
Classical notions of computation
and the Hasegawa-Thielecke theorem

Éléonore Mangel
Univ. Paris Cité, CNRS, INRIA

Paris, France

Paul-André Melliès
Univ. Paris Cité, CNRS, INRIA

Paris, France

Guillaume Munch-Maccagnoni
INRIA, LS2N CNRS

Nantes, France

Abstract—In the spirit of the Curry-Howard correspondence
between proofs and programs, we define and study a syntax and
semantics for classical logic equipped with a computationally
involutive negation, using a polarised effect calculus. A main
challenge in designing a denotational semantics is to accommo-
date both call-by-value and call-by-name evaluation strategies,
which leads to a failure of associativity of composition. Building
on the work of the third author, we devise the notion of
dialogue duploid, which provides a non-associative and effectful
counterpart to the notion of dialogue category introduced
by the second author in his 2-categorical account, based on
adjunctions, of logical polarities and continuations. We show
that the syntax of the polarised calculus can be interpreted in
any dialogue duploid, and that it defines in fact a syntactic
dialogue duploid. As an application, we establish, by semantic
as well as syntactic means, the Hasegawa-Thielecke theorem,
which states that the notions of central map and of thunkable
map coincide in any dialogue duploid (in particular, for any
double negation monad on a symmetric monoidal category).

I. INTRODUCTION

A. Adjunctions, duploids, and notions of computation

In this paper, we combine methods coming from proof
theory and programming language semantics to investigate
the meaning of effectful expressions for proofs or programs,
starting with those of the form

let a = u in t (1)

where t and u are effectful expressions, and where t possibly
contains free instances of the variable a. One main difficulty
we face is that there are two canonical ways of assigning
meaning to the let construct (1) depending on the evaluation
paradigm at work:

In the call-by-value (CBV) paradigm, the expression u
performs a number of actions and returns a value v ; the
value v is then substituted for every free instance of the
variable a in the expression t ; it is then the turn of the
expression t[a := v] to perform its actions and to return a
value.

In the call-by-name (CBN) paradigm, the expression t
performs its actions and is evaluated while the expression u
is “frozen” and substituted for each free instance of the
variable a in t ; a new copy of the expression u performs
its actions and is evaluated each time a free instance of the
variable a appears as head variable during the evaluation of
the expression t[a := u].

February 18th, 2025

Kleisli categories. The seminal work on computational
effects by Moggi [1, 2] initiated a well-established tra-
dition [3, 4, 5, 6, 7, 8, 9, 10, 11] of interpreting CBV
expressions of type a : A ⊢ t : B as maps t : A → B in the
Kleisli category Kl[C , T] associated to a monad (T, µ, η) on
a category C . Recall that a map f : A → B in the Kleisli
category is a map f : A → TB in the original category C
and that two maps f : A → TB and g : B → TC are
composed using the multiplication µ of the monad:

g • f = A TB TTC TC
f Tg µC

Symmetrically, there is a well-established tradition after Gi-
rard [12] of interpreting CBN expressions of type a : A ⊢ t :
B as maps t : A → B in the co-Kleisli category coKl[C ,K]
associated to a computational comonad (K, δ, ε) on a given
category C of types and pure programs. Recall that a map
f : A → B in the co-Kleisli category is a map f : KA → B
in the original category C and that two maps f : A → B and
g : B → C are composed in the co-Kleisli category using
the comultiplication δ of the comonad:

g ◦ f = KA KKA KB C
δA Kf g

The mathematical property that composition is associative in
Kl[C , T] and coKl[C ,K], in the sense that

h • (g • f) = (h • g) • f h ◦ (g ◦ f) = (h ◦ g) ◦ f

reflects the computational property that for all effectful
expressions ⊢ f : A, a : A ⊢ g : B and b : B ⊢ h : C,
the two effectful expressions (i) and (ii) defined below

(i) let a
ε
= f in (let b

ε′

= g in h)

(ii) let b
ε′

= (let a
ε
= f in g) in h

are equal whenever the polarities ε, ε′ ∈ {⊕,⊖} of the
let constructs are the same. Here, we use the polarity ε ∈
{⊕,⊖} to indicate in which style let a

ε
= u in t should be

evaluated: CBV (ε = ⊕) or CBN (ε = ⊕). The fact that the
expressions (i) and (ii) behave in the same way implies in
particular that they evaluate f , g and h in the same order in
CBV as well as in CBN, as shown below.

composition style order of evaluation

(ε, ε′) = (⊕,⊕) (i) = (ii) f then g then h

(ε, ε′) = (⊖,⊖) (i) = (ii) h then g then f

Mixing call by name and call by value. In many concrete
situations, the programmer would like to control and reason

1

about the order of evaluation. This can be modelled by
letting both styles of let constructs appear inside expressions.
Inspecting the two effectful expressions (i) and (ii) again
in that hybrid scenario, we see that the two expressions (i)
and (ii) behave in the same way when (ε, ε′) = (⊖,⊕) but
behave differently when (ε, ε′) = (⊕,⊖). In particular, in
that latter case, the expression f is evaluated before h and
then g in (i) whereas the expression h is evaluated before f
and then g in (ii).

composition style order of evaluation

(ε, ε′) = (⊖,⊕) (i) = (ii) g then h then f

(ε, ε′) = (⊕,⊖)
(i) f then h then g
(ii) h then f then g

A natural question is how we could develop a mathematical
framework that considers seriously the combination of eval-
uation paradigms, without a priori biases towards monads
nor comonads. In order to reflect these equations, such a
framework needs to integrate both Kleisli and co-Kleisli
categories, where the former associativity equation holds

(h • g) ◦ f = h • (g ◦ f)

but where the latter associativity equation

(h ◦ g) • f = h ◦ (g • f)

does not necessarily hold in general. There is no hope of
defining categories and we thus need to move to “non-
associative” forms of categories. This is the direction taken by
the third author [13] based on a non-associative and polarized
notion of duploid.

The idea of non-associativity is far from new: it appeared
for the first time in Girard’s “constructive” classical logic
LC, which introduced a formal distinction between “positive”
and “negative” formulae [14]. The idea then resurfaced with
the “Blass problem” in game semantics [15, 16], whose
origin was traced back to the existence of an adjunction
between categories of “positive” and “negative” games [17].
However, non-associativity was mainly perceived as an
anomaly until the introduction of duploids [13] and their
computational account of adjunctions where it was shown that
having “three fourths” of the associativity equations captures
directly effectful computation integrating both monadic and
comonadic effects.

Adjunctions. In order to intertwine the interpretations of
CBV and CBN evaluation in a single mathematical structure
including the Kleisli and co-Kleisli categories, a good starting
point is indeed to consider a pair of adjoint functors

A ⊥ B

L

R

(2)

Incidentally, shifting attention from Moggi’s monads to
adjunctions is now standard, notably after Levy’s Call-by-
Push-Value [6, 18, 19].

Recall that the left adjoint functor L and the right adjoint
functor R are related by a pair of natural transformations

η : IdA R ◦ L ε : L ◦R IdB

called unit and counit of the adjunction, satisfying the
triangular equations [20, 21] depicted as zigzags in the
language of string diagrams:

η

ε

L
R

R
= R

L

ε

R

L

η

= L

The orientations of the strings L and R are imported
from the functorial description of game semantics in string
diagrams [22] where the functor R is understood as an input
(or Opponent move) and the functor L as an output (or
Player move). As we will see very soon, these orientations
can be seen as describing the flow of control in expressions,
reframing and generalising an idea by Jeffrey [23].

The adjunction induces a monad T = R ◦ L on the
category A and a comonad K = L ◦R on the category B.
In order to mix the CBV style and the CBN style we need
to combine the Kleisli category Kl[A , T] and the co-Kleisli
category coKl[B,K] in a single algebraic structure.

The collage category of an adjunction. It is well-known
that an adjunction L ⊣ R can equivalently be seen as a
bifibration p : E → 2 over the order category 2 = 0 → 1
with two objects 0 and 1 and a unique map trans : 0 → 1.
Here, the category E = collL,R is defined as the collage of
the adjunction L ⊣ R: its objects are the pairs (0, A) where
A is an object of A and the pairs (1, B) where B is an
object of B, and

• its maps (0, A) → (0, A′) are the maps A → A′ in A ,
• its maps (1, B) → (1, B′) are the maps B → B′ in B,
• its maps (0, A) → (1, B) are the maps A → RB in A

or equivalently LA → B in B,
• there are no maps of the form (1, B) → (0, A).

The bifibration p : E → 2 transports every object of
the form (0, A) to 0 and of the form (1, B) to 1. The
category E comes equipped with two injective on objects

and fully faithful functors A E B
injA injB

identifying A and B as the fibers over 0 and 1 respectively.
We find convenient to write A for (0, A) and B for (1, B)
when there are no ambiguities. We also call transverse a
map of the form f : A → B with image p(f) = trans. A
remarkable property of E is that the adjunction L ⊣ R factors
as a pair of adjunctions:

A ⊥ E ⊥ B

injA

RE

LE

injB

where the functors LE and RE are entirely determined by
the factorisation property and the equations

RE ◦ injB = R LE ◦ injA = L
RE ◦ injA = idA LE ◦ injB = idB

From this pair of adjunctions, it follows that the category E
comes equipped with a comonad ↓ and a monad ↑ below

↓ = injA ◦R ↑ = injB ◦ L

defined as

↓A = A ↓B = RB ↑A = LA ↑B = B

2

An easy inspection shows that the monad ↑ and comonad ↓
are idempotent, in the strong sense that the multiplication
µX : ↑↑X → ↑X of the monad and the comultiplication δX :
↓X → ↓↓X of the comonad are identities.

The duploid of an adjunction as a non-associative bi-
Kleisli construction. An enlightening way to understand the
construction of the duploid duplL,R associated to the adjunc-
tion L ⊣ R in [13] is to see it as a non-associative variant (and
generalization) of the usual bi-Kleisli construction1 [8, 24] on
the comonad ↓ and monad ↑ of the collage E = collL,R. It
appears indeed that there is a family of maps in the category E

λX : ↓ ↑X ↑ ↓X (3)

parametrized by the objects X of E , which satisfies all the
equations of a distributivity law between a comonad and a
monad except for the naturality condition, see §II for details.
The duploid duplL,R = biKl[E , ↑, ↓] can be then obtained
as the non-associative category with bi-Kleisli maps X → Y
defined as ↓X → ↑Y in E . The composite noted g ·◦ f of
two bi-Kleisli maps

f : ↓X ↑Y g : ↓Y ↑Z

is defined in the same way as in usual (associative) bi-Kleisli
categories, using the distributivity law λ:

↓X ↓↓X ↓↑Y ↑↓Y ↑↑Z ↑ZδX ↓f λY ↑g µZ

An easy computation shows that

• Kl[A , RL] coincides with the full subcategory of
positive objects (= objects of A) in duplL,R,

• coKl[B, LR] coincides with the full subcategory of
negative objects (= objects of B) in duplL,R.

For that reason, it makes sense to write the composite g ·◦ f
as g • f when Y is positive, and as g ◦ f when Y is negative.

The bi-Kleisli construction establishes the non-associative
category duplL,R as a simple and canonical way to integrate
the Kleisli and co-Kleisli categories in a larger overarching
mathematical structure. The fact that bi-Kleisli composition
is not associative comes from the fact that three maps

A′ A B B′f g h

defining a path of length 3 in biKl[E , ↑, ↓] may induce
different composite maps

(i) : (h ◦ g) • f (ii) : h ◦ (g • f)

We will see in §II how to detect the difference between
the two maps (i) and (ii) by observing the flow of control

1We discovered and developed this bi-Kleisli formulation of the duploid
construction before learning that this observation should probably be
attributed to T. Tsukada.

determined by the trajectories of the functors L and R as
depicted in their string diagrams:2

f

g

h

L

R

R

R

A’

A

B

B’

η

L

ε

f

g

h

L

L

A’

A

B

B’

L

ε

R

R

η

(4)

This flow of control indicates that (i) in the lefthand
side diagram evaluates f then h then g, while (ii) in the
righthand side diagram evaluates h then f then g. These
different evaluation orders reflect the behavior of the effectful
expressions (i) and (ii) and the lack of associativity described
above for the polarities (ε, ε′) = (⊕,⊖). We will introduce
and justify the notation for the transverse maps of the
adjunction (g, above).

B. Continuations, dialogue duploids, and classical notions
of computation

One fascinating aspect of duploids is that they exhibit
and preserve the perfect symmetry between the monadic and
comonadic effects of an adjunction, by treating on an equal
footing the CBV and CBN evaluation policies. Our main
goal in the present paper is to explore how this symmetric
account of effects can benefit the long quest for a perfectly
symmetric computational account of classical logic, in the
spirit and philosophy of the Curry-Howard correspondence.

Turning around Joyal obstruction theorem. The fact that
duploids are non-associative categories is very meaningful
from that point of view. Indeed, Joyal made the well-known
observation (recalled below, see thm. I.2) that it is not possible
to develop a proof-theoretic account of classical logic using
the language of usual (associative) cartesian categories.

Definition I.1. An object ⊥ is called a return object in
a symmetric monoidal category (C ,⊗, 1) when it comes
equipped with an object ⊥A and a family of bijections

φA,B : C (A⊗B,⊥) ∼= C (B,⊥A)

natural in B, for every object A of the category C .

We may think of ⊥A as a negation of the object A and write
it accordingly ¬A. A simple argument shows that every return
object ⊥ induces a family of canonical maps

ηA : A ¬¬A (5)

indexed by the objects A of the category C , which reflects
the logical principle that every formula A implies its dou-
ble negation ¬¬A. A return object ⊥ is called dualizing
when the canonical map (5) is an isomorphism for every

2Note that each object A of the category A is seen here as a functor
A : 1 → A from the terminal category 1, and that each Kleisli map
f : A′ → RLA of the monad R ◦ L is seen (up to bijection) as a natural
transformation f from L ◦A′ : 1 → B to L ◦A : 1 → B (and dually for
objects B of B and co-Kleisli maps h of the co-monad L ◦R).

3

object A. A natural direction to resolve the quest for a proof-
theoretic interpretation of classical logic would be to look
for a cartesian category (C ,×, 1) equipped with a dualizing
object ⊥. Unfortunately, Joyal observed that the search for
such a simple solution cannot succeed:

Theorem I.2 (Joyal’s obstruction theorem). Any cartesian
category (C ,×, 1) with a dualizing object ⊥ is a preorder,
and thus defines a boolean algebra (up to equivalence).

For a long time, this observation has been widely accepted
as evidence that classical logic cannot be interpreted in a
denotational and proof-relevant way. The situation changed in
the early 1990s when Griffin [25] and Murthy [26] observed
a fundamental and unexpected relationship between proof
systems for classical logic, and programs written with the
control operator C, a variant of Scheme’s call-cc. Since then,
a large number of investigations have been made to define
a clean denotational and proof-theoretic interpretation of
classical logic. Interestingly, each of the two main directions
taken can be seen as providing a specific way to relax one
of the hypothesis of Joyal’s obstruction theorem:
1) classical linear logic [12]: the idea is to relax the carte-
sianity condition and to work with ∗-autonomous categories,
defined as symmetric monoidal categories (C ,⊗, 1) equipped
with a dualizing object ⊥, possibly supplemented with an
exponential modality A 7→ !A to deal with non-linearity,
2) continuation models: the idea is to relax the dualizing
condition, and to work with cartesian categories (C ,×, 1)
or symmetric monoidal categories (C ,⊗, 1) equipped with a
return object ⊥ whose canonical maps (5) are not necessarily
required to be invertible.
In these directions, influential and most notable works have
been the Lafont-Reus-Streicher translation [27] as well as
the later works by Hofmann and Streicher [28] and by
Selinger [29]. Another important and early work has been the
introduction of two dual sequent calculi LKT and LKQ for
classical logic, and their translation in linear logic by Danos,
Joinet and Schellinx [30, 31, 32], which turned out to rephrase
respectively the CBV and CBN continuation-passing style
(CPS) semantics [33]. Interestingly, all these models “break
the symmetry” of classical logic by giving precedence at some
stage to the CBV or CBN side. The symmetry between the two
sides remains however, as a categorical duality observed by
Streicher and Reus [34] and made manifest by Selinger [29]
and Curien and Herbelin [35] (predated by, and in the spirit of,
Filinski’s “symmetric λ-calculus” [36]). These works explored
in particular a syntactic symmetry between the CBN and CBV
calculi, which reflects the categorical duality.

A third direction: preserving the symmetries of classical
logic at the expense of associativity. At about the same
time, in the early 1990s, an elegant and third direction was
explored by Girard with the classical logic LC [14]. The goal
was to preserve the symmetries of logic—in particular, an
involutive negation and various De Morgan identities present
as type isomorphisms—by giving a formal status to the notion
of polarity of a formula. Girard’s work on LC inspired many
later works [37, 38, 39, 40, 41, 42] including in fact some
of the works we already mentioned [27, 31, 32]. However,
the solution, which involves giving up the associativity of

composition precisely in the way which we have described,
has not seen much exploration from the angle of categorical
proof theory. In fact, the question of classical categorical
proof theory is essentialy mentioned as open in Hyland [43].
By continuing the duploid programme with classical logic in
mind, we aim to show that Girard’s approach makes sense
from both a syntactic and a semantic point of view.

The self-adjunction of negation. At this stage, we find
convenient and evocative to follow the terminology used
in the second author’s work on functorial game seman-
tics [42, 22, 44], and to define a dialogue category as a
symmetric monoidal category (C ,⊗, 1) equipped with a
return object ⊥ in the sense of def. I.1. A well-known fact is
that every dialogue category comes equipped with a negation
functor

¬ : C C op

defined as A 7→ ¬A := ⊥A, and that this negation functor
defines an adjunction with itself:

C ⊥ C op

L=¬

R=¬

(6)

This observation, dating back to A. Kock [45], was given
emphasis in Thielecke’s Ph.D. thesis on the structure of CPS
translations [46].

We have seen that the construction of the duploid duplL,R

associated to an adjunction L ⊣ R amounts to building a
direct computational interpretation combining and preserving
the symmetries between the CBV and the CBN models. Now,
if we turn to the self-adjunction (6) of the negation with itself
in a dialogue category, it appears that the duploid construction
coincides in fact with Girard’s polarised translation for LC
defined in [14], which inspired duploids in the first place. In
that sense, the duploid construction provides in the case of
dialogue categories a precise mathematical and denotational
counterpart to the multiplicative fragment of the new form
of double-negation translation implemented by LC which
contains the traditional CBV and the CBN computational
models as its positive and negative subcategories respectively.

Dialogue duploids. More generally, we believe that behind
the superficial duality between CBV and CBN notions
of control, there is more structure asking to be revealed
on duploids associated to dialogue categories. In order
to uncover these structures, we start from the symmetric
reformulation (up to equivalence) of dialogue categories as
dialogue chiralities defined below:

Definition I.3 ([42, 22, 44]). A dialogue chirality is a
pair of symmetric monoidal categories (A ,7, true) and
(B,6, false) equipped with an adjunction L : A ⇄ B : R
as depicted in (2) together with a symmetric monoidal
equivalence:

(A ,7, true) ≃ (B,6, false)op

(−)∗

(−)∗

(7)

4

and a family of bijections (called currifications)

χA1,A2,B : A (A1 7 A2, RB) −→ A (A1, R(A∗
2 6 B))

natural in A1, A2 and B and satisfying a coherence diagram.

In order to understand the specific nature of duploids
associated to dialogue chiralities, we will develop a general
theory of duploids equipped with different forms of monoidal
structures, in link with classical logic and linear as well as
non linear continuations. In particular, we will define the
notion of dialogue duploid which describes the structure of
a duploid associated to a dialogue chirality. In doing so, we
will make explicit the structure of LC’s involutive negation
with a connective materializing the equivalence (7).

The classical L-calculus. One final ingredient to our cor-
respondence concerns abstract-machine-like term calculi, or
L-calculi. They are λ-calculi (higher-order rewriting systems)
which just so happen to represent derivations of sequent
calculus, and subsume the rich relationship between CPS,
abstract machines, proof search (focusing), etc. These calculi
reflect categorical duality as a symmetry between player and
opponent, between expression and evaluation context. They
were discovered by Curien and Herbelin [35, 47] through the
reunion of two research lines—the one we just mentioned after
Girard around the connection between constructive classical
logic and CPS [31, 32, 33], and one that investigated well-
behaved λ-calculi for classical logic (Parigot [48]) and sequent
calculus (Herbelin [49]).

The Hasegawa-Thielecke theorem Replacing these logical
considerations into the context of computation, we are able to
cast in a new light a fundamental result about continuations.

It is natural to ask when an expression in an effectful
language is pure. One possible definition is that it can be
substituted like a value, a notion called algebraic value or
thunkable [46] expression. In duploids, thunkability for a map
f is characterised as associativity of composition (quantifying
over all g, h) [13, 50]:

let a
⊕
=f in let b

⊖
=g in h = let b

⊖
=(let a

⊕
=f in g) in h

or in our sequent calculus:

f

Γ′′⊢P,∆′′

g
Γ,P⊢N,∆

h
Γ′,N⊢∆′

Γ,Γ′,P⊢∆,∆′

=
Γ,Γ′,Γ′′⊢∆,∆′,∆′′

f

Γ′′⊢P,∆′′
g

Γ,P⊢N,∆

Γ,Γ′′⊢N,∆,∆′′
h

Γ′,N⊢∆′

Γ,Γ′,Γ′′⊢∆,∆′,∆′′

A weaker concept of purity, centrality [4], captures the idea
of irrelevance of order of evaluation with a property of
commutation (again for all g, h):

let a
⊕
=f in let b

⊕
=g in h = let b

⊕
=g in let a

⊕
=f in h

or in our sequent calculus:

f

Γ′′⊢P,∆′′

g

Γ′⊢Q,∆′
h

Γ,P,Q⊢∆

Γ,Γ′,P⊢∆,∆′

=
Γ,Γ′,Γ′′⊢∆,∆′,∆′′

f

Γ′′⊢P,∆′′
g

Γ,P⊢N,∆

Γ,Γ′′⊢N,∆,∆′′
h

Γ′,N⊢∆′

Γ,Γ′,Γ′′⊢∆,∆′,∆′′

Strikingly, these two instances of commutations are the
same up to duality in the sequent calculus. Now, for the
classical notions of computation we are considering, another

ingredient makes them actually coincide: the presence of a
negation connective which is involutive at the level of proof
denotation, whose rules in sequent calculus provide a way to
exchange between the left-hand and right-hand sides without
loss of information. We formalize this idea with our proof
of Theorem IX.2. It follows that in any symmetric monoidal
category with a return object (i.e. a dialogue category), a
map is thunkable if and only if it is central. In particular, the
double-negation monad is commutative if and only if it is
idempotent.

This property was noticed by Thielecke [46] in the context
of categorical semantics for continuations, in which it plays an
important role [46, 29, 51]. The essential status of thunkability
as a concept distinct from centrality became apparent in the
works of Führmann on the direct axiomatic theory of monadic
effects [52, 5]. The refinement of this property from the
cartesian to the symmetric monoidal setting was suggested
by Hasegawa and played a key role in the second author’s
analysis of the Blass problem in game semantics as a non-
commutativity of the double-negation monad [17]. We are
not aware of a published proof of this result in the symmetric
monoidal case.

C. Summary and main contributions

After this long but necessary introduction, we provide in §II
more details on the bi-Kleisli construction which turns every
adjunction L ⊣ R into a non-associative category duplL,R.
We then recall in §III and §IV the notions of duploid and
of symmetric monoidal Freyd category. We then start our
journey towards the classical L-calculus by introducing in §V
the notion of symmetric monoidal duploid, followed in §VI
by the notion of dialogue duploid. At this stage, we introduce
in §VII the syntax of the classical L-calculus and establish a
soundness theorem of the interpretation of the L-calculus in
any dialogue duploid. Building on this result, we illustrate
the relevance and robustness of our approach by defining the
syntactic dialogue duploid in §VIII and by proving in §IX
the Hasegawa-Thielecke theorem using both semantic and
syntactic methods. We then conclude and give directions for
future work in §X.

II. A NON-ASSOCIATIVE BI-KLEISLI CONSTRUCTION

As discussed in the introduction, we want to see the
construction of the duploid associated to an adjunction
L ⊣ R in [13] as an instance of a bi-Kleisli construction
of a non-associative category biKl[E , ↑, ↓] on the collage
category E = collL,R of the adjunction. A preliminary
observation in that direction is that a map f : A → A′ in the
Kleisli category Kl[A , T] for T = RL can be equivalently
seen as a map LA → LA′ in the category B, along the
back-and-forth translation:

(a) A RLA′f 7→ LA LRLA′ LA′Lf εLA′

(b) LA LA′f 7→ A RLA RLA′ηA Rf

The translation (a) depicted in the language of string diagrams
amounts to “bending” the functor R into the functor L using
the counit ε of the adjunction:

5

A

A’

L

f

R 7→

A

A’

L

L

ε

f

R

L

One benefit of this alternative description of maps f : A → A′

and g : A′ → A′′ in the Kleisli category Kl[A , T] as maps
f : LA → LA′ and g : LA′ → LA′′ in the category B is
that the composite g • f : A → A′′ computed in the Kleisli
category happens to coincide with the composite g ◦ f :
LA → LA′ → LA′′ computed in the original category B,
as depicted below:

A

A’’

g o f

L

L

= A’

A

A’’

g

L

L

L

f

Symmetrically, a map f : B → B′ in the co-Kleisli
category coKl[B,K] for K = LR can be seen as a map
RB → RB′ in the category A . Moreover, for all pairs of
objects A in A and B in B, we have the bijections

A (A,RB) ∼= E (A,B) ∼= B(LA,B)

From this follows that every map g : A → B in E (A,B)
above trans : 0 → 1 can be equivalently seen as a map
A → RB in A = E0 and as a map LA → B in B = E1. We
find convenient to use the following notations to depict these
different “incarnations” of the transverse map g : A → B in
the language of string diagrams:

g

R

A

B

⇋

A

B

g ⇋

A

B

L

g

The distributivity law (3) for a positive object X = A and a
negative object X = B is defined as the transverse map

λA : RLA LA λB : RB LRB

associated by the adjunction L ⊣ R to the identity maps
RLA → RLA and LRB → LRB, respectively. The two
maps λA and λB are depicted in string diagrams as follows:

λA =

A

AL

R L

λB =

B

BRL

R

Interestingly, the distributivity law satisfies all the properties
of a usual distributivity law between a monad and a comonad,
as defined in Power and Watanabe [8], except that it is not
natural in general. Indeed, given a map f : A → B from
a positive object A to a negative object B in the collage

category E = collL,R, an easy computation shows that the
naturality diagram below does not commute in general:

RLA LA

RB LRB

↓↑f

λA

↑↓f

λB

and that the two maps ↑↓f •λA and λB ◦↓↑f have respective
descriptions in the language of string diagrams just introduced
for the adjunction L ⊣ R:

f

L

A

BR

LR

f

L A

BRL

R

This lack of naturality of the family of maps λX is the reason
why the bi-Kleisli construction defines a non-associative
category in general, as indicated in (4).

In order to understand better why the two maps (h ◦ g) • f
and h ◦ (g • f) do not coincide in (4), it is worth observing
that given a transverse map g : A → B in the bi-Kleisli
construction, the result g • f of compositing g with a map
f : A′ → A of the Kleisli category Kl[A , RL] and the
result h ◦ g of composing g with a map h : B → B′ of the
co-Kleisli category coKl[B, LR] are depicted as follows:

L

R

A

B

A’

g

f

L

η

g

h

L

R

R

A

B

B’
ε

The flow of control described by the adjoint functors R and L
clearly indicates that the Kleisli map f is executed before g
in the composite g • f and that, symmetrically, the co-Kleisli
map h is executed before g in the composite h ◦ g. The
controntation of the call-by-value g • f and call-by-name
h ◦ g policies of composition explains the non-associativity
phenomenon observed in (4).

III. DUPLOIDS

We have observed in the introduction and in §II that
composition of effectful programs g, f 7→ g ·◦ f is not
associative in general when one wants to make positive and
negative types coexist in the same overarching mathematical
structure. That observation justifies to study and characterize
the class of “non-associative categories” of the form duplL,R

associated to an adjunction L ⊣ R in the way explained above.
This is precisely the purpose of the notion of duploid [13]
which we find convenient to recall in this section.

Definition III.1. A magmoid M is defined as a graph with
set of objects |M| equipped with a composition law

·◦A,B,C : M(B,C)×M(A,B) M(A,C)

which associates to every pair of maps f : A → B and
g : B → C a composite map g ·◦ f : A → C. A unital

6

magmoid or non-associative category is a magmoid M
equipped with a map idA for all objects A ∈ |M| such that:

f ·◦ idA = f = idA ·◦ f.
Definition III.2. For all magmoids M, we define Mop to be
the magmoid with the same objects as M but whose maps
are reversed.

Definition III.3. In a magmoid M, a map h is said to be
linear if, for all maps f and g, one has:

(h ·◦ g) ·◦ f = h ·◦ (g ·◦ f)
Symmetrically, a map f of M is said to be thunkable if, for
all maps g and h, one has:

(h ·◦ g) ·◦ f = h ·◦ (g ·◦ f)
One useful observation is that it is possible to derive the

polarity of an object A in a non-associative category M just
by observing the way maps associates.

Definition III.4 (Polarity). An object A ∈ |M| is called
positive when, for all B ∈ |M|, all maps of M(A,B) are
linear.
Symmetrically, an object B of M is negative when, for all
A ∈ |M|, all maps of M(A,B) are thunkable.

Note that an object A may be both positive and negative:
this is the case in particular for every object A of an usual
(associative) category. Note also that, if a map f is linear
in the magmoid M, then f is thunkable in the opposite
magmoid Mop, and conversely. From this follows that (−)op

reverses the polarities.
Given f ∈ M(A,B) and g ∈ M(B,C), we find

convenient to write g ·◦ f as g • f when B is positive and as
g ◦ f when B is negative.

Definition III.5. A positive shift on a unital magmoid M
consists of the data for every object A of a positive object ⇓A
equipped with a pair of thunkable maps

ωA : A → ⇓A ωA : ⇓A → A

such that ωA ·◦ ωA = idA and ωA ·◦ ωA = id⇓A. Dually, a
negative shift ⇑ is a positive shift on Mop.

A nice and instructive exercise in non-associative categories
is to show that positive shifts are unique up to thunkable and
linear isomorphisms, and similarly (by duality) for negative
shifts. We are ready now to give a slight variant of the original
definition of duploid formulated by the second author [13]
taken from more recent ongoing work [53].

Definition III.6. A duploid is a non-associative category
equipped with a positive and a negative shift, and where
every object is either positive or negative (or both).

Proposition III.7. For D a duploid, Dop is also a duploid.

Given a duploid D, we find convenient to introduce below
notations for usual (associative) subcategories of D:

• Dl is the subcategory of linear maps,
• Dt is the subcategory of thunkable maps,
• P is the full subcategory of positive objects,
• N is the full subcategory of negative objects,
• Pt is the subcategory of thunkable maps of P ,
• Nl is the subcategory of linear maps of N .

The notion of duploid is justified in [13] by the following
characterization result:

Theorem III.8 ([13, 53]). Every non-associative cate-
gory duplL,R associated to an adjunction L ⊣ R comes
equipped with a duploid structure, where P is equivalent to
the Kleisli category on the monad T = R ◦ L, and N
is equivalent to the co-Kleisli category on the comonad
K = L ◦ R. Moreover, duplL,R is associative if and only
if the monad, or equivalently the comonad, is idempotent.
Conversely, every duploid D induces an adjunction

Pt ⊥ Nl (8)

defined by restriction of the shifts, whose associated duploid
is equivalent to D.

IV. SYMMETRIC MONOIDAL FREYD CATEGORIES

We have just seen (thm. III.8) how the notion of duploid
introduced in [13] enables one to characterize the non-
associative categories associated to an adjunction L ⊣ R. Now,
we want to describe in this section and in the next one §V
the structures inherited by a duploid duplL,R associated to
an adjunction L ⊣ R of the form (2) where the category A is
equipped with a symmetric monoidal structure (A ,7, true)
and where the monad T = R ◦ L is equipped with a pair of
left and right strengths related by symmetry:

rstrA1,A2
: TA1 7 A2 −→ T (A1 7 A2)

lstrA1,A2
: A1 7 TA2 −→ T (A1 7 A2)

In that case, the Kleisli category Kl[A , T] comes equipped
with a premonoidal structure compatible with the original
tensor product. The tensor product f ⋉A2 of a Kleisli map
f : A1 → TA′

1 and an object A2 is defined as

f ⋉A2 : A1 7 A2 TA′
1 7 A2 T (A′

1 7 A2)
f7A2 rstr

and symmetrically, the tensor product of an object A1 and a
Kleisli map g : A2 → TA′

2 is defined as

A1 ⋊ g : A1 7 A2 A 7 TA′
2 T (A1 7 A′

2)
A17g lstr

The compatibility between the monoidal structure on A and
the premonoidal structure on Kl[A , T] is witnessed by the
fact that the identity-on-object functor ι : A → Kl[A , T]
transports (strictly) the symmetric monoidal structure of A
to the symmetric premonoidal structure of Kl[A , T]. Recall
that given two maps f : A1 → A′

1 and g : A2 → A′
2 in

a premonoidal category P , the diagram below does not
necessarily commute:

A1 ⊗A2 A′
1 ⊗A2

A1 ⊗A′
2 A′

1 ⊗A′
2

f⋉A2

A1⋊g A′
1⋊g

f⋉A′
2

(9)

where we use f ⋉A2 and A1 ⋊ g as more explicit notations
for f ⊗ A2 and A1 ⊗ g, respectively. We say that f is
orthogonal to g when the diagram (9) does commute. A
map f is called central when it is orthogonal to all maps g.
One shows that the functor ι transports every morphism
in A into a central morphism in Kl[A , T]. This structure

7

has been recognised as important in the semantics on effects
and has been intensively studied under the name of symmetric
monoidal Freyd category [4, 54].

Definition IV.1. A symmetric monoidal Freyd category is
an identity-on-object functor

ι : M P (10)

between a symmetric monoidal category (M ,⊗, 1) and
a symmetric premonoidal category P which transports
(strictly) the symmetric monoidal structure of M to the
symmetric premonoidal structure of P , and such that
every morphism ι(f) : A → A′ in P coming from a
morphism f : A → A′ in M is central in P .

V. SYMMETRIC MONOIDAL DUPLOIDS

We have seen at the end of §III (eq. (8)) that in the
reconstruction of a given duploid D, the category Pt of
positive objects and thunkable morphisms plays the role of
the category A , while the category of positive objects P
plays the role of the Kleisli category Kl[A , T]. This leads
us to the definition:

Definition V.1. A (positive) symmetric monoidal du-
ploid (D,⊗, 1) is a duploid whose inclusion functor Pt ↪→
P is equipped with the structure of a symmetric monoidal
Freyd category (Pt,⊗, 1) → (P,⊗, 1).

The asynchronous product G ⊠ H of two reflexive
graphs G and H is defined as the reflexive graph whose
objects are pairs (X,Y) of objects X of G and Y of H and
whose maps are of the form

(f, Y) : (X,Y) → (X ′, Y) (X, g) : (X,Y) → (X,Y ′)

with the maps (idX , Y) and (X, idY) identified and defining
the identity map id(X,Y) of the object (X,Y). A binoidal
graph G is defined as a reflexive graph equipped with a
reflexive graph homomorphism

⊗ : G ⊠ G G

We write f ⋉ Y : X ⊗ Y → X ′ ⊗ Y and X ⋊ g : X ⊗ Y →
X ⊗ Y ′ the image of (f, Y) and (X, g), respectively.

One important observation is that every symmetric
monoidal duploid in the sense of def. V.1 comes equipped with
a binoidal structure on positive as well as negative objects. In
order to explain the construction, we find convenient to write
A1 ⃝⋆ A2 for the tensor product of two positive objects A1

and A2 of the symmetric monoidal category Pt of positive
objects and thunkable maps. The tensor product is extended
to every pair of objects X and Y as the tensor product of
their positive shifts:

X ⊗ Y := ⇓X ⃝⋆ ⇓Y (11)

Accordingly, given a map f : X → X ′ and an object Y , we
define f ▶<⋉Y = ⇓f ▶<⋉⇓Y and symmetrically, given an object
X and a map g : Y → Y ′, we define X >◀⋊ g = ⇓X >◀⋊ ⇓g
where we write >◀⋊ and ▶<⋉ the premonoidal structure between
positive objects in Pt.

One side consequence of the definition is that shifting
positively coincides in the monoidal duploid (D,⊗, 1) with

the operation of tensoring with the unit 1, up to a thunkable
and linear isomorphism, what can be written:

⇓X ∼= X ⊗ 1.

An important point to stress is that although the tensor
products X⊗− and −⊗Y are functorial in the premonoidal
category P of positive objects, it is not true in general when
one considers the duploid D itself, in the sense that the
functoriality diagram below does not commute in general:

X ′ ⊗ Y

X ⊗ Y X ′′ ⊗ Y

f ′ ▶<⋉Yf ▶<⋉Y

(f ′ ·◦f) ▶<⋉Y

(12)

and similarly for X ⊗−. This lack of functoriality of X ⊗−
and −⊗Y is the reason why we need to extend the notion of
premonoidal category to the (more general) notion of binoidal
reflexive graph. One nice consequence of the existence of
positive shifts in the definition of duploids is that one can
easily characterize when the functoriality diagram commutes:

Proposition V.2. The diagram (12) commutes precisely when
the triple below associates

X X ′ X ′′ ⇓X ′′f f ′ ωX′′

in the sense that ωX′′ ·◦ (f ′ ·◦ f) = (ωX′ ·◦ f ′) ·◦ f .

The notion of symmetric monoidal duploid is justified by
the following theorem:

Theorem V.3. Every non-associative category duplL,R

associated to an adjunction L ⊣ R where A is symmetric
monoidal and the monad T = R ◦ L has a left and right
strength comes equipped with a symmetric monoidal duploid
structure. Conversely, every symmetric monoidal duploid D
induces an adjunction (8) where Pt is equipped with a
symmetric monoidal structure (Pt,⃝⋆ , 1) and the associated
monad on Pt has a left and right strength.

In preparation for the Hasegawa-Thielecke theorem in §IX,
we establish that every symmetric monoidal duploid (D,⊗, 1)
satisfies the cardinal property:

Proposition V.4. Every thunkable map is central.

The converse property is not true in general: consider for
instance the symmetric monoidal duploid (D,⊗, 1) associated
to the finite probability monad T : Set → Set which maps
every set A to the set TA of its finite probability distributions.
The monad T is commutative, and every map in D is thus
central. On the other hand, the two expressions (i) and (ii)
discussed in the introduction are not necessarily equal in the
case (ε, ε′) = (⊕,⊖) because of possible duplications of the
variable b in the expression h. From this follows that every
map is not thunkable in the duploid D.

VI. DIALOGUE DUPLOIDS

In this section, we will describe the structure inherited
by a duploid associated to a dialogue chirality [44] as we
described it in the introduction. Before introducing the notion
of dialogue duploid, we find convenient to define a notion

8

of strong monoidal functor between symmetric monoidal
duploids:

Definition VI.1. A strong monoidal functor

F : (D,⊗, 1) (E ,⊗, 1)

between symmetric monoidal duploids consists of a function
F : |D| −→ |E| which preserves polarities of objects, together
with a family of functions

FX,Y : D(X,Y) E(FX,FY)

which preserves compositions and identities as well as
linearity and thunkability. One requires moreover that F is
equipped with a family of thunkable and linear isomorphisms

mX,Y : FX ⊗ FY F (X ⊗ Y)

m1 : 1 F (1)

natural in each component X and Y independently, and
making the same coherence diagrams commute as in the
usual case of a strong monoidal functor between symmetric
monoidal categories.

Definition VI.2. A pair of strong monoidal functors F : D →
E and G : E → D between symmetric monoidal duploids
(D,⊗, 1) and (E ,⊗, 1) is called a monoidal equivalence
when there exists two families of thunkable and linear
isomorphisms νX : F (GX) → X and ν′X : G(FX) → X ,
both natural in X and compatible with the tensor product.

The De Morgan duality of classical logic implies to
consider the original definition V.1 of (positive) symmet-
ric monoidal duploid together with its dual: a negative
symmetric monoidal structure (D,`,⊥) on a duploid D
such that the inclusion functor Nl ↪→ N is equipped with
of the structure of a symmetric monoidal Freyd category
(Nl,`,⊤) → (N ,`,⊤). This leads us to the following
definition of a dialogue duploid.

Definition VI.3. A dialogue duploid is a duploid D
equipped with a positive and negative symmetric monoidal
duploid structure (D,⊗, 1) and (D,`,⊥) related by a strong
monoidal equivalence

(D,⊗, 1) (D,`,⊥)op

(−)∗

(−)∗

together with a family of bijections (called currifications)

χX,Y,Z : D(X ⊗ Y,Z) ≃ D(X,Y ∗ ` Z)

natural component-wise in X , Y and Z,3 and subject up
to monoidality, symmetry and associativity to the coher-
ence condition between χ and monoidality χA,B⊗C,D =
χA,B,C∗`D ◦ χA⊗B,C,D.

Note that an associative dialogue duploid is the same thing
as a ∗-autonomous category. The theorem below establishes

3That is, χ is a natural transformation between graph homomorphisms
Dop ⊠ Dop ⊠ D → Set . This also amounts (modulo shifts) to a natural
transformation between functors of categories Pop ⊠ Pop ⊠ N → Set
where ⊠ is extended into the “funny” tensor product of categories.

in what sense the notion of dialogue duploid can be seen as
a direct and computational counterpart to dialogue chiralities,
which provides an overarching mathematical framework for
reasoning in direct style about (linear and non-linear continu-
ations), while preserving the perfect symmetry between CBV
and CBN evaluation paradigms.

Theorem VI.4. Every duploid duplL,R associated to a
dialogue chirality L ⊣ R comes equipped with a dialogue du-
ploid structure. Conversely, every dialogue duploid (D,⊗,`)
induces a dialogue chirality structure on the adjunction (8),
whose associated dialogue duploid is equivalent to D in the
strong monoidal sense.

VII. THE CLASSICAL L-CALCULUS

After Curien and Herbelin [35], L-calculi for sequent cal-
culus were extended to feature polarities, involutive negation,
and linearity [55, 56, 50]. Building upong these works, we
introduce the classical L-calculus in fig. 1. In the linear logic
nomenclature, the underlying sequent calculus can be called
MLLη

p (polarised multiplicative linear logic with η-restriction
in the terminology of Danos et al. [32]).

The terms of the L-calculus come in five syntactic cate-
gories: expressions, values, contexts, stacks and commands.
Values and stacks are particular expressions and contexts,
respectively, which can be understood as pure or effect-free.
In particular, variables (noted a, b, c, ...) are values, and
dually, co-variables (noted α, β, γ, ...) are stacks.

Each type comes with a polarity:

Negatives: N,M,A− ::= X+
∣∣ ⊥ ∣∣ A`B

∣∣ P ∗

Positives: P,Q,A+ ::= X−
∣∣ 1 ∣∣ A⊗B

∣∣ N∗

We have the types 1 and ⊥ corresponding to the unit of
the conjunction and the disjunction respectively, and for two
types A and B, we can construct the types A⊗B and A`B.
For the negation, we have two distinct connectives, one for
each polarity as in [32, 56], and we note both of them (−)∗

to simplify the notations.
Variables are bound by µ̃ to form a stack µ̃a+.c when the

variable a has a positive type, and to form a context µ̃a−.c
when the variable a has a negative type. Dually, co-variables
are bound by µ to form a value µα−.c when the co-variable α
has a negative type, or an expression µα+.c when the co-
variable α has a positive type. The term () and the nullary
binder µ̃().c are associated with the unit of the conjunction
1. We can construct conjunctive terms with either the binary
binder µ̃(α⊗β).c or the construction V ⊗W . Symmetrically,
for the disjunction `, we have the nullary and binary binders
µ[].c and µ(a` b).c and the constructions [] and S ` S′. In
order to model the rules of negation, we also have the unary
binders µ[a].c and µ̃[α].c, as well as the constructions [V]
and [S] which turn terms into duals. In this language, the
let construct is defined as:

let a
ε
= t in u := µαε′ .

〈
t
∣∣∣∣ µ̃aε.⟨u ||α⟩ε′〉ε .

The figure defines a reduction relation ▷R (β-like) and an
expansion relation ▷E (η-like) between terms. We note →RE

the contextual closure of (βη) reduction ▷R ∪ ◁E , and ≃RE

the symmetric, transitive and reflexive closure of →RE .

9

Values: V,W ::= a
∣∣ µα−.c

∣∣ ()
∣∣ V ⊗W

∣∣ µ[].c
∣∣ µ(α` β).c

∣∣ [S]
∣∣ µ[a].c

Expressions: t, u ::= V
∣∣ µα+.c

Stacks: S ::= α
∣∣ µ̃a+.c

∣∣ µ̃().c
∣∣ µ̃(a⊗ b).c

∣∣ []
∣∣ S ` S′ ∣∣ µ̃[α].c

∣∣ [V]

Contexts: e ::= S
∣∣ µ̃a−.c

Commands: c ::= ⟨V || e⟩−
∣∣ ⟨t ||S⟩+

(a) Grammar

(Rµ̃ε) ⟨V || µ̃aε.c⟩ε ▷R c[V/a]

(Rµε) ⟨µαε.c ||S⟩ε ▷R c[S/α]

(R1) ⟨() || µ̃().c⟩+ ▷R c

(R⊗) ⟨V ⊗W || µ̃(a⊗ b).c⟩+ ▷R c[V/a,W/b]

(R⊥) ⟨µ[].c || []⟩− ▷R c

(R`) ⟨µ(α` β).c ||S ` S′⟩− ▷R c[S/α, S′/β]

(R−∗) ⟨[S] || µ̃[α].c⟩+ ▷R c[S/α]

(R+∗) ⟨µ[a].c || [V]⟩− ▷R c[V/a]

(Eµ̃ε) e ▷E µ̃aε.⟨a || e⟩ε

(Eµε) t ▷E µαε.⟨t ||α⟩ε

(E1) S ▷E µ̃().⟨() ||S⟩+

(E⊗) S ▷E µ̃(a⊗ b).⟨a⊗ b ||S⟩+

(E⊥) V ▷E µ[].⟨V || []⟩−

(E`) V ▷E µ(α` β).⟨V ||α` β⟩−

(E−∗) S ▷E µ̃[α].⟨[α] ||S⟩+

(E+∗) V ▷E µ[a].⟨V || [a]⟩−

(b) Conversions (Reduction and expansion rules)

c : (Γ ⊢ ∆) Γ ⊢ V : B | ∆ Γ ⊢ t : B | ∆ Γ | S : A ⊢ ∆ Γ | e : A ⊢ ∆

(c) Judgements

(⊢ ax)
a : A ⊢ a : A |

(ax ⊢)
| α : A ⊢ α : A

c : (Γ, a : Aε ⊢ ∆)
(µ̃ε ⊢)

Γ | µ̃aε.c : Aε ⊢ ∆

c : (Γ ⊢ α : Aε,∆)
(⊢ µε)

Γ ⊢ µαε.c : Aε | ∆

Γ | e : Aε ⊢ ∆ Γ′ ⊢ t : Aε | ∆′

(cutε)
⟨t || e⟩ε : (Γ,Γ′ ⊢ ∆,∆′)

∀σ ∈ Σ(Γ′,Γ), ∀σ̃ ∈ Σ(∆,∆′) :
Γ ⊢ t : A | ∆

(⊢ σ, σ̃)
Γ′ ⊢ t[σ, σ̃] | ∆′

Γ | e : A ⊢ ∆
(σ, σ̃ ⊢)

Γ′ | e[σ, σ̃] ⊢ ∆′

c : (Γ ⊢ ∆)
(σ, σ̃)

c[σ, σ̃] : (Γ′ ⊢ ∆′)

(d) Typing rules (Identity and structural groups)

(⊢ 1)
⊢ () : 1 |

Γ ⊢ V : A | ∆ Γ′ ⊢ W : B | ∆′

(⊢ ⊗)
Γ,Γ′ ⊢ V ⊗W : A⊗B | ∆,∆′

c : (Γ ⊢ ∆)
(1 ⊢)

Γ | µ̃().c : 1 ⊢ ∆

c : (Γ, a : A, b : B ⊢ ∆)
(⊗ ⊢)

Γ | µ̃(a⊗ b).c : A⊗B ⊢ ∆

(⊥ ⊢)
| [] : ⊥ ⊢

c : (Γ ⊢ ∆)
(⊢ ⊥)

Γ ⊢ µ[].c : ⊥ | ∆

Γ | S : A ⊢ ∆ Γ′ | S′ : B ⊢ ∆′

(` ⊢)
Γ,Γ′ | S ` S′ : A`B ⊢ ∆,∆′

c : (Γ ⊢ α : A, β : B,∆)
(⊢ `)

Γ ⊢ µ(α` β).c : A`B | ∆

Γ | S : N ⊢ ∆
(⊢ −∗)

Γ ⊢ [S] : N∗ | ∆

c : (Γ ⊢ α : N,∆)
(−∗ ⊢)

Γ | µ̃[α].c : N∗ ⊢ ∆

Γ ⊢ V : P | ∆
(+∗ ⊢)

Γ | [V] : P ∗ ⊢ ∆

c : (a : P,Γ ⊢ ∆)
(⊢ +∗)

Γ ⊢ µ[a].c : P ∗ | ∆
(e) Typing rules (Logic group)

Fig. 1: Syntax of the classical L-calculus

Typing rules are used to define typing derivations and
well-typed terms. Each judgment has a context each side,
expressions and values have a distinguished type on the
right, contexts and stacks a distinguished type on the left
and commands don’t have any. A context on the left Γ (resp.
context on the right ∆) is a map from an ordered finite set
of variables (resp. co-variables) to types. The notations Γ,Γ′

and ∆,∆′ imply that the contexts have disjoint domains.
Structural rules lets us rename the (co-)variables of the

contexts and change their order. To this effect, we define
Σ(Γ,Γ′) the set of bijective maps σ : domΓ → domΓ′

such that Γ′(σ(a)) = Γ(a) for all a ∈ domΓ. Regarding
the cartesian case, it is possible to obtain (non-linear) clas-
sical logic—precisely the multiplicative fragment of Danos,
Joinet and Schellinx’s LKη

p [32]—by omitting the bijection
requirement, thus allowing weakening and contraction. (This
treatment of structural rules is reminiscent of Atkey [57],
Curien, Fiore and Munch-Maccagnoni [50].)

Unrestricted (non-focused) rules for negation are derived
from their restrictions to values/stacks:

Definition VII.1. For e a negative context, we define
[e] := µα+.

〈
µβ−.⟨[β] ||α⟩+

∣∣∣∣ e〉−. Symmetrically, for t a
positive term, we define [t] := µ̃a−.

〈
t
∣∣∣∣ µ̃b+.⟨a || [b]⟩−〉+. The

following rules can be derived:

Γ | e : N ⊢ ∆

Γ ⊢ [e] : N∗ | ∆

Γ ⊢ t : P | ∆

Γ | [t] : P ∗ ⊢ ∆

In other words, computation of [e] and [t] in the general case
reduces inside the terms using (essentially) let-expansions:

⟨[e] ||S⟩+ ▷R
〈
µβ−.⟨[β] ||S⟩+

∣∣∣∣ e〉− (e not a stack)

⟨V || [t]⟩− ▷R
〈
t
∣∣∣∣ µ̃b+.⟨V || [b]⟩−

〉+
(t not a value)

Notice that these let-expansions crucially involve composi-
tions of both polarities on the right-hand side. This behaviour

10

distinguishes our interpretation of negation from calculi built
around the idea of (external) CBV/CBN duality [58, 59]. It
circumvents syntactic objections [60] to an involutive negation
in a (non-linear) classical context. This explicit treatment of
the negation of LC follows [32, 55, 56].

Lemma VII.2. For e a context and c a command, one has:

⟨[e] || µ̃[α].c⟩+ ≃RE ⟨µα−.c || e⟩−

Likewise, for t an expression and c a command, one has:

⟨µ[a].c || [t]⟩− ≃RE ⟨t || µ̃a+.c⟩+

We have similar constructions and rules for ⊗ and `, with
two versions for each one depending on which side of ⊗ or
` is evaluated first. It allows us to give a meaning to c[t/a]
and c[e/α] for any t and e.

Theorem VII.3 (Subject reduction). If c →RE c′ and c :
(Γ ⊢ ∆), then c′ : (Γ ⊢ ∆).

Theorem VII.4 (Soundness of the classical L-calculus). The
interpretation of typed terms in any dialogue duploid is
invariant modulo reductions and expansions.

A coherence result between dialogue categories and chirali-
ties [44] suggests, via thms. VI.4 and VII.4, that we should
see the simplification brought by a strictly-involutive negation
with all formulae on the right [12, 14] as a coherence property.

VIII. THE SYNTACTIC DIALOGUE DUPLOID

We construct a dialogue duploid whose objects are the
types of the classical L-calculus and whose morphisms c :
A → B between two types A and B are the commands
c : (a : A ⊢ β : B) quotiented by the rewriting relation ≃RE .
The composite of two maps

c : (a : A ⊢ β : B) c′ : (b : B ⊢ γ : C)

with respective typing derivations π1 and π2, is defined as
the command of the L-calculus:

⟨µβεB .c || µ̃bεB .c′⟩εB

with typing derivation:
π2

c′ : (b : B ⊢ γ : C)
(µ̃ ⊢)

| µ̃bεB .c′ : B ⊢ γ : C

π1

c : (a : A ⊢ β : B)
(⊢ µ)

a : A ⊢ µβεB .c : B |
(cut)

⟨µβεB .c || µ̃bεB .c′⟩εB : (a : A ⊢ γ : C)

Theorem VIII.1. The construction just described defines a
dialogue duploid called the syntactic dialogue duploid.

In order to establish the theorem, we give the following
characterizations of thunkable maps and of central maps in
the non-associative category of commands. Linear maps are
characterized symmetrically.

Lemma VIII.2. Let t be an expression. The two following
properties are equivalent :
(1) For all commands c, ⟨t || µ̃aε.c⟩ε ≃RE c[t/a];
(2) For all commands c and contexts e,〈
t
∣∣∣∣ µ̃aε1 .⟨µαε2 .c || e⟩ε2

〉ε1 ≃RE

〈
µαε2 .⟨t || µ̃aε1 .c⟩ε1

∣∣∣∣ e〉ε2 .

We say that an expression t is syntactically thunkable when
it satisfies one of the above equivalent properties.

Lemma VIII.3. A command c : (a : A ⊢ β : B) is thunkable
if and only if µβεB .c is syntactically thunkable.

This characterization based on the intuition that thunkable
expression behave like values plays a fundamental role in
the proof that the syntactic polarity ε of a type Aε in the
L-calculus coincides with its semantic polarity as an object
of the non-assocative category, as it is defined in def. III.4.

Definition VIII.4. An expression t is syntactically central
when the equality up to reduction and expansion is satisfied〈

t
∣∣∣∣ µ̃q1.⟨u || µ̃q2.c⟩ε2〉ε1 ≃RE

〈
u
∣∣∣∣ µ̃q2.⟨t || µ̃q1.c⟩ε1〉ε2

for all commands c, expressions u and binders q1 and q2 (i.e.
either a, a⊗ b, () or [α]) of polarity ε1 and ε2 respectively.

Lemma VIII.5. A command c : (a : A ⊢ β : B) is central
if and only if the expression µβεB .c is syntactically central.

Proof. The interested reader will find the proofs of the two
lemmas in the Appendix.

IX. THE HASEGAWA-THIELECKE THEOREM

In this section, we formulate and establish the Hasegawa-
Thielecke theorem in the language of dialogue duploids. We
have seen in prop. V.4 that every thunkable map is central in
a symmetric monoidal duploid, and that the converse property
is not true in general. We establish now that the two notions
coincide in a dialogue duploid.

Theorem IX.1 (Hasegawa-Thielecke theorem). In a dialogue
duploid, a morphism is central for ⊗ if and only if it is
thunkable.

Proof. We want to prove that central morphisms are thunkable
in any dialogue duploid. This can be done by purely
equational reasoning, using the observation that the composite
g ·◦ f can be expressed in every dialogue duploid as:

g ·◦ f = χA,C∗,⊥(χ
−1
A,B∗,⊥(f) • (A >◀⋊ g∗)) : A → C

for every pair of maps f : A → B and g : B → C, where we
do not indicate for readability reasons the units A⊗ 1 → A
for the tensor product and A∗∗ → A for double negation.
The reader will find more details in the Appendix.

One benefit of the classical L-calculus is that the same
statement can be also established by purely syntactic means,
thanks to the equational theory of the classical L-calculus,
and the soundness theorem of its interpretation in dialogue
duploids. Seen from a purely syntactic point of view, the two
notions of centrality and thunkability can both be expressed
as commutations in the classical L-calculus, as explained in
the introduction and shown in lem. VIII.2 and def. VIII.4.

We prove now that every syntactically central expression
is syntactically thunkable in the classical L-calculus. We will
use the fact the two notions of commutation are related by
lem. VII.2 in the equational theory of the classical L-calculus.
Let t be an expression, c a commands and e be a context.
We assume that t is syntactically central and we prove that t

11

is syntactically thunkable. The only difficult case is when t
is positive and e is negative.〈

t
∣∣∣∣ µ̃b+.⟨µγ−.c || e⟩−

〉
+

≃RE

〈
t
∣∣∣∣ µ̃b+.⟨[e] || µ̃[γ].c⟩+〉+ By lem. VII.2

≃RE

〈
[e]

∣∣∣∣ µ̃[γ].⟨t || µ̃b+.c⟩+〉+ Centrality of t

≃RE

〈
µγ−.⟨t || µ̃b+.c⟩+

∣∣∣∣ e〉− By lem. VII.2

This establishes that the expression t is syntactically thunkable.
We conclude that:

Theorem IX.2 (Syntactic Hasegawa-Thielecke theorem). An
expression of the classical L-calculus is syntactically central
for ⊗ if and only if it is syntactically thunkable.

Recall that the general situation of a duploid D associated
to an adjunction L ⊣ R, one has that

the monad R ◦ L is idempotent if and only if
every morphism of the duploid D is thunkable.

Also, it is not difficult to see that in the situation described
in §V of a symmetric monoidal duploid D associated to
an adjunction L ⊣ R where A is symmetric monoidal and
where the monad T = R ◦ L is strong, one has that

the monad T is commutative if and only if
every morphism of the duploid D is central.

In the case of a dialogue duploid D associated to a dialogue
category, this proves the following statement, attributed to
Hasegawa in [42], as a corollary of thm. IX.2.

Corollary IX.3. The continuation monad of a dialogue
category is commutative if and only if it is idempotent.

It is natural to wonder if we could not weaken the assump-
tions of structure on duploids. Removing negation from fig. 1
leads to consider a linearly distributive structure on duploids:

Definition IX.4. A linearly distributive duploid is a duploid
equipped with a pair of positive and negative symmet-
ric monoidal structures related by a family of mappings
A⊗ (B ` C) → (A⊗B)` C natural component-wise and
that respects the usual coherence diagrams for a linearly
distributive category [61, 62].

Note in particular that a linearly distributive duploid that is
associative is the same thing as a linearly distributive category.
A variant of the syntactic argument given in [63, p.262]
then suggests the following refinement of the Hasegawa-
Thielecke theorem (in the dual): in any linearly distributive
duploid which is closed in the sense of a natural isomorphism
D(X ⊗ Y, Y ′ `Z) ≃ D(X, (Y ⊸ Y ′)`Z), a morphism is
central for ` if and only if it is linear.

X. CONCLUSION AND FUTURE WORK

We have introduced the syntax and semantics of classical
L-calculus, and developed a theory of dialogue duploids.
We see the framework as solid foundation for the study of
non-associative and effectful logical systems and term calculi
for classical logic, integrating the lessons of linear logic,
continuation models and functorial game semantics.

One interesting direction is in connection with program-
ming language semantics. For instance, Cong, Oswald,

Essertel and Rompf [64] characterise a restriction to the usage
of continuations suitable for compilation, which crucially still
permits to copy and discard them. This is beyond the scope
of dialogue duploids and will probably involve the notion of
linearly distributive duploid just introduced.

L-calculi have also been given for other notions of effectful
computation. We believe that the notion of dialogue duploid
can serve as a blueprint for further connections, such as
between models of LCBPV [50] and “symmetric monoidal
closed” duploids, and likewise between CBPV [18] and
“(bi-)cartesian closed” duploids. Such correspondances are
for instance the right way (in our opinion) to connect CBPV
to focusing in proof theory.

REFERENCES

[1] E. Moggi, “Computational lambda-calculus and monads,” in
Proceedings of the Fourth Annual IEEE Symposium on Logic
in Computer Science (LICS 1989). Pacific Grove, CA, USA:
IEEE Computer Society Press, June 1989, pp. 14–23. 1

[2] ——, “Notions of computation and monads,” Inf. Comput.,
vol. 93, no. 1, pp. 55–92, Jul. 1991. 1

[3] A. Filinski, “Representing Monads,” in Proc. POPL. ACM
Press, 1994, pp. 446–457. 1

[4] A. J. Power and E. Robinson, “Premonoidal categories and
notions of computation,” Mathematical Structures in Computer
Science, vol. 7, no. 5, pp. 453–468, 1997. 1, 5, 8

[5] C. Führmann, “Direct Models for the Computational Lambda
Calculus,” Electr. Notes Theor. Comput. Sci., vol. 20, pp. 245–
292, 1999. 1, 5

[6] P. B. Levy, “Call-by-Push-Value: A Subsuming Paradigm,” in
Proc. TLCA ’99, 1999, pp. 228–242. 1, 2

[7] G. Plotkin and J. Power, Notions of Computation Determine
Monads. Springer Berlin Heidelberg, 2002, pp. 342–356. 1

[8] J. Power and H. Watanabe, “Combining a monad and a
comonad,” Theor. Comput. Sci., vol. 280, no. 1-2, pp. 137–162,
2002. 1, 3, 6

[9] C. Führmann and H. Thielecke, “On the call-by-value CPS
transform and its semantics,” Information and Computation,
vol. 188, no. 2, pp. 241–283, 2004. 1

[10] S. Lindley and I. Stark, Reducibility and ⊤⊤-Lifting for
Computation Types. Springer Berlin Heidelberg, 2005, pp.
262–277. 1

[11] S.-y. Katsumata, A Semantic Formulation of ⊤⊤-Lifting and
Logical Predicates for Computational Metalanguage. Springer
Berlin Heidelberg, 2005, pp. 87–102. 1

[12] J.-Y. Girard, “Linear Logic,” Theoretical Computer Science,
vol. 50, pp. 1–102, 1987. 1, 4, 11

[13] G. Munch-Maccagnoni, “Models of a non-associative compo-
sition,” in Proc. FoSSaCS 2014. Springer, 2014, pp. 396–410.
2, 3, 5, 6, 7

[14] J.-Y. Girard, “A new constructive logic: classical logic,” Ph.D.
dissertation, INRIA, 1991. 2, 4, 11

[15] A. Blass, “A Game Semantics for Linear Logic,” Ann. Pure
Appl. Logic, vol. 56, no. 1-3, pp. 183–220, 1992. 2

[16] S. Abramsky, “Sequentiality vs. Concurrency In Games And
Logic,” Math. Struct. Comput. Sci., vol. 13, no. 4, pp. 531–565,
2003. 2

[17] P.-A. Melliès, “Asynchronous Games 3 An Innocent Model
of Linear Logic,” Electr. Notes Theor. Comput. Sci., vol. 122,
pp. 171–192, 2005. 2, 5

[18] P. B. Levy, Call-By-Push-Value: A Functional/Imperative
Synthesis, ser. Semantic Structures in Computation. Springer,
2004, vol. 2. 2, 12

[19] ——, “Adjunction models for call-by-push-value with stacks,”
Theory and Application of Categories, vol. 14, no. 5, pp. 75–
110, 2005. 2

[20] R. Street, “The formal theory of monads,” Journal of Pure
and Applied Algebra, vol. 2, no. 2, pp. 149–168, Jul. 1972. 2

12

[21] P.-A. Melliès, Categorical semantics of linear logic, ser.
Panoramas et Synthèses. Société Mathématique de France,
2009, vol. 27, ch. 1, pp. 15–215. 2

[22] P.-A. Melliès, “Game semantics in string diagrams,” in Pro-
ceedings of the Twenty-Seventh Annual ACM/IEEE Symposium
on Logic in Computer Science (LiCS), ACM SIGACT and
IEEE Computer Society. IEEE Computer Society, 2012, pp.
481 – 490. 2, 4

[23] A. Jeffrey, “Premonoidal categories and a graphical view of
programs,” 1998. 2

[24] R. Harmer, M. Hyland, and P.-A. Mellies, “Categorical
combinatorics for innocent strategies,” in Proceedings of the
22nd Annual IEEE Symposium on Logic in Computer Science,
2007, pp. 379–388. 3

[25] T. G. Griffin, “A Formulae-as-Types Notion of Control,”
in Seventeenth Annual ACM Symposium on Principles of
Programming Languages. ACM Press, 1990, pp. 47–58.
4

[26] C. R. Murthy, “An Evaluation Semantics for Classical Proofs,”
in Proc. LICS, 1991, pp. 96–107. 4

[27] Y. Lafont, B. Reus, and T. Streicher, “Continuation Semantics
or Expressing Implication by Negation,” Tech. Rep., 1993. 4

[28] M. Hofmann and T. Streicher, “Completeness of continuation
models for λµ-calculus,” Inf. Comput., vol. 179, no. 2, pp.
332–355, 2002. 4

[29] P. Selinger, “Control Categories and Duality: On the Categori-
cal Semantics of the Lambda-Mu Calculus,” Math. Struct in
Comp. Sci., vol. 11, no. 2, pp. 207–260, 2001. 4, 5

[30] V. Danos, J.-B. Joinet, and H. Schellinx, “The Structure of
Exponentials: Uncovering the dynamics of Linear Logic proofs,”
in Proc. KGC ’93. Springer-Verlag, 1993. 4

[31] ——, “LKQ and LKT: sequent calculi for second order
logic based upon dual linear decompositions of the classical
implication,” London Mathematical Society Lecture Notes,
vol. 1, p. 222, 1995. 4, 5

[32] ——, “A New Deconstructive Logic: Linear Logic,” Journal
of Symbolic Logic, vol. 62 (3), pp. 755–807, 1997. 4, 5, 9, 10,
11

[33] I. Ogata, “Constructive classical logic as cps-calculus,” Inter-
national Journal of Foundations of Computer Science, vol. 11,
no. 01, pp. 89–112, 2000. 4, 5

[34] T. Streicher and B. Reus, “Classical Logic, Continuation
Semantics and Abstract Machines,” J. Funct. Program., vol. 8,
no. 6, pp. 543–572, 1998. 4

[35] P.-L. Curien and H. Herbelin, “The duality of computation,”
ACM SIGPLAN Notices, vol. 35, pp. 233–243, 2000. 4, 5, 9

[36] A. Filinski, “Declarative Continuations and Categorical Du-
ality,” Master’s thesis, DIKU, Computer Science Department,
University of Copenhagen, Aug 1989, dIKU Rapport 89/11. 4

[37] C. R. Murthy, “A Computational Analysis of Girard’s Transla-
tion and LC,” in Proc. LICS, 1992, pp. 90–101. 4

[38] M. Quatrini and L. Tortora De Falco, “Polarisation Des Preuves
Classiques Et Renversement,” in Sciences, Paris t.322, Serie I,
1996. 4

[39] O. Laurent, “Etude de la polarisation en logique,” Thèse de
Doctorat, Université Aix-Marseille II, mar 2002. 4

[40] N. Zeilberger, “On the unity of duality,” Ann. Pure and App.
Logic, vol. 153:1, 2008. 4

[41] C. Liang and D. Miller, “Focusing and polarization in linear,
intuitionistic, and classical logics,” Theor. Comput. Sci., vol.
410, no. 46, pp. 4747–4768, 2009. 4

[42] P.-A. Melliès and N. Tabareau, “Resource modalities in tensor
logic,” Annals of Pure and Applied Logic, vol. 161, no. 5, pp.

632–653, 2010. 4, 12
[43] J. M. E. Hyland, “Proof theory in the abstract,” Annals of Pure

and Applied Logic, vol. 114, no. 1, pp. 43–78, 2002. 4
[44] P.-A. Melliès, “Dialogue categories and chiralities,” Publi-

cations of the Research Institute for Mathematical Sciences,
vol. 52, no. 4, pp. 359–412, Nov. 2016. 4, 8, 11

[45] A. Kock, “On double dualization monads.” Mathematica
Scandinavica, vol. 27, pp. 151–165, 1970. 4

[46] H. Thielecke, “Categorical Structure of Continuation Passing
Style,” Ph.D. dissertation, University of Edinburgh, 1997. 4, 5

[47] H. Herbelin, “C’est maintenant qu’on calcule, au cœur de la
dualité,” 2005, habilitation thesis. 5

[48] M. Parigot, “Lambda-Mu-Calculus: An Algorithmic Interpre-
tation of Classical Natural Deduction,” in LPAR, 1992, pp.
190–201. 5

[49] H. Herbelin, “Lambda-calculus structure isomorphic to sequent
calculus structure,” in Proc. CSL, 1994. 5

[50] P.-L. Curien, M. Fiore, and G. Munch-Maccagnoni, “A theory
of effects and resources: adjunction models and polarised
calculi,” ACM SIGPLAN Notices, vol. 51, no. 1, pp. 44–56,
2016. 5, 9, 10, 12, 18

[51] M. Hasegawa and Y. Kakutani, Higher-Order and Symbolic
Computation, vol. 15, no. 2/3, pp. 235–264, 2002. 5

[52] C. Führmann, “The structure of call-by-value,” Ph.D. disserta-
tion, University of Edinburg, 2000. 5

[53] P. Clairambault and G. Munch-Maccagnoni, “Duploid situ-
ations in concurrent games,” Apr. 2017, unpublished, https:
//inria.hal.science/hal-01991555v1/. 7

[54] S. Staton, “Freyd categories are enriched lawvere theories,”
Electronic Notes in Theoretical Computer Science, vol. 303,
pp. 197–206, 2014, proceedings of the Workshop on Algebra,
Coalgebra and Topology (WACT 2013). 8

[55] G. Munch-Maccagnoni, “Focalisation and Classical Realis-
ability,” in Proc. CSL, ser. Lecture notes in computer science,
E. Grädel and R. Kahle, Eds., vol. 5771. Springer-Verlag, Sep.
2009, pp. 409–423, version slightly extended with appendices:
https://inria.hal.science/inria-00409793. 9, 11

[56] ——, “Formulae-as-Types for an Involutive Negation,” in Proc.
CSL-LICS, 2014. 9, 11

[57] R. Atkey, “Substructural simple type theories for separation
and in-place update,” 2006. 10

[58] P. Wadler, “Call-by-value is dual to call-by-name,” SIGPLAN
Not., vol. 38, no. 9, pp. 189–201, 2003. 11

[59] O. Laurent, “Intuitionistic Dual-intuitionistic Nets,” J. Log.
Comput., vol. 21, no. 4, pp. 561–587, 2011. 11

[60] M. Parigot, “On the Computational Interpretation of Negation,”
in Proc. CSL, 2000, pp. 472–484. 11

[61] J. Cockett and R. Seely, “Weakly distributive categories,”
Journal of Pure and Applied Algebra, vol. 114, no. 2, pp.
133–173, Jan. 1997. 12, 16

[62] P.-A. Melliès, “A micrological study of negation,” Annals of
Pure and Applied Logic, vol. 168, no. 2, pp. 321–372, Feb.
2017. 12, 16

[63] G. Munch-Maccagnoni, “Syntax and models of a non-
associative composition of programs and proofs,” Ph.D. dis-
sertation, Université Paris Diderot-Paris VII, 2013. 12

[64] Y. Cong, L. Osvald, G. M. Essertel, and T. Rompf, “Compiling
with continuations, or without? whatever.” Proceedings of the
ACM on Programming Languages, vol. 3, no. ICFP, pp. 1–28,
Jul. 2019. 12

[65] G. Munch-Maccagnoni, “Note on Curry’s style for Linear
Call-by-Push-Value,” INRIA, Tech. Rep., May 2017. [Online].
Available: https://hal.inria.fr/hal-01528857 18, 19

13

https://inria.hal.science/hal-01991555v1/
https://inria.hal.science/hal-01991555v1/
https://inria.hal.science/inria-00409793
https://hal.inria.fr/hal-01528857

APPENDIX

A. Proof of Joyal’s obstruction theorem

Proof of Joyal’s obstruction theorem. Observe that the object ⊥⊥ ≃ ⊥⊥1 ≃ 1 is the terminal object. Consequently, the set
C (⊥×⊥,⊥), in bijection with C (⊥,⊥⊥), is a singleton; in particular one has π1 = π2 ∈ C (⊥×⊥,⊥). Now consider
the pairs ⟨f, g⟩ ∈ C (A,⊥ × ⊥) for f, g ∈ C (A,⊥). By the identity of projections, one has f = g for any such pair of
morphisms, in other words any C (A,⊥) has at most one element. Thus, any hom-set C (B,C) has at most one element as
well, as witnessed by the bijections: C (B,C) ≃ C (B,⊥⊥C

) ≃ C (B ×⊥C ,⊥).

B. Discussions on duploids

Lemma A.1. Let (⇓, ω) be a positive shift for M. Then, for any object A, ω−1
A is thunkable.

Proof. Let A be an object of M. For all f and g two morphisms, one has :

(f ·◦ g) ·◦ ω−1
A

= (f ·◦ (g ·◦ (ω−1
A • ωA))) ·◦ ω−1

A

= (f ·◦ ((g ·◦ ω−1
A) • ωA)) ·◦ ω−1

A by thunkability of ωA

= (f ·◦ (g ·◦ ω−1
A)) • ωA ·◦ ω−1

A by thunkability of ωA

= f ·◦ (g ·◦ ω−1
A)

So ω−1
A is thunkable.

Proposition A.2. The mapping ⇓ of a positive shift (⇓, ω) can be extended to morphisms such that identities and thunkability
are conserved. Moreover, for f and g,⇓ conserves their composition, i.e. that

⇓(g ·◦ f) = ⇓g • ⇓f.

if and only if ωC ·◦ g ·◦ f associates.

Proof.

∀f ∈ M(A,B), ⇓f := (ωB ·◦ f) ·◦ ω−1
A

Identities are obviously conserved and, as ω and ω−1 are families of thunkable morphisms, if f is thunkable, then ⇓f is
thunkable too.

Let f ∈ M(A,B) and g ∈ M(B,C).

⇓g • ⇓f
= ((ωC ·◦ g) ·◦ ω−1

B) • (ωB ·◦ f) ·◦ ω−1
A

= ((ωC ·◦ g) ·◦ ω−1
B) • ωB ·◦ (f ·◦ ω−1

A) by thunkability of ω−1

= ((ωC ·◦ g) ·◦ (ω−1
B • ωB)) ·◦ (f ·◦ ω−1

A) by thunkability of ω

= ((ωC ·◦ g) ·◦ (f ·◦ ω−1
A)

= (((ωC ·◦ g) ·◦ f) ·◦ ω−1
A by thunkability of ω−1

Thus, if ωC ·◦ g ·◦ f associates, then ⇓g • ⇓f = ⇓(g ·◦ f).
Conversely, we now assume that ⇓ conserves the composition of f and g.

(ωC ·◦ g) ·◦ f
= ((ωC ·◦ g) ·◦ f) ·◦ (ω−1

A • ωA)

= (((ωC ·◦ g) ·◦ f) ·◦ ω−1
A) • ωA by thunk of ω

= ((ωC ·◦ (g ·◦ f)) ·◦ ω−1
A) • ωA by hypothesis

= (ωC ·◦ (g ·◦ f)) ·◦ (ω−1
A • ωA) by thunk of ω

= (ωC ·◦ (g ·◦ f))

Lemma A.3. Let M be a magmoid and f a morphism of M from A to B. If there exists N and P two objects of M
respectively negative and positive and left-invertible morphisms δ ∈ M(B,N) and ω ∈ M(N,P) such that ω is thunkable,
then f is thunkable if and only if ω ◦ δ ·◦ f associates.

14

Proof. We assume that f verifies lem. A.3. We will first show that, for any h ∈ M(N,C), h ·◦ δ ·◦ f associates.

(h ◦ δ) ·◦ f = ((h ◦ (ω∗ • ω)) ◦ δ) ·◦ f
= (h ◦ ω∗) • (ω ◦ δ) ·◦ f by thunkability of ω
= (h ◦ ω∗) • ω ◦ (δ ·◦ f) by hypothesis
= (h ◦ (ω∗ • ω)) ◦ (δ ·◦ f) by thunkability of ω
= h ◦ (δ ·◦ f)

Now we prove that f is thunkable. For any g and h, one has

(h ·◦ g) ·◦ f = (h ·◦ (g ·◦ δ∗ ◦ δ)) ·◦ f
= (h ·◦ (g ·◦ δ∗) ◦ δ) ·◦ f by negativity of N
= h ·◦ (g ·◦ δ∗) ◦ (δ ·◦ f) as proved above
= h ·◦ ((g ·◦ δ∗ ◦ δ) ·◦ f) as proved above
= h ·◦ (g ·◦ f)

So f is thunkable. The other direction is trivial.

Corollary A.4. Let D be a duploid and f be a morphism of D from A to B. f is thunkable if and only if:

(ω⇑B ◦ φ−1
B) ·◦ f = ω⇑B ◦ (φ−1

B ·◦ f) (13)

Symmetrically, f is linear if and only if:

(f ·◦ ω−1
A) • φ⇓A = f ·◦ (ω−1

A • φ⇓A)

Definition A.5. Let M and M′ be two magmoids. A functor of graphs F : M → M′ is given by:
• A mapping F : |M| → |M′|,
• A family of mappings FA,B : M(A,B) → M′(FA,FB).

Moreover, F is a functor of magmoids if it preserves identities and composition. Finally, we say that F is polarised if it
preserves polarities, thunkability and linearity. A duploid functor is a polarised functor of magmoids between two duploids.

Proposition A.6. Let F : D → D′ be a functor of magmoids between two duploids. Then F is a polarised functor if, for
all A in D, F (⇓A) is positive, F (⇑A) is negative, F (ωA) is thunkable and F (φA) is linear.

Proof. We assume that these conditions holds for F .
Let f : A → B be a thunkable morphism of D. Then, ω⇑B ◦ φ−1

B ·◦ f associates. As F preserves composition,
F (ω⇑B) ◦ F (φ−1

B) ·◦ F (f) associates too. Thus, by lem. A.3, F (f) is thunkable. The proof that F preserves linearity is
symmetric.

Let P be a positive object of D. For all morphisms f from F (P), we have that f can be decomposed in f ·◦F (ω−1
P) and

F (ωP) as the latter is thunkable. f ·◦ F (ω−1
P) is linear by positivity of F (⇓P) and F (ωP) is linear because P is positive

and F preserves linearity. So, as the composition of two linear morphisms, f is linear and F (P) is positive. We can prove
that F preserves negativity dually.

1) Construction of a duploid from an adjunction: Let A and B be two categories equipped with an adjunction:

A B
L

⊥
R

We will write P , Q, . . . the elements of A and N , M , . . . the elements of B, as they will be respectively positive and
negative objects in the constructed duploid.

We first define the notion of transverse morphisms from an object P of A to an object N of B. We define O(P,N) to be
A(P,RN). This definition is biased towards A but it is irrelevant as we have the following natural isomorphism:

O(P,N) = A(P,RN) ≃ B(LP,N) (14)

We will note it (−)∗ and, by abuse of notation, we will also note its inverse (−)∗.
The magmoid D is defined the following way:
• |D| is the disjoint union of |A| and |B|,
• For any A,B ∈ |D|, D(A,B) := O(A+, B−) where:

P+ := P P− := LP
N+ := RN N− := N

• Let f ∈ D(B,C) and g ∈ D(A,B).

15

– If B ∈ |A|, then we use the composition of B:

f∗ ∈ B(LB,C−)
g∗ ∈ B(LA+, LB)

f • g := (f∗ ◦B g∗)∗ ∈ O(A+, C−) = D(A,C)

– If B ∈ |B|, then we use the composition of A:

f ∈ A(GB,GC−)
g ∈ A(A+, GB)

f ◦ g := f ◦A g ∈ O(A+, C−) = D(A,C)

• The identities are given by the identities of A and B:

idDP := (idBLP)
∗ ∈ D(P, P)

idDN := idBRN ∈ D(N,N)

The identities are neutral by properties of the identities in A and B.

Lemma A.7. Objects P of A are positive in D and objects N of B are negative in D.

Proof. Let P be an object of A. Let f ∈ D(P,C), g ∈ D(B,P) and h ∈ D(A,B).
• If B is an object of A, the two compositions are in B and by associativity in B, f • g • h associates.
• If B is an object of B, f • g ◦ h associates by naturality of (−)∗.

So, f is linear and, therefore, P is positive. The proof that the objects of B are negative is symmetric.

Corollary A.8. D is a pre-duploid.

We define shifts on D the following way:

⇑A := A− ⇓A := A+

φP := idARLP ∈ A(RLP,RLP) = D(⇑P, P)

φ−1
P := (idBLP)

∗ ∈ A(P,RLP) = D(P,⇑P)

ωN := (idBLRN)∗ ∈ A(RN,RLRN) = D(N,⇓N)

ω−1
N := idARN ∈ A(RN,RN) = D(⇓N,N)

and φN and ωP are identities of D. We can easily verify that φ is a family of linear morphisms and ω is family of thunkable
morphisms.

Lemma A.9. This construction defines a duploid for any adjunction.

C. Linearly distributive duploids

We want to describe the structure inherited by a duploid associated to an adjunction of the form (2) where both
categories A and B come equipped with symmetric monoidal structures noted (A ,7, true) and (B,6, false), generalising
linearly-distributive categories [61], in the sense that there are four distributivity laws (or commutators)

ldistr7
A1,A2,B

: A1 7 R(L(A2) 6 B) → R(L(A1 7 A2) 6 B)

ldistr6
A,B1,B2

: L(R(B1 6 B2) 7 A) → B1 6 L(R(B2) 7 A)

rdistr7
A1,A2,B

: R(B 6 L(A1)) 7 A2 → R(B 6 L(A1 7 A2))

rdistr6
A,B1,B2

: L(A 7 R(B1 6 B2)) → L(A 7 R(B1)) 6 B2

introduced in [62] and assumed to make a number of coherence diagrams commute. We note that the strengths for 7 and 6
can be deduced from the commutators.

When translating the commutators into the duploid framework, the four rules collapse into only two, as they were merely
cases depending on the polarity of A′/B. ldistr7 and rdistr6 become δl and ldistr6 and rdistr7 become δr.

Definition A.10. A linearly distributive duploid D is a duploid equipped with a pair of positive and negative symmetric
monoidal structures related by two families of mappings:

δlA,B,C : A⊗ (B ` C) → (A⊗B)` C

δrA,B,C : (A`B)⊗ C → A` (B ⊗ C)

natural for each component and that respects the usual coherence diagrams for a linearly distributive category.

Definition A.11. Let D be a linearly distributive duploid. We say that a morphism f ∈ D(A⊗B,C) is linear wrt. A (and
we note it f ∈ D(A⊗B,C)) when, for all g ∈ D(A′, A) and h ∈ D(A′′, A′), we have

f • ((g ·◦ h) ▶<⋉B) = f • (h ▶<⋉B) • (g ▶<⋉B).

16

Dually, we say that a morphism h from A to B ` C is thunkable wrt. B (noted h ∈ D(A,B ` C)) when, for all
g ∈ D(B,B′) and f ∈ D(B′, B′′), we have

((f ·◦ g)⋉ C) ◦ h = (f ⋉ C) ◦ (g ⋉ C) ◦ h.

Proposition A.12. Let f be a morphism from A⊗B to C. If A is positive, then f is linear wrt. A. Symmetrically, if B is
negative, then g ∈ D(A,B ` C) is thunkable wrt. B.

D. Notes about dialogue duploids

1) Coherence and naturality diagrams of dialogue duploids: Here are the naturality and coherence conditions from the
definition of dialogue duploid spellt out in full.

A′ A

B∗ ` C

hA

χA′,B,C(f•(hA ▶<⋉B)) χA,B,C(f)

A

B∗ ` C B′∗ ` C

χA,B′,C(f•(A>◀⋊hB))χA,B,C(f)

h∗
B⋉C

A

B∗ ` C B∗ ` C ′

χA,B,C(f) χA,B,C′ (hC ·◦f)

B∗⋊hC

(15)
D(A⊗ (B ⊗ C), D) D(A, (B ⊗ C)∗ `D)

D((A⊗B)⊗ C,D) D(A⊗B,C∗ `D) D(A,B∗ ` (C∗ `D))

χA,B⊗C,D

associativity

monoidality

symmetry

associativity
χA⊗B,C,D χA,B,C∗`D

(16)

2) Dialogue duploid functors:

Definition A.13. A dialogue duploid functor F : D → D′ is a duploid functor, lax monoidal for ⊗ and colax monoidal
for ` (i.e. F op is lax monoidal) and equipped with a family of natural central invertible morphisms F̃A : F (A∗) ≃ (FA)⋆

such that the following coherence diagram commutes:

D(A⊗B,C) D(B,A∗ ` C)

D′(F (A⊗B), FC) D′(FB,F (A∗ ` C))

D′(FB,F (A∗)`′ FC)

D′(FA⊗′ FB,FC) D′(FB, (FA)⋆ `′ FC)

χA,B,C

F F

monoidality

(⊗) of F

monoidality

(`) of F

F̃A

χ′
FA,FB,FC

Definition A.14. DiaDupl is the category whose objects are the dialogue duploids and whose morphisms are the dialogue
duploid functors.

E. Detailed semantic proof of the Hasegawa-Thielecke theorem

Lemma A.15. Let f ∈ D(B,C) and g ∈ D(A,B) be two morphisms of D. We have:

f ·◦ g = νC ·◦ (λ′
C∗∗ ◦ χA,C∗,⊥(χ

−1
A,B∗,⊥((ν

−1
B ⋉⊥) ◦ (λ′−1

B ·◦ g)) • (A >◀⋊ f∗)))

Proof.

f ·◦ g = f ·◦ ((λ′
B ◦ λ′−1

B) ·◦ g)
= f ·◦ λ′

B ◦ (λ′−1
B ·◦ g) by linearity of λ′

= (νC ·◦ (f∗∗ ·◦ ν−1
B)) ·◦ λ′

B ◦ (λ′−1
B ·◦ g) by naturality of ν

= νC ·◦ ((f∗∗ ·◦ ν−1
B) ·◦ λ′

B ◦ (λ′−1
B ·◦ g)) by linearity of ν

= νC ·◦ (λ′
C∗∗ ◦ ((f∗∗ ·◦ ν−1

B)⋉⊥) ◦ (λ′−1
B ·◦ g))

= νC ·◦ (λ′
C∗∗ ◦ (f∗∗ ⋉⊥) ◦ (ν−1

B ⋉⊥) ◦ (λ′−1
B ·◦ g))

= νC ·◦ (λ′
C∗∗ ◦ (f∗∗ ⋉⊥) ◦ χA,B∗,⊥(χ

−1
A,B∗,⊥((ν

−1
B ⋉⊥) ◦ (λ′−1

B ·◦ g))))
= νC ·◦ (λ′

C∗∗ ◦ χA,C∗,⊥(χ
−1
A,B∗,⊥((ν

−1
B ⋉⊥) ◦ (λ′−1

B ·◦ g)) • (A >◀⋊ f∗))) by eq. (15)

17

Theorem A.16. A morphism of D is thunkable if and only if it is central for ⊗.

Proof. We know by definition that thunkable morphisms are central for ⊗, so we only have to prove that central morphisms
are thunkable.

Let A,B,C,D ∈ |D| and f ∈ D(C,D), g ∈ D(B,C) and h ∈ D(A,B) such that h is central for ⊗.

(f ·◦ g) ·◦ h
= (νD ·◦ (λ′

D∗∗ ◦ χB,D∗,⊥(χ
−1
B,C∗,⊥((ν

−1
C ⋉⊥) ◦ (λ′−1

C ·◦ g)) • (B >◀⋊ f∗)))) ·◦ h by the previous lemma

= νD ·◦ ((λ′
D∗∗ ◦ χB,D∗,⊥(χ

−1
B,C∗,⊥((ν

−1
C ⋉⊥) ◦ (λ′−1

C ·◦ g)) • (B >◀⋊ f∗))) ·◦ h) by linearity of λ′

= νD ·◦ (λ′
D∗∗ ◦ (χB,D∗,⊥(χ

−1
B,C∗,⊥((ν

−1
C ⋉⊥) ◦ (λ′−1

C ·◦ g)) • (B >◀⋊ f∗)) ·◦ h)) by linearity of λ′

= νD ·◦ (λ′
D∗∗ ◦ (χB,D∗,⊥(χ

−1
B,C∗,⊥((ν

−1
C ⋉⊥) ◦ (λ′−1

C ·◦ g)) • (B >◀⋊ f∗) • (h ▶<⋉D∗)))) by eq. (15)

= νD ·◦ (λ′
D∗∗ ◦ (χB,D∗,⊥(χ

−1
B,C∗,⊥((ν

−1
C ⋉⊥) ◦ (λ′−1

C ·◦ g)) • (h ▶<⋉D∗) • (B >◀⋊ f∗)))) by centrality of h

= νD ·◦ (λ′
D∗∗ ◦ (χB,D∗,⊥(χ

−1
B,C∗,⊥(((ν

−1
C ⋉⊥) ◦ (λ′−1

C ·◦ g)) ·◦ h) • (B >◀⋊ f∗)))) by eq. (15)

= νD ·◦ (λ′
D∗∗ ◦ (χB,D∗,⊥(χ

−1
B,C∗,⊥((ν

−1
C ⋉⊥) ◦ ((λ′−1

C ·◦ g) ·◦ h)) • (B >◀⋊ f∗)))) by lin. of ν−1 preserved by ⋉
= νD ·◦ (λ′

D∗∗ ◦ (χB,D∗,⊥(χ
−1
B,C∗,⊥((ν

−1
C ⋉⊥) ◦ (λ′−1

C ·◦ (g ·◦ h))) • (B >◀⋊ f∗)))) by linearity of λ′−1

= f ·◦ (g ·◦ h) by the previous lemma

So h is thunkable. This concludes the proof.

F. Interpretation of the syntax

This section and the one that follows uses and adapts to the classical case the technique used in [50] which is detailed in
[65].

A context on the left (a1 : A1, a2 : A2, . . . , an : An) is interpreted as A1 ⊗ A2 ⊗ · · · ⊗ An and a context on the right
(β1 : B1, β2 : B2, . . . , βn : Bn) is interpreted as B1 `B2 ` · · ·`Bn.

Let Γ and Γ′ be two contexts on the left and σ an element of Σ(Γ,Γ′). We note JσK the associated canonical isomorphism
of D(Γ,Γ′) constructed by composing symmmetries of ⊗. We stress on the fact that, as a composition of thunkable
morphisms, JσK is thunkable. Dually, let ∆ and ∆′ be two contexts on the right and σ̃ an element of Σ(∆′,∆). The
associated canonical isomorphism of D(∆′,∆) obtained by composing symmetries of ` is noted Jσ̃K and is linear.

1) Interpretation of judgments:

• JΓ ⊢ t : A | ∆K ∈ D(Γ, A`∆)

• JΓ ⊢ V : A | ∆K ∈ D(Γ, A`∆)

• JΓ | e : A ⊢ ∆K ∈ D(Γ⊗A,∆)

• JΓ | S : A ⊢ ∆K ∈ D(Γ⊗A,∆)

• Jc : (Γ ⊢ ∆)K ∈ D(Γ,∆)

See def. A.11 for the meaning of the notation A.
2) Interpretation of typing rules:

a) Identity rules:

• Ja : A ⊢ a : A |K = idA ∈ Dt(A,A)

• J| α : A ⊢ α : AK = idA ∈ Dl(A,A)

• JΓ | µ̃aε.c : Aε ⊢ ∆K = Jc : (Γ, x : Aε ⊢ ∆)K ∈ D(Γ⊗Aε,∆)

• JΓ ⊢ µαε.c : Aε | ∆K = Jc : (Γ ⊢ α : Aε,∆)K ∈ D(Γ, Aε `∆)

• J⟨t || e⟩ε : (Γ,Γ′ ⊢ ∆,∆′)K = (JΓ | e : A ⊢ ∆K ⋉∆′) ◦ (δlΓ,A,∆′ • (Γ >◀⋊ JΓ′ ⊢ t : A | ∆′K))
∈ D(Γ⊗ Γ′,∆`∆′)

where δlΓ,A,∆′ : Γ⊗ (A`∆′) → (Γ⊗A)`∆′ is the distributor.

b) Structural rules: ∀σ ∈ Σ(Γ′,Γ), ∀σ̃ ∈ Σ(∆,∆′)

• JΓ′ ⊢ t[σ, σ̃] : A | ∆′K = (A⋊ Jσ̃K) ◦ (JΓ ⊢ t : A | ∆K ·◦ JσK) ∈ D(Γ′, A`∆′)

• JΓ′ | e[σ, σ̃] : A ⊢ ∆′K = Jσ̃K ·◦ (JΓ | e : A ⊢ ∆K • (JσK ▶<⋉A)) ∈ D(Γ′ ⊗A,∆′)

• Jc[σ, σ̃] : (Γ′ ⊢ ∆′)K = Jσ̃K ·◦ (Jc : (Γ ⊢ ∆)K ·◦ JσK) ∈ D(Γ′,∆′)

18

c) Conjunction rules:
• J⊢ () : 1 |K = id1 ∈ Dt(1, 1)

• JΓ | µ̃().c ⊢ ∆K = Jc : (Γ ⊢ ∆)K ·◦ ρΓ ∈ D(Γ⊗ 1,∆)
where ρΓ : Γ⊗ 1 → Γ is the right unitor of ⊗.

• JΓ,Γ′ ⊢ V ⊗W : A⊗B | ∆,∆′K
= ((((σB,A ⋉∆) ◦ δlB,A,∆) • σA`∆,B)⋉∆′) ◦ δlA`∆,B,∆′) • (JΓ ⊢ V : A | ∆K ⊗ JΓ′ ⊢ W : B | ∆′K)
∈ D(Γ⊗ Γ′, (A⊗B)`∆`∆′)

• JΓ | µ̃(a⊗ b).c : A⊗B ⊢ ∆K = JΓ, a : A, b : B ⊢ ∆K ∈ D(Γ⊗A⊗B,∆)

d) Disjunction rules:
• J| [] : ⊥ ⊢K = id⊥ ∈ Dl(⊥,⊥)

• JΓ ⊢ µ[].c | ΓK = λ′
∆ ·◦ Jc : (Γ ⊢ ∆)K ∈ D(Γ,⊥`∆)

where λ′
∆ : ∆ → ⊥`∆ is the left unitor of `.

• JΓ,Γ′ | S ` S′ : A`B ⊢ ∆,∆′K
= JΓ | S : A ⊢ ∆K `l JΓ′ | S′ : B ⊢ ∆′K ◦ (δlΓ,A,(Γ′⊗B) • (Γ⊗ (σ′

(Γ′⊗B),A ◦ δlΓ′,B,A)) • (Γ⊗ Γ′ ⊗ σ′
A,B))

∈ D(Γ⊗ Γ′ ⊗ (A`B),∆`∆′)

• JΓ ⊢ µ(α` β).c : A`B | ∆K = Jc : (Γ ⊢ α : A, β : B,∆)K ∈ D(Γ, A`B `∆)

e) Negation rules:
• JΓ ⊢ [S] : N∗ | ∆K = χΓ,N,∆(JΓ | S : N ⊢ ∆K) ∈ D(Γ, N∗ `∆)

• JΓ | [V] : P ∗ ⊢ ∆K = χ−1
Γ,P∗,∆((νP ⋉∆) ◦ JΓ ⊢ V : P | ∆K) ∈ D(Γ⊗ P ∗,∆)

• JΓ | µ̃[α].c : N∗ ⊢ ∆K = χ−1
Γ,N∗,∆((νN ⋉∆) ◦ Jc : (Γ ⊢ α : N,∆)K) ∈ D(Γ⊗N∗,∆)

• JΓ ⊢ µ[a].c : P ∗ | ∆K = χΓ,P,∆(Jc : (Γ, a : P ⊢ ∆)K) ∈ D(Γ, P ∗ `∆)

where νA : A → A∗∗.

G. Soundness of the interpretation

We follow again [65] which we adapt to classical logic with an involutive negation. We start by proving coherence
properties of the interpretation. We say that two derivations are equivalent if their interpretation are equal in all dialogue
duploids.

Lemma A.17. For any typing derivations, there is an equivalent derivation starting by one structural rule.

Proof. We treat the case of a typing derivation of Γ ⊢ t : A | ∆; the other cases are similar. We look at the smallest
equivalent typing derivation of Γ ⊢ t : A | ∆ in terms of number of rules used. If it starts by two structural rules τ, τ̃ and
σ, σ̃, then the derivation where the two first rules are replaced by the structural rule τ ◦σ, σ̃ ◦ τ̃ is equivalent and uses strictly
less rules, which is impossible by hypothesis. So we have a derivation starting with at most one structural rule. If there is
none, we can always add the structural rule of the identity, which is interpreted as the identity.

For a term g, we will note fvg the set of free variables of g and fcvg the set of free co-variables of g. For Γ a context
and X a subset of the domain of Γ, we will note the restriction of Γ to X as Γ↾X .

Lemma A.18. For any derivation c : (Γ ⊢ ∆), one has fvc = domΓ and fcvc = dom∆ and similarly for t and e replacing
c.

Proof. By induction on the derivation.

We prove a coherent generation lemma which says that, from the form of the term, we can deduce the first rules of a
derivation, or, at least, find an equivalent derivation starting by those rules.

Lemma A.19. (⊢ ax) : Any derivation of Γ ⊢ x : A | ∆ satisfies Γ = (x : A) and ∆ = ∅ and is equivalent to the
derivation:

(⊢ ax)
x : A ⊢ x : A |

(cutε) : For any derivation of ⟨t || e⟩ε : (Γ ⊢ ∆), there exists Aε and an equivalent derivation ending with:

Γ↾fv e | e : Aε ⊢ ∆↾fcv e Γ↾fv t ⊢ t : Aε | ∆↾fcv t
(cutε)

⟨t || e⟩ε : (Γ↾fv e,Γ↾fv t ⊢ ∆↾fcv e,∆↾fcv t)
(σ, σ̃)

⟨t || e⟩ε : (Γ ⊢ ∆)

where σ ∈ Σ(Γ, (Γ↾fv t,Γ↾fv e)) is the unique permutation without renaming from Γ to (Γ↾fv t,Γ↾fv e) and σ̃ ∈
Σ((∆↾fcv t,∆↾fcv e),∆) is the unique permutation without renaming from (∆↾fcv t,∆↾fcv e) to ∆.

19

(⊢ −∗) : For any derivation of Γ ⊢ [S] : A | ∆, one has A of the form N∗ and an equivalent derivation ending with:

Γ | S : N ⊢ ∆
(⊢ −∗)

Γ ⊢ [S] : N∗ | ∆

The other cases are similar.

Proof. (⊢ ax) By using the previous lemma, we have that domΓ = {A} and ∆ is empty. We know from lem. A.17 that we
can assume that it starts with one structural rule but it’s a renaming which is interpreted as the identity. Finally, the only
non-structural rule that can be applied to x : A ⊢ x : A | is (⊢ ax).
(⊢ cutε) From the previous lemma, we know that domΓ = fv ⟨t || e⟩ε = fv t ⊎ fve, so σ is well defined. We can say

the same about ∆ and σ̃. By using lem. A.17 and the fact that there is only one non-structural rule that can be applied to
⟨t || e⟩ε, we have a type Aε and a derivation of ⟨t || e⟩ε : (Γ ⊢ ∆) of the form:

Γ1 | e[τ, τ̃] : Aε ⊢ ∆1 Γ2 ⊢ t[τ, τ̃] : Aε | ∆2
(cutε)

⟨t[τ, τ̃] || e[τ, τ̃]⟩ε : (Γ1,Γ2 ⊢ ∆1,∆2)
(τ, τ̃)

⟨t || e⟩ε : (Γ ⊢ ∆)

We can add the structural rules σ, σ̃ and σ−1, σ̃−1 and, by centrality of symmetries and by coherence between symmetries
and distributors, we can commute the cut rule and the structural rules to obtain the following equivalent derivation:

Γ1 | e[τ, τ̃] : Aε ⊢ ∆1
(σ−1 ◦ τ, τ̃ ◦ σ−1)

Γ↾fv e | e : Aε ⊢ ∆↾fcv e

Γ2 ⊢ t[τ, τ̃] : Aε | ∆2
(σ−1 ◦ τ, τ̃ ◦ σ−1)

Γ↾fv t ⊢ t : Aε | ∆↾fcv t
(cutε)

⟨t || e⟩ε : (Γ↾fv e,Γ↾fv t ⊢ ∆↾fcv e,∆↾fcv t)
(σ, σ̃)

⟨t || e⟩ε : (Γ ⊢ ∆)

(⊢ −∗) : By using lem. A.17 and the fact that only the rule (⊢ −∗) can be applied, we have a negative type N and a
derivation of the form:

Γ′ | S[τ, τ̃] : N ⊢ ∆′
(⊢ −∗)

Γ′ ⊢ [S[τ, τ̃]] : N∗ | ∆′
(τ, τ̃)

Γ ⊢ [S] : N∗ | ∆

We can commute the negation and the structural rule by naturality component-wise of χ and we obtain the equivalent
derivation we seek:

Γ′ | S[τ, τ̃] : N ⊢ ∆′
(τ, τ̃)

Γ | S : N ⊢ ∆
(⊢ −∗)

Γ ⊢ [S] : N∗ | ∆

The other cases are similar and rely on the two previous lemmas and the coherence between the operations we are using.

Thanks to the previous lemma, we can now reason on derivations up to equivalence by doing an induction on the structure
of the term.

Lemma A.20. We consider a derivation of Γ ⊢ V : A | ∆ and its interpretation JV K ∈ D(Γ, A`∆).

• For any derivation of c : (Γ′, a : A ⊢ ∆′), there exists a derivation of c[V/a] : (Γ′,Γ ⊢ ∆′,∆) such that:

Jc[V/a]K = (JcK ⋉∆) ◦ (δlΓ′,A,∆ • (Γ′ >◀⋊ JV K))

• For any derivation of Γ′, a : A ⊢ t : B | ∆′, there exists a derivation of Γ′,Γ ⊢ t[V/a] : B | ∆′,∆ such that:

Jt[V/a]K = (JtK ⋉∆) ◦ (δlΓ′,A,∆ • (Γ′ >◀⋊ JtK))

• For any derivation of Γ′, a : A | e : B ⊢ ∆′, there exists a derivation of Γ′,Γ | e[V/a] : B ⊢ ∆′,∆ such that:

Je[V/x]K = ((JeK • (Γ′ >◀⋊ σ−1
A,B))⋉∆) ◦ (δlΓ′⊗B,A,∆ • ((Γ′ ⊗B) >◀⋊ JV K) • (Γ′ >◀⋊ σΓ,B))

Proof. We reason by induction on c, t, e by using lem. A.19. In the case where the last rule used is (cutε) and c is of the
form ⟨t || e⟩ε with derivations Γ′

↾fv t ⊢ t : B | ∆′
↾fcv t and Γ′

↾fv e | e : B ⊢ ∆′
↾fcv e: If a ∈ fv t, by induction, we know that

we have a derivation of Γ′
↾fv t,Γ ⊢ t[V/a] : B | ∆′

↾fcv t,∆ and that :

Jt[V/a]K = (JtK ⋉∆) ◦ (δlΓ′
↾fv t,A,∆ • (Γ′

↾fv t >◀⋊ JV K))

20

So,

J⟨t || e⟩ε[V/a]K
= Jσ̃K ◦ (((JeK ⋉ (∆′

↾fcv t `∆)) ◦ (δlΓ′
↾fv e,B,∆′

↾fcv t`∆ • (Γ′
↾fv e >◀⋊ Jt[V/a]K))) • JσK)

= Jσ̃K ◦ (((JeK ⋉ (∆′
↾fcv t `∆)) ◦ (δlΓ′

↾fv e,B,∆′
↾fcv t`∆ • (Γ′

↾fv e >◀⋊ ((JtK ⋉∆) ◦ (δlΓ′
↾fv t,A,∆ • (Γ′

↾fv t >◀⋊ JV K)))))) • JσK)

= Jσ̃K ◦ ((((JeK ⋉∆′
↾fcv t) ◦ (δlΓ′

↾fv e,B,∆′
↾fcv t

• (Γ′
↾fv e >◀⋊ JtK)))⋉∆) ◦ (δl(Γ′

↾fv e,Γ
′
↾fv t),A,∆ • ((Γ′

↾fv e,Γ
′
↾fv t) >◀⋊ JV K) • JσK))

by thunkability of V and δl

= Jσ̃K ◦ ((((JeK ⋉∆′
↾fcv t) ◦ (δlΓ′

↾fv e,B,∆′
↾fcv t

• (Γ′
↾fv e >◀⋊ JtK)))⋉∆) ◦ ((Jσ′K ⋉∆) ◦ (δlΓ′,A,∆ • (Γ′ >◀⋊ JV K))))

by centrality and compatibility with the distributor of symmmetries

= (Jσ̃′K ◦ ((JeK ⋉∆′
↾fcv t) ◦ (δlΓ′

↾fv e,B,∆′
↾fcv t

• (Γ′
↾fv e >◀⋊ JtK)))⋉∆) ◦ ((Jσ′K ⋉∆) ◦ (δlΓ′,A,∆ • (Γ′ >◀⋊ JV K)))

by linearity of Jσ̃K
= (J⟨t || e⟩εK ⋉∆) ◦ (δlΓ′,A,∆ • (Γ′ >◀⋊ JV K))

where:

σ ∈ Σ((Γ′,Γ), (Γ′
↾fv e,Γ

′
↾fv t\{x},Γ))

σ′ ∈ Σ((Γ′, x : A), (Γ′
↾fv e,Γ

′
↾fv t\{x}, x : A))

σ̃ ∈ Σ((∆′
↾fcv e,∆

′
↾fcv t,∆), (∆′,∆))

σ̃′ ∈ Σ((∆′
↾fcv e,∆

′
↾fcv t),∆

′)

The other cases are also straightforward, by using induction and the compatibility of the operations we are using.

The following lemma is exactly the symmetric of the previous and is proved accordingly.

Lemma A.21. Let a derivation of Γ | S : A ⊢ ∆. We consider JSK ∈ D(Γ⊗A,∆) its interpretation.

• For any derivation of c : (Γ′ ⊢ α : A,∆′), there exists a derivation of c[S/α] : (Γ,Γ′ ⊢ ∆,∆′) such that:

Jc[S/α]K = (JSK ⋉∆′) ◦ (δlΓ,A,∆′ • (Γ >◀⋊ JcK))

• For any derivation of Γ′ ⊢ t : B | α : A,∆′, there exists a derivation of Γ,Γ′ ⊢ t[S/α] : B | ∆,∆′ such that:

Jt[S/α]K = ((σ′
B,∆ ⋉∆′) ◦ (JSK ⋉ (B `∆′)) ◦ (δlΓ,A,B`∆′ • (Γ >◀⋊ ((σ′

A,B ⋉∆′)JtK))

• For any derivation of Γ′ | e : B ⊢ α : A,∆′, there exists a derivation of Γ,Γ′ | e[S/α] : B ⊢ ∆,∆′ such that:

Je[S/α]K = (JSK ⋉∆′) ◦ (δlΓ,A,∆′ • (Γ >◀⋊ JeK))

We now prove the sound subject reduction lemma.

Lemma A.22. ▷RE preserves typing, and, when restricted to typed terms, ▷RE preserves the interpretation.

Proof. We reason by case analysis. We will treat in details the case of (R−∗) and (E−∗).
(R−∗) For any c = ⟨[S] || µ̃[α].c′⟩+ ▷R c′[S/α] and derivation of c : (Γ ⊢ ∆), by applying lem. A.19, we have a negative

type N and an equivalent derivation of the form:

c′ : (Γ↾fv c′ ⊢ α : N,∆↾fcv c′\{α})
(−∗ ⊢)

Γ↾fv c′ | µ̃[α].c′ : N∗ ⊢ ∆↾fcv c′\{α}

Γ↾fvS | S : N ⊢ ∆↾fcvS
(⊢ −∗)

Γ↾fvS ⊢ [S] : N∗ | ∆↾fcvS
(cut+)

⟨[S] || µ̃[α].c′⟩+ : (Γ↾fv c′ ,Γ↾fvS ⊢ ∆↾fcv c′\{α},∆↾fcvS)
(σ, σ̃)

⟨[S] || µ̃[α].c′⟩+ : (Γ ⊢ ∆)

where σ ∈ Σ(Γ, (Γ↾fvS ,Γ↾fv c)) is the unique permutation without renaming from Γ to (Γ↾fvS ,Γ↾fv c) and σ̃ ∈
Σ((∆↾fcvS ,∆↾fcv c\{α}),∆) is the unique permutation without renaming from (∆↾fcvS ,∆↾fcv c\{α}) to ∆.

So, by the previous lemma, we have a derivation of c′[S/α] : (Γ ⊢ ∆). Moreover, one has:

J⟨[S] || µ̃[α].c′⟩+ : (Γ ⊢ ∆)K = Jc′|S/α] : (Γ ⊢ ∆)K

The proof goes along the lines of the proof of lem. A.15.

21

(E−∗) For any µ̃[α].⟨[α] ||S⟩+ ▷R S and derivation of Γ | µ̃[α].⟨[α] ||S′⟩+ : N∗ ⊢ ∆, by applying lem. A.19, we have an
equivalent derivation of the form:

Γ | S : N∗ ⊢ ∆

(ax)
| α : N ⊢ α : N

(⊢ −∗)
⊢ [α] : N∗ | α : N

(cut+)
⟨[α] ||S⟩+ : (Γ ⊢ α : N,∆)

(−∗ ⊢)
Γ | µ̃[α].⟨[α] ||S⟩+ : N∗ ⊢ ∆

So, one has:

JΓ | µ̃[α].⟨[α] ||S⟩+ : N∗ ⊢ ∆K

= χ−1
Γ,N∗,∆((νN ⋉∆) ◦ J⟨[α] ||S⟩+K)

= χ−1
Γ,N∗,∆((νN ⋉∆) ◦ σ′

∆,N ◦ (JSK `N) ◦ (δlΓ,N∗,N • (Γ >◀⋊ J[α]K)))

= χ−1
Γ,N∗,∆((N

∗∗ ⋊ JSK) ◦ (νN ⋉ (Γ⊗N∗)) ◦ σ′
Γ⊗N∗,N ◦ (δlΓ,N∗,N • (Γ >◀⋊ J[α]K)))

= JSK • χ−1
Γ,N∗,Γ⊗N∗((νN ⋉ (Γ⊗N∗)) ◦ σ′

Γ⊗N∗,N ◦ (δlΓ,N∗,N • (Γ >◀⋊ J[α]K))) by naturality of χ−1

= JΓ | S : N∗ ⊢ ∆K

The other cases are treated similarly, by using the coherent generation lemma and the sound value/stack substitution.

Theorem A.23. →RE preserves typing.

Proof. We reason by induction on →RE . On the base case, we use the previous lemma. On other cases, we use lem. A.19
and the induction hypothesis.

22

	Introduction
	Adjunctions, duploids, and notions of computation
	Continuations, dialogue duploids, and classical notions of computation
	Summary and main contributions

	A non-associative bi-Kleisli construction
	Duploids
	Symmetric monoidal Freyd categories
	Symmetric monoidal duploids
	Dialogue duploids
	The classical L-calculus
	The syntactic dialogue duploid
	The Hasegawa-Thielecke theorem
	Conclusion and future work
	Appendix
	Proof of Joyal's obstruction theorem
	Discussions on duploids
	Construction of a duploid from an adjunction

	Linearly distributive duploids
	Notes about dialogue duploids
	Coherence and naturality diagrams of dialogue duploids
	Dialogue duploid functors

	Detailed semantic proof of the Hasegawa-Thielecke theorem
	Interpretation of the syntax
	Interpretation of judgments
	Interpretation of typing rules

	Soundness of the interpretation

