamma, x: A \vdash x: A} \\
& \frac{\Gamma \vdash t: A \quad \Gamma \vdash u: B}{\Gamma \vdash(t, u): A \wedge B} \quad \frac{\Gamma \vdash t: A \wedge B}{\Gamma \vdash \pi_{1}(t): A} \quad \frac{\Gamma \vdash t: A \wedge B}{\Gamma \vdash \pi_{2}(t): B} \\
& \frac{\Gamma \vdash t: A_{i}}{\Gamma \vdash \iota_{i}(t): A_{1} \vee A_{2}} \frac{\Gamma \vdash t: A \vee B \quad \Gamma, x: A \vdash u: C \quad \Gamma, y: B \vdash v: C}{\delta(t, x . u, y . v): C} \\
& \Gamma, x: A \vdash t: B \\
& \Gamma \vdash \lambda x . t: A \rightarrow B \\
& \Gamma \vdash(): \top \\
& \frac{\Gamma \vdash t: A \rightarrow B \quad \Gamma \vdash u: A}{\Gamma \vdash t u: B} \\
& \frac{\Gamma \vdash t: \perp}{\Gamma \vdash t: A}
\end{aligned}
$$

Natural deduction and λ-calculus

$$
\left.\begin{array}{c}
(\lambda x . t) u \triangleright t[u / x] \\
\pi_{1}(t, u) \triangleright t \\
\pi_{2}(t, u) \triangleright u \\
\delta\left(\iota_{1}(t), x . u, y . v\right) \triangleright u[t / x] \\
\delta\left(\iota_{2}(t), x . u, y . v\right)
\end{array}\right) v[t / y]
$$

Natural deduction and λ-calculus

Good properties of "constructions"?
About logic:

- Normalisation?: The normal form always exists (i.e. the logic is consistent).
- Analyticity?: The normal form contains "explicit information" in some sense.

Natural deduction and λ-calculus

Good properties of "constructions"?
About reductions \rightarrow (obtained by extending \triangleright to sub-terms):

- Confluence?: If $u \leftarrow^{*} t \rightarrow{ }^{*} v$ then there exists w such that $u \rightarrow{ }^{*} w \leftarrow^{*} v$ (in particular: if w does not reduce, then it is the unique one).
- Standardisation?: Any series of reduction $t \rightarrow{ }^{*} u$ can be rewritten by applying reductions in a
leftmost-outermost order (the leftmost-outermost strategy always finds the normal form).

Natural deduction and λ-calculus

Problem 1

All this goes very nicely when you only have to deal with negative connectives (e.g. \rightarrow).
But it becomes very difficult technically when one has to deal with positive connectives (e.g. v).

Natural deduction and λ-calculus

The reason is that in order to reach informative normal forms, one has to consider additional reductions called commuting conversions:

$$
\begin{aligned}
& \delta\left(t, x_{1} \cdot u_{1}, x_{2} \cdot u_{2}\right) v \\
& \pi_{i}\left(\delta\left(t, x_{1} \cdot u_{1}, x_{2} \cdot u_{2}\right)\right) \triangleright \delta\left(t, x_{1} \cdot\left(u_{1} v\right), x_{2} \cdot\left(u_{2} v\right)\right) \\
& \delta_{v}\left(\delta\left(t, x_{1} \cdot u_{1}, x_{2} \cdot u_{2}\right)\right) \triangleright \delta\left(t, x_{1} \cdot \pi_{i}\left(u_{1}\right), x_{2} \cdot \pi_{i}\left(u_{2}\right)\right) \\
& \text { 有 } \left.t, x_{1} \cdot \delta_{v}\left(u_{1}\right), x_{2} \cdot \delta_{v}\left(u_{2}\right)\right)
\end{aligned}
$$

where $\delta_{v}(t)=\delta\left(t, y_{1} \cdot v_{1}, y_{2} \cdot v_{2}\right)$.
Cf. the anomaly in the rule:

$$
\begin{array}{lll}
\Gamma \vdash t: A \vee B & \Gamma, x: A \vdash u: C & \Gamma, y: B \vdash v: C \\
\hline & \delta(t, x . u, y . v): C
\end{array}
$$

Deductive systems \& proof equalities

"Notion of construction", a shift in point of view:

$$
\frac{A}{A \vee B} \quad \frac{B}{A \vee B}
$$

Deductive systems \& proof equalities

"Notion of construction", a shift in point of view:

$$
\frac{A}{A \vee A} \quad \frac{A}{A \vee A}
$$

Deductive systems \& proof equalities

"Notion of construction", a shift in point of view:

$$
\frac{t: A}{t_{1}(t): A \vee A} \quad \frac{t: A}{l_{2}(t): A \vee A}
$$

Deductive systems \& proof equalities

"Notion of construction", a shift in point of view:

$$
\begin{gathered}
\frac{t: A}{\iota_{1}(t): A \vee A} \frac{t: A}{\iota_{2}(t): A \vee A} \\
\iota_{1}() \neq \iota_{2}()
\end{gathered}
$$

Deductive systems \& proof equalities

We now care about equalities between proofs. We have a deductive system.
Deductive system:

- Set of formulae $|\mathcal{D}|$
- For all $A, B \in|\mathcal{D}|$, a set of proofs $\mathcal{D}(A, B)$
- For all $A, B, C \in|\mathcal{D}|$, a function

$$
\odot: \mathcal{D}(B, C) \times \mathcal{D}(A, B) \rightarrow \mathcal{D}(A, C)
$$

Deductive systems \& proof equalities

Example: a category.

- $\mathrm{id}_{A} \in \mathcal{D}(A, A)$
- $\mathrm{id}_{A} \odot f=f$
- $f \odot \mathrm{id}_{A}=f$
- $f \odot(g \odot h)=(f \odot g) \odot h$

Deductive systems \& proof equalities

vs.

$$
\begin{gathered}
\underline{x: A \vdash t: B \quad y: B \vdash u: C} \\
\frac{x: A \vdash(\lambda y \cdot u) t: C}{x: A \vdash(\lambda z \cdot v)((\lambda y \cdot u) t): D} \\
\quad(\lambda y \cdot(\lambda z \cdot v) u) t=(\lambda z \cdot v)((\lambda y . u) t)
\end{gathered}
$$

Deductive systems \& proof equalities

Good properties of "constructions"?
About equality in \mathcal{D} :

- Non-degenerate?: Not all sets $\mathcal{D}(A, B)$ have at most one element. (The booleans true and false are distinct.)
- A category?
- Universal properties?

$$
\mathcal{D}(A \vee B, C) \cong \mathcal{D}(A, C) \times \mathcal{D}(B, C)
$$

i.e. extensionality or "eta" rules.

Deductive systems \& proof equalities

Problem 2

Having too many equations leads to nonsense for computation. E.g. asking for both a category and all universal properties:

$$
u\left[t^{A \vee B} / y\right]=\delta\left(t, x_{1}^{A} \cdot u\left[\iota_{1}\left(x_{1}\right) / y\right], x_{2}^{B} \cdot u\left[\iota_{2}\left(x_{2}\right) / y\right]\right)
$$

Impossibility results in certain cases (becomes degenerate).

Deductive systems \& proof equalities

In "A formulae-as-types notion of construction", Bill Howard proposed a connection between reduction and cut-elimination. However:

- Howard did not mention commuting conversions, only stated without proof the normalisation result for sums on closed terms. Gentzen's cut-elimination is in fact not a theorem of natural deduction, but of sequent calculus, which Gentzen invented because natural deduction was too hard to work with directly.
- Gentzen's cut-elimination in its original formulation is not designed to define a meaningful notion of equality between proofs.
The Curry-Howard correspondence was incomplete.

Sequent calculus for Curry-Howard

- Gentzen's sequent calculus
- The backbone of Curry-Howard for sequent calculus: the $\mu-\tilde{\mu}$ system
- Dealing with connectives : polarisation and focusing
- Proof-theoretic results

Sequent calculus

A sequent is a list of formulae, of the following form:

$$
A_{1}, \ldots, A_{n} \vdash B_{1}, \ldots, B_{m}
$$

shortened

$$
\Gamma \vdash \Delta
$$

$\Gamma=A_{1}, \ldots, A_{n}$ is the antecedent, and $\Delta=B_{1}, \ldots, B_{m}$ is the succedent.
The meaning of the sequent is as follows: if all the formulae of the antecedent are true, then at least one formula of the succedent is true. In other words it is equivalent to:

$$
\left(A_{1} \wedge \cdots \wedge A_{n}\right) \rightarrow\left(B_{1} \vee \cdots \vee B_{m}\right)
$$

Sequent calculus is a formulation of logic where all the rules for connectives are introduction rules (on the left or on the right).

Sequent calculus

I will consider logics that only use one of the following two forms:

- Intuitionistic sequent

$$
A_{1}, \ldots, A_{n} \vdash B
$$

- Classical sequent

$$
\vdash A_{1}, \ldots, A_{n}
$$

Sequent calculus

The rules for the connectives of intuitionistic sequent calculus (LJ) are given as follows (Logical Group):
right introduction rules
left introduction rules

$$
\begin{array}{cc}
\frac{\Gamma \vdash A}{\Gamma \vdash A \wedge B}(\vdash \wedge) & \frac{\Gamma, A \vdash \Delta}{\Gamma, A \wedge B \vdash \Delta}\left(\wedge_{1} \vdash\right) \frac{\Gamma, B \vdash \Delta}{\Gamma, A \wedge B \vdash \Delta}\left(\wedge_{2} \vdash\right) \\
\frac{\Gamma \vdash A}{\Gamma \vdash A \vee B}\left(\vdash \vee_{1}\right) \frac{\Gamma \vdash B}{\Gamma \vdash A \vee B}\left(\vdash \vee_{2}\right) & \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vee B \vdash \Delta}(\vee \vdash) \\
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B}(\vdash \rightarrow) & \frac{\Gamma \vdash A \quad \Gamma^{\prime}, B \vdash \Delta}{\Gamma, \Gamma^{\prime}, A \rightarrow B \vdash \Delta}(\rightarrow \vdash) \\
\frac{\Gamma \vdash \top}{}(\vdash \mathrm{T}) & \frac{\Gamma, \perp \vdash \Delta}{}(\perp \vdash) \\
\hline
\end{array}
$$

Sequent calculus

The backbone of sequent calculus is formed by the Identity Group:

- The axiom rule:

$$
\overline{A \vdash A}^{\text {(ax) }}
$$

- The cut rule:

$$
\frac{\Gamma \vdash A, \Delta \quad \Gamma^{\prime}, A \vdash \Delta^{\prime}}{\Gamma, \Gamma^{\prime} \vdash \Delta, \Delta^{\prime}}(\mathrm{cut})
$$

(where Δ is empty for intuitionistic logic)
All the power of logical consequence in sequent calculus is located in the cut rule.

Sequent calculus

The Structural Group deals with the bookkeeping of multiplicities of formulae.

- The weakening rules:

$$
\frac{\Gamma \vdash \Delta}{\Gamma, A \vdash \Delta}(\mathrm{w} \vdash) \quad\left(\frac{\Gamma \vdash \Delta}{\Gamma \vdash A, \Delta}(\vdash \mathrm{w})\right)
$$

- The contraction rules:

$$
\frac{\Gamma, A, A \vdash \Delta}{\Gamma, A \vdash \Delta}(\mathrm{c} \vdash) \quad\left(\frac{\Gamma \vdash A, A, \Delta}{\Gamma \vdash A, \Delta}(\vdash \mathrm{c})\right)
$$

- The exchange rules:

$$
\frac{\Gamma, A, B, \Gamma^{\prime} \vdash \Delta}{\Gamma, B, A, \Gamma^{\prime} \vdash \Delta}(\mathrm{ex} \vdash) \quad\left(\frac{\Gamma \vdash \Delta, A, B, \Delta^{\prime}}{\Gamma \vdash \Delta, B, A, \Delta^{\prime}}(\vdash \mathrm{ex})\right)
$$

(Substructural logics, like linear logic, try to remove these.)

Sequent calculus

Summary

- Identity Group: backbone of logic
- Structural Group: bookkeeping of formulae
- Logical Group: introduction rules for connectives

Sequent calculus

With the cut rule, all the elimination rules are derivable starting from the left-introduction rules.

- Elimination rule for \rightarrow :

$$
\frac{\Gamma \vdash A \rightarrow B \quad \frac{\Gamma \vdash A}{\Gamma, A \rightarrow B \vdash B}\left(\overline{B \vdash B}^{(\mathrm{ax})}\right.}{(\rightarrow \vdash)} \text { (cut) }
$$

- Elimination rule for v :

$$
\frac{\Gamma \vdash A \vee B \quad \frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A \vee B \vdash C}(\mathrm{\vdash} \vdash)}{\frac{\Gamma, \Gamma \vdash C}{\Gamma \vdash C}(\mathrm{c} \vdash)}
$$

Sequent calculus

Gentzen's cut-elimination. The cut rule is admissible in the system without the cut rule. That is to say, for any derivation that uses the cut rule, one can find a derivation that does not use the cut rule.

The $\boldsymbol{\mu}$ - $\tilde{\mu}$ subsystem

The backbone of Curry-Howard for sequent calculus (= computational interpretation of the Identity Group). Three categories of terms t, e, c associated with three kinds of judgements:

$$
\begin{gathered}
\Gamma \vdash t: A \mid \Delta \\
\Gamma \mid e: A \vdash \Delta \\
c:(\Gamma \vdash \Delta)
\end{gathered}
$$

The formula A is principal.
The antecedent $\Gamma=\left(x_{1}: A_{1}, \ldots, x_{n}: A_{n}\right)$ and the succedent $\Delta=\left(\alpha_{1}: A_{1}, \ldots, \alpha_{n}: A_{n}\right)$ give the types of variables that might appear in t, e and c.

The $\boldsymbol{\mu}$ - $\tilde{\mu}$ subsystem

Identity group:

$$
\begin{gathered}
\overline{x: A \vdash x: A \mid}_{(\vdash \mathrm{ax})}^{\frac{c:(\Gamma \vdash \alpha: A, \Delta)}{\Gamma \vdash \mu \alpha \cdot c: A \mid \Delta}(\vdash \mu) \quad \frac{c:(\Gamma, x: A \vdash \Delta)}{\Gamma \mid \tilde{\mu} x \cdot c: A \vdash \Delta}(\tilde{\mu} \vdash)} \\
\frac{\Gamma \vdash t: A \mid \Delta}{\langle t \| e\rangle:\left(\Gamma, \Gamma^{\prime} \vdash \Delta, \Delta^{\prime}\right)}(\mathrm{Cut}) \\
t::=x \mid \mu \alpha \cdot c \\
e::=\alpha \mid \tilde{\mu} x . c \\
c::=\langle t \| e\rangle
\end{gathered}
$$

New binders $\mu, \tilde{\mu}$; infinity of variables $x(y, z \ldots)$ and α $(\beta, \gamma \ldots)$.

The $\boldsymbol{\mu}$ - $\tilde{\mu}$ subsystem

Activation:

$$
\frac{c:(\Gamma, x: A \vdash \Delta)}{\Gamma \mid \tilde{\mu} x \cdot c: A \vdash \Delta}(\vdash \mu) \quad \frac{c:(\Gamma \vdash \alpha: A, \Delta)}{\Gamma \vdash \mu \alpha \cdot c: A \mid \Delta}(\tilde{\mu} \vdash)
$$

Deactivation:

$$
\begin{gathered}
\frac{\Gamma \vdash t: A \mid \Delta}{\langle t \| \alpha\rangle:(\Gamma \vdash \alpha: A, \Delta)} \\
\frac{x: A \vdash x: A \mid}{(\text { cut) }} \\
\langle x \| e\rangle:(\Gamma, x: A \vdash \Delta) \\
(\text { ax) } \\
\frac{\Gamma \mid e: A \vdash \Delta}{\text { (cut) }}
\end{gathered}
$$

The $\boldsymbol{\mu}$ - $\tilde{\mu}$ subsystem

Activating then deactivating amounts to doing nothing:

$$
\begin{gathered}
\langle\mu \alpha . c \| \beta\rangle \triangleright c[\beta / \alpha] \\
\langle y \| \tilde{\mu} x . c\rangle \triangleright c[y / x]
\end{gathered}
$$

Deactivating then activating amounts to doing nothing:

$$
\begin{array}{cc}
\mu \alpha .\langle t \| \alpha\rangle \triangleright t & (\alpha \notin t) \\
\tilde{\mu} x .\langle x \| e\rangle \triangleright e & (x \notin t)
\end{array}
$$

$\mu-\tilde{\mu}$ is a system to let you freely choose and switch between principal formulae. Its reduction rules do the bookkeeping.

The $\boldsymbol{\mu}$ - $\tilde{\mu}$ subsystem

Do we have a category?

vS.

$$
\xlongequal{\xlongequal[\langle\vdash \vdash t: A| \quad c:(x: A \vdash \alpha: B)]{\langle\mu \tilde{\mu} x . c\rangle:(\Gamma \vdash \alpha: B)}}
$$

The $\boldsymbol{\mu}$ - $\tilde{\mu}$ subsystem

$$
\langle t \| \tilde{\mu} x .\langle\mu \alpha . c \| e\rangle\rangle={ }^{?}\langle\mu \alpha .\langle t \| \tilde{\mu} x . c\rangle \| e\rangle
$$

Yes whenever either:

$$
\langle t \| \tilde{\mu} x . c\rangle=c[t / x]
$$

for t, c arbitrary, or:

$$
\langle\mu \alpha . c \| e\rangle=c[e / \alpha]
$$

for c, e arbitrary.

1. Choose either (but the choice is arbitrary),
2. Choose both, but then we have the weird equality:

$$
c\left[\tilde{\mu} x . c^{\prime} / \alpha\right]=\left\langle\mu \alpha . c \| \tilde{\mu} x . c^{\prime}\right\rangle=c^{\prime}[\mu \alpha . c / x],
$$

3. Do not choose (make no assumption about associativity for the moment).

The $\boldsymbol{\mu}$ - $\tilde{\mu}$ subsystem

Do not choose: distinguish between terms that one can substitute with from ones that one cannot. Introduce new categories V, S along with the rules:

$$
\langle V \| \tilde{\mu} x . c\rangle \triangleright c[V / x] \quad\langle\mu \alpha . c \| S\rangle \triangleright c[S / \alpha]
$$

We have so far:

$$
\begin{aligned}
V & ::=x \\
t & ::=V \mid \mu \alpha . c \\
S & ::=\alpha \\
e & ::=S \mid \tilde{\mu} x . c \\
c & ::=\langle t \| e\rangle
\end{aligned}
$$

"Values" \& "Stacks": first step towards Call-by-push-value, simply by refusing to make an assumption!

The $\boldsymbol{\mu}$ - $\tilde{\mu}$ subsystem

What about the Structural Group? e.g.

$$
\frac{\Gamma, x: A, y: A \vdash t: B \mid}{\Gamma, x: A \vdash t[y / x]: B \mid}(\mathrm{c} \vdash) \quad \frac{\Gamma \vdash t: B \mid}{\Gamma, x: A \vdash t: B \mid}(\mathrm{w} \vdash)
$$

Merge renaming, collapsing and reordering of variables into a single rule indexed by a structure map $\sigma: \Gamma, \Delta \rightarrow \Gamma^{\prime}, \Delta^{\prime}$ substituting variables for variables:

$$
\frac{\Gamma \vdash t: A \mid \Delta}{\Gamma^{\prime} \vdash t[\sigma]: A \mid \Delta^{\prime}} \quad \frac{\Gamma \mid e: A \vdash \Delta}{\Gamma^{\prime} \mid e[\sigma]: A \vdash \Delta^{\prime}} \quad \frac{c:(\Gamma \vdash \Delta)}{c[\sigma]:\left(\Gamma^{\prime} \vdash \Delta^{\prime}\right)}
$$

Simplifies a lot of things technically \& easier to extend to linear logics.

Focalisation \& polarisation

It remains for us to deal with the Logical Group (the connectives!).
Main insight (from Danos, Joinet and Shellinx): start with the η rules, and define the remaining reduction in order to be compatible with them.

Focalisation \& polarisation

η rules in sequent calculus:

Focalisation \& polarisation

Idea: pattern-matching!

$$
\frac{\Gamma \vdash t: A_{i} \mid}{\Gamma \vdash \iota_{i}(t): A_{1} \vee A_{2} \mid} \quad \frac{c_{1}:(\Gamma, x: A \vdash \Delta) \quad c_{2}:(\Gamma, y: B \vdash \Delta)}{\Gamma \mid \tilde{\mu}\left[x . c_{1} \mid y \cdot c_{2}\right]: A \vee B \vdash \Delta}
$$

$$
\overline{\mid \alpha: A \vee B \vdash A \vee B}
$$

$\frac{\frac{\overline{x: A \vdash x: A \mid}}{x: A \vdash \iota_{1}(x): A \vee B \mid}}{\frac{\frac{\overline{y: B \vdash y: B \mid}}{y: B \vdash \iota_{2}(y): A \vee B \mid}}{\left\langle\iota_{1}(x) \| \alpha\right\rangle:(x: A \vdash \alpha: A \vee B)}} \frac{\mid \tilde{\mu}\left[x \cdot\left\langle\iota_{1}(x) \| \alpha\right\rangle \mid y \cdot\left\langle\iota_{2}(y) \| \alpha\right\rangle\right]: A \vee B \vdash \alpha: A \vee B}{\left\langle\iota_{2}(y) \| \alpha\right\rangle:(y: B \vdash \alpha \vee B)}$

Focalisation \& polarisation

Idea: pattern-matching!

$$
\frac{\Gamma \vdash t: A\left|\quad \Gamma^{\prime}\right| e: B \vdash \Delta}{\Gamma, \Gamma^{\prime} \mid t \cdot e: A \rightarrow B \vdash \Delta} \quad \frac{c:(\Gamma, x: A \vdash \alpha: B)}{\Gamma \vdash \mu(x \cdot \alpha) \cdot c: A \rightarrow B \mid}
$$

$$
\overline{x: A \rightarrow B \vdash x: A \rightarrow B \mid}
$$

$$
=
$$

$$
\overline{y: A \vdash y: A|\quad| \alpha: B \vdash \alpha: B}
$$

$$
y: A \mid y \cdot \alpha: A \rightarrow B \vdash \alpha: B
$$

$$
\overline{\langle x \| y \cdot \alpha\rangle:(x: A \rightarrow B, y: A \vdash \alpha: B)}
$$

$$
x: A \rightarrow B \vdash \mu(y \cdot \alpha) .\langle x \| y \cdot \alpha\rangle: A \rightarrow B \mid
$$

Focalisation \& polarisation

$$
\begin{aligned}
V & ::=x \\
t & :=V|\mu \alpha \cdot c| \mu(x \cdot \alpha) . c \mid \iota_{i}(t) \\
S & ::=\alpha \\
e & ::=S|\tilde{\mu} x . c| \tilde{\mu}\left[x . c \mid y \cdot c^{\prime}\right] \mid t \cdot e \\
c & ::=\langle t \| e\rangle
\end{aligned}
$$

$$
\begin{array}{rlr}
S & ={ }_{\eta} \tilde{\mu}\left[x \cdot\left\langle\iota_{1}(x) \| S\right\rangle \mid y \cdot\left\langle\iota_{2}(y) \| S\right\rangle\right] & (x, y \notin S) \\
V & ={ }_{\eta} \mu(y \cdot \alpha) .\langle V \| y \cdot \alpha\rangle & (y, \alpha \notin V)
\end{array}
$$

Focalisation \& polarisation

Which reduction rules?

$$
\begin{aligned}
\left\langle\iota_{i}(t) \| \tilde{\mu}\left[x_{1} \cdot c_{1} \mid x_{2} \cdot c_{2}\right]\right\rangle \triangleright & { }^{?} c_{i}\left[t / x_{i}\right] \\
\langle\mu(x \cdot \alpha) \cdot c \| t \cdot e\rangle \triangleright & ?
\end{aligned}
$$

Problematic as before! Implies substitution with arbitrary t or e.
Better:

$$
\begin{aligned}
& \left\langle u_{i}(V) \| \tilde{\mu}\left[x_{1} \cdot c_{1} \mid x_{2} \cdot c_{2}\right]\right\rangle \triangleright c_{i}\left[V / x_{i}\right] \\
& \quad\langle\mu(x \cdot \alpha) \cdot c \| V \cdot S\rangle \triangleright c[V / x, S / \alpha]
\end{aligned}
$$

Focalisation \& polarisation

Now what about:

$$
\begin{aligned}
\left\langle\iota_{i}(t) \| \tilde{\mu}\left[x_{1} \cdot c_{1} \mid x_{2} \cdot c_{2}\right]\right\rangle \triangleright^{?}\left\langle t \| \tilde{\mu} x_{i} \cdot c_{i}\right\rangle \\
\quad\langle\mu(x \cdot \alpha) \cdot c \| t \cdot e\rangle \triangleright^{?}\langle t \| \tilde{\mu} x \cdot\langle\mu \alpha . c \| e\rangle\rangle
\end{aligned}
$$

This is actually definable from the rules we have just set up assuming $\tilde{\mu}\left[x_{1} . c_{1} \mid x_{2} . c_{2}\right] \in S$ and $\mu(x \cdot \alpha) . c \in V$:

$$
\begin{aligned}
& \iota_{i}(t) \stackrel{\text { def }}{=} \mu \alpha .\left\langle t \| \tilde{\mu} x .\left\langle\iota_{i}(x) \| \alpha\right\rangle\right\rangle \\
& t \cdot e \stackrel{\text { def }}{=} \tilde{\mu} y \cdot\langle t \| \tilde{\mu} x .\langle\mu \alpha \cdot\langle y \| x \cdot \alpha\rangle \| e\rangle\rangle
\end{aligned}
$$

Focalisation is the phenomenon by which introduction rules hide cuts.

Focalisation \& polarisation

$$
\begin{aligned}
V & ::=x\left|\iota_{i}(V)\right| \mu(x \cdot \alpha) . c \\
t & ::=V \mid \mu \alpha . c \\
S & ::=\alpha|V \cdot S| \tilde{\mu}\left[x . c \mid y \cdot c^{\prime}\right] \\
e & ::=S \mid \tilde{\mu} x . c \\
c & ::=\langle t \| e\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\iota_{i}(V) \| \tilde{\mu}\left[x_{1} \cdot c_{1} \mid x_{2} \cdot c_{2}\right]\right\rangle \triangleright c_{i}\left[V / x_{i}\right] \\
& \quad\langle\mu(x \cdot \alpha) \cdot c \| V \cdot S\rangle \triangleright c[V / x, S / \alpha]
\end{aligned}
$$

Focalisation \& polarisation

Final question: how to reduce a binder against a binder?

$$
\left\langle\mu \alpha . c \| \tilde{\mu} x . c^{\prime}\right\rangle \triangleright ?
$$

Hint: be compatible with η rules.
If the common type of x and α is $A \rightarrow B$ then:

$$
\left\langle\mu \alpha \cdot c \| \tilde{\mu} x . c^{\prime}\right\rangle=\left\langle\mu(y \cdot \beta) .\langle\mu \alpha . c \| y \cdot \beta\rangle \| \tilde{\mu} x . c^{\prime}\right\rangle
$$

We are forced to reduce as follows:

$$
\left\langle\mu \alpha . c \| \tilde{\mu} x . c^{\prime}\right\rangle \triangleright c^{\prime}[\mu \alpha . c / x]
$$

If the common type is $A \vee B$ then:
$\left\langle\mu \alpha . c \| \tilde{\mu} x . c^{\prime}\right\rangle=\left\langle\mu \alpha . c \| \tilde{\mu}\left[y_{1} \cdot\left\langle\iota_{1}\left(y_{1}\right) \| \tilde{\mu} x . c^{\prime}\right\rangle \mid y_{2} \cdot\left\langle\iota_{2}\left(y_{2}\right) \| \tilde{\mu} x . c^{\prime}\right\rangle\right]\right\rangle$
We are forced to reduce as follows:

$$
\left\langle\mu \alpha . c \| \tilde{\mu} x . c^{\prime}\right\rangle \triangleright c\left[\tilde{\mu} x . c^{\prime} / \alpha\right]
$$

Focalisation \& polarisation

Polarisation: let the order of reduction be determined by the polarity of the formula*.
Distinguish positive from negative cuts and binders:

$$
\begin{aligned}
V & ::=x\left|\iota_{i}(V)\right| \mu(x \cdot \alpha) . c \mid \mu^{\ominus} \alpha . c \\
t & ::=V \mid \mu^{+} \alpha . c \\
S & ::=\alpha|V \cdot S| \tilde{\mu}\left[x . c \mid y \cdot c^{\prime}\right] \mid \tilde{\mu}^{+} x . c \\
e & ::=S \mid \tilde{\mu}^{\ominus} x . c \\
c & ::=\langle t \| e\rangle^{+} \mid\langle t \| e\rangle^{\ominus}
\end{aligned}
$$

(*: beware, the polarity is not always determined by η expansions!)

Focalisation \& polarisation

What about pairs?
In fact pairs can be treated either as positives or as negatives. We consider them separate connectives (\otimes pos. and \& neg.)

$$
\begin{gathered}
\frac{\Gamma \vdash t: A\left|\quad \Gamma^{\prime} \vdash u: B\right|}{\Gamma, \Gamma^{\prime} \vdash t \otimes u: A \otimes B \mid}(\vdash \otimes) \frac{c:(\Gamma, x: A, y: B \vdash \Delta)}{\Gamma \mid \tilde{\mu}(x \otimes y) . c: A \otimes B \vdash \Delta}(\otimes \vdash) \\
\frac{c:(\Gamma \vdash \alpha: A) \quad c^{\prime}:(\Gamma \vdash \beta: B)}{\Gamma \vdash \mu<\alpha \cdot c ; \beta \cdot c^{\prime}>: A \& B \mid}(\vdash \&) \frac{\left.\Gamma \mid e: A_{i} \vdash \Delta\right)}{\Gamma \mid \pi_{i} \cdot e: A_{1} \& A_{2} \vdash \Delta}\left(\&_{i} \vdash\right)
\end{gathered}
$$

Then $\wedge(=$ comma on the left of $\vdash)$ is defined by cases

$A \wedge B$	$A+$	$A-$
$B+$	$A \otimes B$	$A \otimes B$
$B-$	$A \otimes B$	$A \& B$

Stop worrying and love evaluation order

- Mission accomplished
- Computational interpretation as abstract machines
- Impossibility results: learn to live with evaluation order!
- Direct vs. indirect models

Results

Rewriting

The rewriting system is very simple (it is an orthogonal higher-order rewriting system). We get for free:

- Confluence (cf. course material, §3.3, p. 18)
- Standardisation
by using theorems from the literature (or application by hand of the traditional proofs for the λ-calculus without sums).

Results

Logic: normalisation

The type system fits very well proofs by logical relations/predicates based on orthogonality, so for instance we get a proof of:

- Strong normalisation: all reduction paths are finite (cf. course material, §5, p. 37)
again using a proof that is a generalisation of that for System F. (I forgot to mention: our sequent calculus extends to second order for free, with quantifiers \forall negative and \exists positive.)
We can state cut-elimination: for any derivation, there is an equivalent derivation whose only uses of the cut rule are deactivations.

Results

Logic: focusing

The standard focusing proof-search algorithm is obtained by looking at the shape of η-expanded normal terms. (Completeness proof included!)
See course material (§6.4, p. 42) for details and perspectives for this term-based technique.

Results

Logic: constructive classical logic
This method was originally applied to Gentzen's classical sequent calculus LK in the seminal paper by Danos, Joinet and Shellinx ("A new deconstructive logic: Linear Logic", Journal of Symbolic Logic, 1997).
They reconstructed a constructive interpretation of classical logic invented by Girard closely related to call/cc. They did not have a term interpretation, only pure sequents, so the paper is hard to read and the technical details very tedious-Curry-Howard for sequent calculus saves us here! Applying focusing, we get the conservativity of classical logic over intuitionistic logic for purely positive formulae. (An example of analyticity of cut-free proofs.)

Computational relevance

Gentzen-Landin correspondence

- Gerhard Gentzen (1909-1945): natural deduction and sequent calculus, cut-elimination theorem.
- Peter J. Landin (1930-2009): SECD machine, control operators to model jumps. (Among others!)

Computational relevance

Gentzen-Landin correspondence

Remember the derivation of natural deduction rules from sequent calculus rules.

$$
\begin{aligned}
\lambda x . t & \stackrel{\text { def }}{=} \mu(x \cdot \alpha) .\langle t \| \alpha\rangle \\
t u & \stackrel{\text { def }}{=} \mu \alpha \cdot\langle t \| u \cdot \alpha\rangle \\
\langle t u \| S\rangle & \triangleright\langle t \| u \cdot S\rangle \\
\langle\lambda x . t \| V \cdot S\rangle & \triangleright\langle t[V / x] \| S\rangle
\end{aligned}
$$

Push-enter abstract machines.
Exercise! Convince yourself that the positive and negative interpretations of the λ-calculus with sums (cf. course material, Figure 4, p. 7) compute respectively in call-by-value and call-by-name.

Computational relevance

Categorical semantics?

In the end, can we get a non-degenerate categorical interpretation? Here are two examples of impossibility results if we assume associativity of composition:

- Classical logic. Consider the equality:

$$
c \triangleleft\left\langle\mu_{-} . c \| \tilde{\mu}_{-} . c^{\prime}\right\rangle \triangleright c^{\prime}
$$

for c, c^{\prime} arbitrary!

- Recursion. Consider the function not: $T \vee T \rightarrow T \vee \top$ that sends true on false and false on true. Its fixed point is a boolean equal to its own negation.

They have non-degenerate models of Call-by-push-value (respectively CPS and domains).

Computational relevance

Direct vs. indirect semantics

There are two ways around.

- Either model the deductive system directly: axiomatize polarisation as a category but where some associativities fail.
- Or ask for two categories plus some structure to mediate between the two. Namely, an adjunction between a category of "values" and a category of "stacks" (so-called adjunction model). One has to specify a non-trivial interpretation of the deductive system into this notion of model, so the model is indirect.

Computational relevance

Direct vs. indirect semantics

There is a correspondence between the two approaches! It is based on identifying a semantic notion of values and stacks:

- Thunkables $=$ algebraic values: $\forall c,\langle t \| \tilde{\mu} x . c\rangle=c[t / x]$
- Linears $=$ algebraic stacks: $\forall c,\langle\mu \alpha . c \| e\rangle=c[e / \alpha]$

References

For bibliographic references and more historical context, refer to the course material:
\triangleright https://hal.inria.fr/hal-01528857

