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Abstract We characterise the polarised evaluation order through a categorical
structure where the hypothesis that composition is associative is relaxed. Duploid
is the name of the structure, as a reference to Jean-Louis Loday’s duplicial algeb-
ras. The main result is a reflection Adj → Dupl where Dupl is a category of
duploids and duploid functors, andAdj is the category of adjunctions and pseudo
maps of adjunctions. The result suggests that the various biases in denotational
semantics: indirect, call-by-value, call-by-name... are ways of hiding the fact that
composition is not always associative.

1 Introduction

In a term language where the order of evaluation is determined by the polarity of a
type or formula, it is not immediate that composition is associative. The associativity of
categorical composition amounts to the following equation on terms:

let y be t in let x be u in v
?
= let x be (let y be t in u) in v

Now, in any setting where t could be of a type that implies a strict evaluation order, and
where u could be of a type that implies a delayed evaluation, we can see a difference in
spirit between these two terms. Indeed, in the left-hand term, the evaluation of t would
happen before the one of v. On the contrary, in the right-hand term, the evaluation of x
is delayed since it has the same type as u, so the term would compute v before t .

This phenomenon is observed with polarisation in logic and denotational se-
mantics [7,21,5,16,12]. Polarisation can thus be described (negatively) as rejecting,
either directly or indirectly, the hypothesis that composition is a priori associative. In
this article, we give a positive and direct description of a polarised evaluation order. To
this effect we introduce a category-like structure where not all composites associate.
Duploid is the name of the structure, as a reference to Jean-Louis Loday’s duplicial
algebras [15].

The main result relates duploids to adjunctions. To help understand this relation, let
us first recall the correspondence between direct models of call by value and indirect
models à la Moggi.

Direct models. In a direct denotational model, there should be a close match between
the given operations in the model and the constructions in the language. Essentially,
type and program constructors should respectively correspond to operations on objects

? This is a shortened version of Chapter II from the author’s PhD thesis [20, pp. 86-91,103-152].



Table 1: Comparison of the structures underlying various direct models of computation.

Evaluation order By value By name Polarised

Direct model Thunk Runnable monad Duploid

Indirect model Monad T Co-monad L Adjunction F a G

Programs Kleisli maps
P → TQ

Co-Kleisli maps
LN → M

Oblique maps
FP → N
' P → GN

Syntactic data Values Stacks Both

Completion into Thunkable
expressions

Linear evaluation
contexts Both

and on morphisms in a category. In particular, it should be possible to reason about
an instance of the model within the language.1 An example of direct models for the
simply-typed lambda calculus is given by cartesian-closed categories.

In a model such as Moggi’s λC models [18], or Lafont, Reus and Streicher’s mod-
els of call by name [10], however, the language is not interpreted directly but through
a Kleisli construction for a monad or a co-monad. We have a precise description of
the link between direct models and indirect models thanks to Führmann [6]. Categories
that model call by value directly are characterised by the presence of a thunk, a formal
account of the well-known structure used to implement laziness in call-by-value lan-
guages.

The characterisation takes the following form: any direct model arises from the
Kleisli construction starting from a λC model. However, from the direct model we can
only recover a specific λC model: its values are made of all the pure expressions. More
precisely, the Kleisli construction is a reflection that conflates any two values equal-
ised by the monad, and turns into a value any thunkable expression. An expression is
thunkable if it behaves similarly to a value in a sense determined by the monad.

Selinger [23] proves a similar relationship between direct models of the call-by-
name λµ calculus and Lafont, Reus and Streicher’s models [10].

Adjunction-based models. This article deals with the underlying algebraic structure in
these models: a monad over a category of values for call by value, a co-monad over a
category of stacks for call by name. Duploids generalise the underlying structure to an
adjunction between a category of values and a category of stacks. (See table 1.)

Relationship with polarities comes from Girard’s polarised translation of classical
logic [7,5,11]. Our duploid construction extends the (skeleton of the) polarised transla-
tion to any adjunction. (Notably, we do not need the assumption that there is an involut-
ive negation operation on formulae.)

We know that there is a practical relevance of decomposing monads, when seen as
notions of computation, into adjunctions, thanks to Levy [13,14]. Levy’s adjunctions
subsume models of call by value and call by name. However the model is indirect, and
still lacks a corresponding notion of direct model.

1 Führmann [6], Selinger [22].
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Outline. Section 2 introduces pre-duploids as categories where the associativity of com-
position is deficient. Section 3 defines duploids as pre-duploids with additional struc-
ture, and characterises this additional structure. The category Dupl of duploids and
duploid functors is introduced. Section 4 proves the main result.

Structure theorem. The main result is a reflection
�� ��Dupl /Adj , where Adj is the

category of adjunctions and pseudo maps of adjunctions. In other words, the duploid
construction extends to a functorAdj → Dupl that admits a full and faithful right ad-
joint. In particular, any duploid is obtained from an adjunction, but adjunctions obtained
from duploids are peculiar.

As a consequence of the main result, duploids account for a wide range of computa-
tional models, as we will see in various examples. It suggests that the various biases in
denotational semantics: indirect, call-by-value, call-by-name. . . are ways of hiding the
fact that composition is not always associative.

In addition, the article develops an internal language for duploids. It provides intu-
itions from programming languages and abstract machines about polarisation.

Characterisation of duploids. We also characterise the adjunctions obtained from du-
ploids. We show that there is an equivalence of categories

�� ��Dupl 'Adjeq , where
Adjeq is the full subcategory of adjunctions that satisfies the equalizing requirement:
the unit and the co-unit of the adjunction are respectively equalisers and co-equalisers.

This means that the duploid operates from the point of view of the model of com-
putation defined by the adjunction: first any two values and any two stacks that are not
distinguished by the model of computation are identified; and then the categories of
values and stacks are respectively completed with all the expressions that are thunkable,
and with all the evaluation contexts that are linear.

2 Pre-duploids

We define pre-duploids, which are category-like structures whose objects have a po-
larity, and which miss associativity of composition when the middle map has polarity
+→ �.

Definition 1. A pre-duploid D is given by:

1. A set |D | of objects together with a polarity mapping $ : |D | → {+,�}.
2. For all A, B ∈ |D |, a set of morphisms or hom-set D(A, B).
3. For all morphisms f ∈ D(A, B) and g ∈ D(B,C), a morphism g f ∈ D(A,C),

also written as follows depending on the polarity of B:

g • f ∈ D(A,C) if $(B) = + ,

g ◦ f ∈ D(A,C) if $(B) = � .

The following associativities must hold for all objects A, B ∈ |D |; P,Q ∈ $−1({+})
and N ,M ∈ $−1({�}):

(••) For all A
f
−→ P

g
−→ Q

h
−→ B, one has (h • g) • f = h • (g • f ) ;
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(◦◦) For all A
f
−→ N

g
−→ M

h
−→ B, one has (h ◦ g) ◦ f = h ◦ (g ◦ f ) ;

(•◦) For all A
f
−→ N

g
−→ P

h
−→ B, one has (h • g) ◦ f = h • (g ◦ f ).

4. For all A ∈ |D |, a morphism idA ∈ D(A, A) neutral for .

The mapping $ defines a partition of |D | into the positive objects P,Q... in |P | def
=

$−1({+}) and the negative objects N ,M ... in |N |
def
= $−1({�}). This partition defines

categories P (whose composition is given by •) and N (whose composition is given
by ◦) in an obvious way.

2.1 Linear and Thunkable Morphisms

Definition 2. Let D be a pre-duploid. A morphism f of D is linear if for all g, h one
has:

f (g h) = ( f g) h

A morphism f of D is thunkable if for all g, h one has:

h (g f ) = (h g) f

Thus any morphism f : P → A is linear, and any morphism f : A → N is thunkable.
The terminology thunkable is borrowed from [24,6]. These notions are closed under
composition and identity.

Definition 3. We define sub-categories of D as follows:
Dl is the sub-category of linear morphisms of D .
Dt thunkable morphisms of D .
Nl linear morphisms of N .
Pt thunkable morphisms of P .

Observe that N and Nl are respectively the full sub-categories of Dt and Dl with
negative objects. Symmetrically, P and Pt are respectively the full sub-categories of
Dl and Dt whose objects are positive.

Proposition 4. The hom-sets D(A, B) of a pre-duploid D extend to a (pro-)functor�� ��D(−,=) : Dt
op
× Dl → Set defined for f ∈ Dt (A, B) and g ∈ Dl (C , D) with

D( f , g) : D(B,C)→ D(A, D); D( f , g)(h) = g h f .

Proof. Restricting to f thunkable and g linear makes the definition unambiguous. Func-
toriality follows from (g1 g2) h ( f2 f1) = g1 (g2 h f2) f1, which holds when
f1 and f2 are thunkable and g1 and g2 are linear. �

2.2 Examples of Pre-duploids

Girard’s Classical Logic. Girard’s correlation spaces are a denotational semantics for
classical logic. They do not form a category for lack of associativity of the composi-
tion [7,12]. However, they form a pre-duploid.
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Blass Games. Blass [3] gives a game model for linear logic that fails to satisfy the asso-
ciativity of composition. Thanks to Abramsky’s analysis of this issue [1], we know that
associativity fails due to composites of the form N −→ P −→ M −→ Q. According to Ab-
ramsky, “none of the other 15 polarisations give rise to a similar problem”. Therefore,
Abramsky’s formalisation of Blass games yields a pre-duploid. Thanks to Melliès’s ana-
lysis of this so-called “Blass problem” [16], we know that the phenomenon is essentially
the same as for Girard’s classical logic.

Direct Models of Call by Value. Führmann [6] characterises the Kleisli category of a
monad via the presence of a structure called thunk. In the contexts of models of call by
value, the thunk implements laziness. Recall that a thunk-force category is a category
(P , •, id) together with a thunk (L, ε, ϑ) as defined next.

Definition 5 (Führmann). A thunk on P is given by a functor L : P → P together
with a natural transformation ε : L →̇ 1 and a transformation ϑ : 1 → L such that
the transformation ϑL : L → L2 is natural; satisfying the equations ε • ϑ = id and
Lε • ϑL = idL and ϑL • ϑ = Lϑ • ϑ.

A thunk induces a comonad (L, ε, ϑL).
Observe that in a thunk-force category (P , •, id, L, ϑ, ε), we can define a composite

of g : P → Q and f : LQ → R with g◦ f
def
= g•Lf •ϑP . This compositions admits εP as

a neutral element. This extends to a pre-duploid with compositions • and ◦ as follows.
The positive objects are the objects of P . The set of negative objects is given with
|N | = ⇑|P | for ⇑ a suitably chosen bijection with domain |P | (in other words |N | is a

disjoint copy of |P |). Then we take
�� ��D(A, B) def

= P(A, B) where we define P = P
def
= P

and ⇑P def
= LP and ⇑P def

= P. With this definition, ◦ is a map D(⇑P, B) × D(A, ⇑P) →
D(A, B) and εP is an element of D(⇑P, ⇑P). It is easy to check that this defines a pre-
duploid.

In the context of λC models, this pre-duploid formalises how thunks implement
laziness in call by value.

Now recall that Führmann calls thunkable any morphism f ∈ P(P,Q) such that
Lf • ϑP = ϑQ • f . Not all morphisms of P are thunkable in general because ϑ is not
necessarily natural. We can prove the following:

Proposition 6. A morphism f : P → Q is thunkable in the sense of thunk-force cat-
egories if and only if it is thunkable in the sense of pre-duploids.

Thus the transformation ϑ is natural if and only if the pre-duploid is a category (i.e.
statisfies ◦•-associativity).

Direct Models of Call by Name. The concept dual to Führmann’s thunk is the one of
runnable monad. A runnable monad on a category C is given by a functor T : C → C
together with a natural transformation η : 1 →̇ T and a transformation ρ : T → 1 such
that the transformation ρT : T 2 → T is natural; satisfying the equations ρ ◦ η = id;
ρT ◦ Tη = idT and ρ ◦ Tρ = ρ ◦ ρT .

Runnable monads implement strictness in call by name. An example of a category
with a runnable monad is given by Selinger’s direct models of the call-by-name λµ
calculus [23]. Given a runnable monad, we can define, symmetrically to thunk-force
categories above, a pre-duploid with a bijective map ⇓ : |N | → |P |.
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2.3 Syntactic Pre-Duploid

The syntactic pre-duploid is given by a term syntax. It is made of terms (t) with a
polarity which are identified up to β- and η-like equations. These equations are best
described with auxiliary syntactic categories for evaluation contexts (e) and abstract
machines (c = 〈t || e〉); a technique that arose in the theory of control operators [4,8,2].

There are four sets of variables written x+, α+, x�, α� to consider, and the following
grammar (“. . . ” indicates that we consider an extensible grammar):

t+ F V+ | µα
+.c | . . .

t� F x� | µα�.c | . . .

V+ F x+ | . . .

V F V+ | t�

(a) Terms and values

e+ F α+ | µ̃x+.c | . . .

e� F π | µ̃x�.c | . . .

π� F α� | . . .

π F π� | e+

(b) Contexts and stacks

c F 〈t+ || e+〉 | 〈t� || e�〉

(c) Commands

Figure 1: The syntactic pre-duploid (the variables that appear before a dot are bound)

The binders are µ and µ̃. They allow us to define composition as follows:�� ��let x be t in u
def
= µα.

〈
t
∣∣∣∣∣∣ µ̃x .〈u ||α〉〉 (α < fv(t , u))

In this macro-definition, the polarities of t and x must be the same, and the polarity of
α and of “let x be t in u” is determined by the one of u.

The contextual equivalence relation ' determines the equality of morphisms. It is
induced by the following rewrite rules:

〈µα.c ||π〉 B c[π/α] t B µα.〈t ||α〉 (α < fv(t))
〈V || µ̃x .c〉 B c[V/x] e B µ̃x .〈x || e〉 (x < fv(e))

The intuition is that positive terms are called by value while negative terms are called
by name. Indeed we have:

〈let x beV in u ||π〉 B∗ 〈u[V/x] ||π〉

but for a positive non-value t+ instead of V , computation continues with t+. This de-
scribes a call-by-value reduction. And with a negative non-stack e� instead of π compu-
tation is delayed until a stack (a linear evaluation context) is reached. This describes a
call-by-name reduction. In the latter case, “let x beV in u” and therefore u are negative.

Among other equations, we have for all terms and variables:

let x be y in t ' t[y/x] (1)
let x be t in x ' t (2)

let y+ be (let x be t in u+) in v ' let x be t in let y+ be u+ in v (3)
let y be (let x� be t� in u) in v ' let x� be t� in let y be u in v (4)
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The syntactic pre-duploid gives rise to a pre-duploid with two objects + and � and with
formal objects (x 7→ t) : ε1 → ε2 as morphisms, where ε1 and ε2 determine the po-
larities of x and t (respectively). Equations (1) and (2) mean that modulo α-conversion,
variables provide a neutral element for the composition. Equations (3) and (4) corres-
pond respectively to • - and ◦- associativity.

It is not possible to rewrite “let y� be (let x+ be t+ in u�) in v” into “let x+ be t+ in
let y� be u� in v”. In other words, without imposing additional equations, we have in
general h ◦ (g • f ) , (h ◦ g) • f .

3 Duploids

We now enrich pre-duploids with operators of polarity coercion ⇓, ⇑ called shifts.2

Definition 7. A duploid is a pre-duploid D given with mappings ⇓ : |N | → |P | and
⇑ : |P | → |N |, together with, for all P ∈ |P | and N ∈ |N |, morphisms subject to
equations:�

�
�
�

delayP : P → ⇑P

forceP : ⇑P → P

wrapN : N → ⇓N
unwrapN : ⇓N → N

�

�

�

�
forceP ◦ (delayP • f ) = f (∀f ∈ D(A, P))

( f ◦ unwrapN ) • wrapN = f (∀f ∈ D(N , A))
delayP • forceP = id⇑P

wrapN ◦ unwrapN = id⇓N

Proposition 8. For any N , wrapN is thunkable. Dually, for any P, forceP is linear.

Proof. For all g, h we have h ◦ (g • wrapN ) = (h ◦ (g • wrapN ) ◦ unwrapN ) • wrapN =

(h ◦ (g • wrapN ◦ unwrapN )) • wrapN = (h ◦ g) • wrapN . Hence wrapN is linear. The
other result follows by symmetry. �

Thus we have the following equivalent definition of a duploid:

Definition 9. A duploid is a pre-duploid D given with mappings ⇓ : |N | → |P | and
⇑ : |P | → |N |, together with a family of invertible linear maps forceP : ⇑P → P and
a family of invertible thunkable maps wrapN : N → ⇓N .

3.1 Syntactic Duploid

Let us start with the syntax, with which we provide computational intuitions for the
shifts. The syntactic duploid extends the syntactic pre-duploid with a type ⇑P of sus-
pended strict computations, and a type ⇓N of lazy computations encapsulated into a
value. Then delay• f represents the suspended strict computation f and the inverse oper-
ation force triggers the evaluation of its argument (this is why it is linear in its negative
argument). The morphism wrap ◦ f represents f encapsulated into a value (this is why
it is thunkable) and unwrap removes the encapsulation.

We extend the syntactic pre-duploid as follows:

2 Our notation is reminiscent of Melliès [16].
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V+ F . . . | {t�} | . . .

t� F . . . | µ{α+}.c | . . .

(a) Terms and values

e+ F . . . | µ̃{x�}.c | . . .

π� F . . . | {e+} | . . .

(b) Contexts and stacks

Figure 2: The syntactic duploid (extending the syntactic pre-duploid)

We also extend the relation B with the following rules:�
�

�
�〈{t�} || µ̃{x

�}.c〉 B c[t�/x�] e+ B µ̃{x
�}.〈{x�} || e+〉 (x� < fv(e+))

〈µ{α+}.c || {e+}〉 B c[e+/α
+] t� B µ{α+}.〈t� || {α

+}〉 (α+ < fv(t�)) .

The new constructions add to the syntax of terms the following operations (in addition
to values {t�}):

let {x�} be t+ in u
def
= µα.

〈
t+

∣∣∣∣∣∣ µ̃{x�}.〈u ||α〉〉
delay(t+) def

= µ{α+}.〈t+ ||α
+〉

force(t�) def
= µα+.〈t� || {α

+}〉

We have in particular:

let {x�} be {t�} in u ' u[t�/x�] let {x�} be t+ in {x�} ' t+

force(delay(t+)) ' t+ delay(force(t�)) ' t� .

We can show that this extends the syntactic pre-duploid into a duploid (with wrap and
unwrap interpreted as x� 7→ {x�} and x+ 7→ let {y�} be x+ in y�, respectively).

3.2 The Duploid Construction

Let C1 and C2 be two categories and F a G : C1 → C2 an adjunction given by natural
transformations ] : C1(F−,=)→ C2(−,G=) and [ = ]−1. Note G : C1 → C2.

The goal of the duploid construction is to define a notion of morphisms A → B

for A and B objects of either category C1 and C2. Let us introduce the convention that
objects of C1 are negative and written N ,M ..., while the objects of C2 are positive and
written P,Q... Also, we write • the composition in C1 and ◦ the composition in C2.

We first define oblique morphisms P →D N , with P ∈ |C2 | and N ∈ |C1 |, equival-
ently as maps P → GN or FP → N (thanks to the isomorphism ]). Then we observe
that oblique morphisms compose either in C1 or in C2 as follows:

f : P →D FQ

f : FP → FQ

g : Q →D N

g : FQ → N

g • f : FP → N

g • f : P →D N

f : P →D N

f : P → GN

g : GN →D M

g : GN → GM

g ◦ f : P → GM

g ◦ f : P →D M

Thus we define morphisms A→D B as oblique morphisms:�� ��A+ →D B� , where
P+ def

= P P�
def
= FP

N+ def
= GN N�

def
= N
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In other words, we define |D | def
= |C1 | ] |C2 | and (taking an irrelevant bias towards C1)

we define D(A, B) def
= C1(FA+ , B�). Positive composition is given by the composition

in C1. Composition of f ∈ D(A, N ) and g ∈ D(N , B) is given by g ◦D f
def
= (g] ◦C2 f ])[.

Identities are given with idD
P

def
= idC1

FP
and idD

N

def
= idC2

GN

[
.

Proposition 10. The above defines a pre-duploid D .

Proof (sketch). ••-associativity is given, and ◦◦-associativity is immediate using the
fact that ] and [ are inverse. •◦-associativity relies on the fact that the transformations ]
and [ are natural. �

Remark 11. In particular P is the Kleisli category (C2)GF of the monad GF and N is
the Kleisli category (C1)FG of the co-monad FG.

The pre-duploid has shifts, defined as follows:

⇑P
def
= FP ⇓N

def
= GN

D(P, ⇑P) 3 delayP
def
= idC1

FP
∈ C1(FP, FP)

D(⇑P, P) 3 forceP
def
= (idGFP)[ ∈ C1(FGFP, FP)

D(N , ⇓N ) 3 wrapN
def
= idC1

FGN
∈ C1(FGN , FGN )

D(⇓N , N ) 3 unwrapN
def
= (idGN )[ ∈ C1(FGN , N )

It is easy to see that:

Proposition 12. Every adjunction determines a duploid as above.

3.3 Linear and Thunkable Morphisms in Duploids

In duploids, we have the following useful characterisation of linear and thunkable
morphisms.

Proposition 13. In a duploid D , let f ∈ D(A, P). Then f is thunkable if and only if:

(wrap⇑P ◦ delayP) • f = wrap⇑P ◦ (delayP • f ) (5)

Dually, let f ∈ D(N , B). Then f is linear if and only if:

f ◦ (unwrapN • force⇓N ) = ( f ◦ unwrapN ) • force⇓N

Proof. We establish the non-trivial implication for the first case. The second case is
obtained by symmetry. First we prove that any morphism that satisfies (5) also satisfies
(h ◦ delayP) • f = h ◦ (delayP • f ) for any h ∈ D(⇑P, A). Indeed for any such h we have:

(h ◦ delayP) • f = (h ◦ unwrap⇑P) • (wrap⇑P ◦ delayP) • f

= (h ◦ unwrap⇑P) • wrap⇑P ◦ (delayP • f ) (by hypothesis)

= h ◦ (delayP • f )
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Now we prove that f is thunkable. For any g, h we have:

(h ◦ g) • f = (h ◦ (g • forceP) ◦ delayP) • f

= h ◦ (g • forceP) ◦ (delayP • f ) (with the above)

= h ◦ ((g • forceP ◦ delayP) • f ) (with the above again)

= h ◦ (g • f ) �

By applying the above proposition to the duploid construction, we easily deduce the
following:

Proposition 14. Let F a(η,ε) G : C1 → C2 be an adjunction, and consider the associ-
ated duploid D . Then f ∈ D(N , A) is linear if and only if f ◦εFGN = f ◦FGεN (in C1),
and f ∈ D(A, P) is thunkable if and only if its transpose f ] ∈ C2(A+ ,GFP) satisfies
ηGFP ◦ f

] = GFηP ◦ f
] (in C2).

Now recall that an adjunction F a G that satisfies either of the following equivalent
statements is called idempotent: the multiplication of the associated monad is an iso-
morphism; or the co-multiplication of the associated co-monad is an isomorphism; or
we have εGF = GFε ; or we have ηFG = FGη. Thus we deduce the following:

Corollary 15. Let F a(η,ε) G : C1 → C2. The associated duploid D is a category if
and only if the adjunction is idempotent.

3.4 Structure of Shifts

As we have seen, the Kleisli category of a co-monad is described by a runnable monad;
and the Klesli category of a monad is described by a thunk, which is a co-monad. We ob-
serve a similar phenomenon with duploids. We show that there is a reversed adjunction,
in the sense that the right adjoint ⇑ is from positives to negatives:�� ��⇓ a ⇑ : P → N

Actually, we state a wider adjunction. First remark that we can extend the shifts ⇓, ⇑ to
all objects in a straightforward manner:

⇓A
def
=

⇓N if A = N

P if A = P

⇑A
def
=

N if A = N

⇑P if A = P

delayN
def
= idN : N → ⇑N

forceN
def
= idN : ⇑N → N

wrapP
def
= idP : P → ⇓P

unwrapP
def
= idP : ⇓P → P

By “extend”, we mean that we have for all f , g:

( f forceA) ◦ (delayA g) = f g delayA forceA = idA

( f unwrapA) • (wrapA g) = f g wrapA unwrapA = idA

Also, extending proposition 8, we have, for all objects A, that unwrapA and wrapA are
thunkable whereas delayA and forceA are linear.

10



Proposition 16. Let D be a duploid. The following:

⇑ f
def
= delayB f forceA ⇓ f

def
= wrapB f unwrapA

define functors ⇑ : Dl → Nl and ⇓ : Dt →Pt that take part in adjoint equivalences of
categories I a(delay,force) ⇑ : Dl → Nl and I a(wrap,unwrap) ⇓ : Dt →Pt , where I denotes
the inclusion functors.

Proof (sketch). The result follows from the fact that delay and force are inverse natural
transformations in Dl ; likewise for wrap and unwrap in Dt . �

We can deduce the following:

Proposition 17. Let D be a duploid. We have natural isomorphisms between (pro-)func-
tors

�� ��Dt (−, I⇑=) ' D(−,=) ' Dl (I⇓−,=) : Dt
op
× Dl → Set where I denotes the

inferrable inclusion functors.

In particular, leaving the inclusion functors implicit, we have the adjunctions:

Dt

⇓
((

⊥ Dl

⇑

ii N

⇓
))

⊥ P
⇑

ii

The adjunction ⇓ a ⇑ distinguishes our interpretation of polarities from ones based
on adjunctions of the form ↑ a ↓ that appears in the context of focusing in logic and
continuation-passing style in programming (see Laurent [11], Zeilberger [25]). Our dir-
ect notion of polarities adds a level of granularity. In terms of continuations, our po-
larities makes the distinction between continuations that are meant to be applied and
continuations that are meant to be passed.

3.5 The Category of Duploids

Definition 18. A functor of pre-duploids F : D1 → D2 is given by a mapping on ob-
jects |F | : |D1 | → |D2 | that preserves polarities, together with mappings on morphisms
FA ,B : D1(A, B) → D2(FA, FB), satisfying FidA = idFA and F(g f ) = Fg F f .
A functor of duploids F : D1 → D2 is a functor of pre-duploids such that F forceP is
linear for all P ∈ |P1 |, and FwrapN is thunkable for all N ∈ |N1 |.

Proposition 19. Let D and D ′ be two duploids and let F : D → D ′ be a mapping on
objects |F | : |D | → |D ′ | that preserves polarities, together with mappings on morph-
isms FA ,B : D(A, B) → D ′(FA, FB). Then F is a functor of duploids if and only if F
restricts to functors Ft : Dt → D ′t and Fl : Dl → D ′l , such that the transformation
F : D(−,=)→ D ′(Ft−, Fl=) is natural.

Proof. (⇐) is easy to prove. (⇒): Suppose that F is a functor of duploids. First we
establish that the full sub-pre-duploid FD of D ′ with objects of the form FA for A ∈

|D | has a duploid structure given by Fdelay, F force, Fwrap and Funwrap. This follows
from definition 9, using the hypothesis that F force is linear and Fwrap is thunkable.

11



Then, considering proposition 13 applied to the duploid FD , we show that F preserves
linearity and thunkability. In other words it restricts to functors Ft : Dt → D ′t and
Fl : Dl → D ′l . That F : D(−,=)→ D ′(Ft−, Fl=) is a natural transformation follows
from Fh Fg F f = F(h g f ) which makes sense for h linear and f thunkable. �

Definition 20. Dupl is the category whose objects are duploids and whose morphisms
are duploid functors. The obvious identity inDupl is written 1D .

3.6 Examples of Duploids

The Blass Phenomenon in Conway Games. Melliès [16] comes close to building a
duploid using the construction of Blass games. According to his analysis [16, Sec-
tion 3], the Blass problem comes down to the fact that the (pro-)functor C1(F−,=) :
C2

op
× C1 → Set, in the terminology of Section 3.2, does not extend into a functor

Pop ×N → Set where P and N are respectively the Kleisli categories of the monad
GF and the co-monad FG. This is the essence of proposition 15. He then defines a cat-
egory for an asynchronous variant of Conway games. As he shows, asynchronism is
a way to force the double-negation monad to be idempotent, and therefore to recover
associativity of composition. He builds this way a game model of linear logic.

Girard’s Polarisation. Girard’s polarised translation of the classical logic LC into
intuitionistic logic [7], further formulated by Danos, Joinet and Schellinx [5] and
Laurent [11], inspired the duploid construction. Girard’s translation corresponds to
considering in the duploid construction the self-adjunction of the negation functor
¬ = R− in Set for R arbitrary. But obviously, the duploid obtained from the self-
adjunction of negation in any response category (in the terminology of Selinger [23])
gives a denotational semantics of LC. Thielecke [24] later noticed the importance of
this self-adjunction in the understanding of continuation-passing style.

Response categories have recently been refined into dialogue categories by Melliès
and Tabareau [17] to provide a denotational semantics of linear logic via the polarised
translation. This was conceived as an abstract account of the asynchronous games of
Melliès [16] mentioned above.

Direct Models of Call by Value and of Call by Name. We defined a pre-duploid with a
bijection ⇑ : |P | → |N | from a thunk-force category (P , •, id, L, ϑ, ε). We complete
the definition into a duploid by defining ⇓ : |N | → |P | with ⇓⇑P def

= LP; and delay,
force, wrap, unwrap in an obvious manner. We can show that thunk-force categories are
characterised as duploids where ⇑ is bijective on objects. Symmetrically, we can show
that categories with a runnable monad are characterised as duploids where ⇓ is bijective
on objects.

4 Structure Theorem

4.1 Every Duploid Comes From an Adjunction

Proposition 21. Let D be a duploid. We define ↑ : Pt → Nl the restriction of ⇑ and
↓ : Nl → Pt the restriction of ⇓. There is an adjunction ↑ a ↓ with unit wrap⇑ ◦ delay
and co-unit unwrap • force⇓.

12



Proof. Due to the adjoint equivalences from proposition 16, we have the following nat-
ural isomorphisms:

Nl (⇑I−,=) ' Dl (I−, I=) : Pt
op
× Nl → Set

Pt (−, ⇓I=) ' Dt (I−, I=) : Pt
op
× Nl → Set ,

where I denotes the inferrable inclusion functors. Since we have Dl (P, N ) =

D(P, N ) = Dt (P, N ), we also have Dl (I−, I=) = Dt (I−, I=) above. Thus we have a
natural isomorphism Nl (↑−,=) = Nl (⇑I−,=) ' Pt (−, ⇓I=) = Pt (−, ↓=). We can
check that the unit is wrap⇑ ◦ delay and the co-unit is unwrap • force⇓. �

Proposition 22. There is an isomorphism between D and the duploid D ′ obtained from
the above adjunction ↑ a ↓.

Proof (sketch). Recall that D ′ is defined with |D ′ | = |D | and D ′(A, B) = Nl (↑⇓A,
⇑B). According to propositions 16 and 17, we have natural isomorphisms D(−,=) '
Dl (I⇓−,=) ' Nl (↑⇓−, ⇑=), and thus for all A, B ∈ |D | we have a bijection D(A, B)→
D ′(A, B). It is easy to verify that this mapping defines a functor of duploids F : D →
D ′. Using the characterisation of proposition 19, its inverse is a functor of duploids. �

4.2 The Equalising Requirement

Definition 23. An adjunction F a(η,ε) G : C1 → C2 satisfies the equalising require-
ment if and only if for all P ∈ |C2 |, ηP is an equaliser of ηGFP and GFηP , and for all
N ∈ |C1 |, εN is a co-equaliser of εFGN and FGεN .

We give an equivalent formulation of this condition in terms of the associated duploid:

Proposition 24. Let F a(η,ε) G : C1 → C2 be an adjunction, and consider the associ-
ated duploid D . The adjunction satisfies the equalising requirement if and only if for all
objects A, P, N the following three conditions hold:

1. εN is an epimorphism and ηP is a monomorphism; or equivalently G and F are
faithful;

2. all linear morphisms f ∈ D(N , A) are of the form g ◦ εN with g ∈ C1(N , A−); or
equivalently all linear morphisms are in the image of G modulo the adjunction;

3. all thunkable morphisms f ∈ D(A, P) are (modulo the adjunction) of the form
ηP ◦ g with g ∈ C2(A+ , P); or equivalently all thunkable morphisms are in the
image of F;

Proof (sketch). Follows from the characterisation in proposition 14. �

Proposition 25. Let D be a duploid and consider the adjunction ↑ a ↓ : Nl → Pt .
The adjunction satisfies the equalising requirement.

Proof (sketch). Follows easily from the fact that ε = unwrap• force⇓ has a section in N ,
namely delay⇓ • wrap : 1 →̇ ⇑⇓, and symmetrically for η. �
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4.3 Main Result

We consider pseudo maps of adjunctions as defined by Jacobs [9]:

Definition 26. Let F a(η,ε) G : C1 → C2 and F′ a(η′ ,ε′) G′ : C ′1 → C ′2 be two
adjunctions. A pseudo map of adjunctions:�� ��(H1 , H2 , φ,ψ) : (F a(η,ε) G)→ (F′ a(η′ ,ε′) G

′)

is given by a pair of functors H1 : C1 → C ′1 and H2 : C2 → C ′2 together with natural

isomorphisms φ : F′H2
'
→ H1F and ψ : G′H1

'
→ H2G, such that H1 and H2 preserve

η and ε up to isomorphism: H2η = ψF ◦G
′φ ◦ η′

H2
and H1ε = ε′

H1
◦ F′ψ−1 ◦ φ−1

G
.

As noted by Jacobs, two pseudo maps (H1 , H2 , φ,ψ) and (H ′1 , H
′
2 , φ
′ ,ψ′) compose as:

(H ′1 , H
′
2 , φ
′ ,ψ′) ◦ (H1 , H2 , φ,ψ) = (H ′1H1 , H

′
2H2 , H

′
1φ ◦ φ

′
H2
, H ′2ψ ◦ψ

′
H1

) .

Definition 27. The category of adjunctionsAdj has adjunctions between locally small
categories as objects and pseudo maps of adjunctions as morphisms. The full subcat-
egoryAdjeq ofAdj consists in adjunctions that satisfy the equalising requirement.

Theorem 28. There are a reflection and an equivalence as follows:

Dupl 'Adjeq /Adj

Proof (sketch). The functor j : Adj → Dupl is given on objects by the duploid con-
struction. The functor i :Dupl →Adjeq is given on objects by proposition 25. Propos-
ition 22 gives the family of isomorphisms jiD ' D .

The complete proof appears in the author’s PhD thesis, Chapter II [20].
Intuitively, theorem 28 together with proposition 24 mean that the duploid construc-

tion j completes the values with all the expressions that are pure, and completes the
stacks with all the evaluation contexts that are linear. Moreover j identifies any two val-
ues that denote the same expression, and any two stacks that denote the same evaluation
context.

5 Ongoing Work

This work was developed during a collaboration with Marcelo Fiore and Pierre-Louis
Curien, in an effort to connect the L system [4,8,19,20] with adjunction models. The
calculus suggests that connectives should have an elegant characterisation in terms of
duploids, which is the subject of an ongoing work.
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