
Models of a Non-Associative Composition?

Guillaume Munch-Maccagnoni

Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126 CNRS,
PiR2, INRIA Paris-Rocquencourt, F-75205 Paris, France.

Abstract We characterise the polarised evaluation order through a categorical
structure where the hypothesis that composition is associative is relaxed. Duploid
is the name of the structure, as a reference to Jean-Louis Loday’s duplicial algeb-
ras. The main result is a reflection Adj → Dupl where Dupl is a category of
duploids and duploid functors, andAdj is the category of adjunctions and pseudo
maps of adjunctions. The result suggests that the various biases in denotational
semantics: indirect, call-by-value, call-by-name... are ways of hiding the fact that
composition is not always associative.

1 Introduction

In a term language where the order of evaluation is determined by the polarity of a
type or formula, it is not immediate that composition is associative. The associativity of
categorical composition amounts to the following equation on terms:

let y be t in let x be u in v
?
= let x be (let y be t in u) in v

Now, in any setting where t could be of a type that implies a strict evaluation order, and
where u could be of a type that implies a delayed evaluation, we can see a difference in
spirit between these two terms. Indeed, in the left-hand term, the evaluation of t would
happen before the one of v. On the contrary, in the right-hand term, the evaluation of x
is delayed since it has the same type as u, so the term would compute v before t .

This phenomenon is observed with polarisation in logic and denotational se-
mantics [7,21,5,16,12]. Polarisation can thus be described (negatively) as rejecting,
either directly or indirectly, the hypothesis that composition is a priori associative. In
this article, we give a positive and direct description of a polarised evaluation order. To
this effect we introduce a category-like structure where not all composites associate.
Duploid is the name of the structure, as a reference to Jean-Louis Loday’s duplicial
algebras [15].

The main result relates duploids to adjunctions. To help understand this relation, let
us first recall the correspondence between direct models of call by value and indirect
models à la Moggi.

Direct models. In a direct denotational model, there should be a close match between
the given operations in the model and the constructions in the language. Essentially,
type and program constructors should respectively correspond to operations on objects

? This is a shortened version of Chapter II from the author’s PhD thesis [20, pp. 86-91,103-152].

Table 1: Comparison of the structures underlying various direct models of computation.

Evaluation order By value By name Polarised

Direct model Thunk Runnable monad Duploid

Indirect model Monad T Co-monad L Adjunction F a G

Programs Kleisli maps
P → TQ

Co-Kleisli maps
LN → M

Oblique maps
FP → N
' P → GN

Syntactic data Values Stacks Both

Completion into Thunkable
expressions

Linear evaluation
contexts Both

and on morphisms in a category. In particular, it should be possible to reason about
an instance of the model within the language.1 An example of direct models for the
simply-typed lambda calculus is given by cartesian-closed categories.

In a model such as Moggi’s λC models [18], or Lafont, Reus and Streicher’s mod-
els of call by name [10], however, the language is not interpreted directly but through
a Kleisli construction for a monad or a co-monad. We have a precise description of
the link between direct models and indirect models thanks to Führmann [6]. Categories
that model call by value directly are characterised by the presence of a thunk, a formal
account of the well-known structure used to implement laziness in call-by-value lan-
guages.

The characterisation takes the following form: any direct model arises from the
Kleisli construction starting from a λC model. However, from the direct model we can
only recover a specific λC model: its values are made of all the pure expressions. More
precisely, the Kleisli construction is a reflection that conflates any two values equal-
ised by the monad, and turns into a value any thunkable expression. An expression is
thunkable if it behaves similarly to a value in a sense determined by the monad.

Selinger [23] proves a similar relationship between direct models of the call-by-
name λµ calculus and Lafont, Reus and Streicher’s models [10].

Adjunction-based models. This article deals with the underlying algebraic structure in
these models: a monad over a category of values for call by value, a co-monad over a
category of stacks for call by name. Duploids generalise the underlying structure to an
adjunction between a category of values and a category of stacks. (See table 1.)

Relationship with polarities comes from Girard’s polarised translation of classical
logic [7,5,11]. Our duploid construction extends the (skeleton of the) polarised transla-
tion to any adjunction. (Notably, we do not need the assumption that there is an involut-
ive negation operation on formulae.)

We know that there is a practical relevance of decomposing monads, when seen as
notions of computation, into adjunctions, thanks to Levy [13,14]. Levy’s adjunctions
subsume models of call by value and call by name. However the model is indirect, and
still lacks a corresponding notion of direct model.

1 Führmann [6], Selinger [22].

2

Outline. Section 2 introduces pre-duploids as categories where the associativity of com-
position is deficient. Section 3 defines duploids as pre-duploids with additional struc-
ture, and characterises this additional structure. The category Dupl of duploids and
duploid functors is introduced. Section 4 proves the main result.

Structure theorem. The main result is a reflection
�� ��Dupl /Adj , where Adj is the

category of adjunctions and pseudo maps of adjunctions. In other words, the duploid
construction extends to a functorAdj → Dupl that admits a full and faithful right ad-
joint. In particular, any duploid is obtained from an adjunction, but adjunctions obtained
from duploids are peculiar.

As a consequence of the main result, duploids account for a wide range of computa-
tional models, as we will see in various examples. It suggests that the various biases in
denotational semantics: indirect, call-by-value, call-by-name. . . are ways of hiding the
fact that composition is not always associative.

In addition, the article develops an internal language for duploids. It provides intu-
itions from programming languages and abstract machines about polarisation.

Characterisation of duploids. We also characterise the adjunctions obtained from du-
ploids. We show that there is an equivalence of categories

�� ��Dupl 'Adjeq , where
Adjeq is the full subcategory of adjunctions that satisfies the equalizing requirement:
the unit and the co-unit of the adjunction are respectively equalisers and co-equalisers.

This means that the duploid operates from the point of view of the model of com-
putation defined by the adjunction: first any two values and any two stacks that are not
distinguished by the model of computation are identified; and then the categories of
values and stacks are respectively completed with all the expressions that are thunkable,
and with all the evaluation contexts that are linear.

2 Pre-duploids

We define pre-duploids, which are category-like structures whose objects have a po-
larity, and which miss associativity of composition when the middle map has polarity
+→ �.

Definition 1. A pre-duploid D is given by:

1. A set |D | of objects together with a polarity mapping $: |D | → {+,�}.
2. For all A, B ∈ |D |, a set of morphisms or hom-set D(A, B).
3. For all morphisms f ∈ D(A, B) and g ∈ D(B,C), a morphism g f ∈ D(A,C),

also written as follows depending on the polarity of B:

g • f ∈ D(A,C) if $(B) = + ,

g ◦ f ∈ D(A,C) if $(B) = � .

The following associativities must hold for all objects A, B ∈ |D |; P,Q ∈ $−1({+})
and N ,M ∈ $−1({�}):

(••) For all A
f
−→ P

g
−→ Q

h
−→ B, one has (h • g) • f = h • (g • f) ;

3

(◦◦) For all A
f
−→ N

g
−→ M

h
−→ B, one has (h ◦ g) ◦ f = h ◦ (g ◦ f) ;

(•◦) For all A
f
−→ N

g
−→ P

h
−→ B, one has (h • g) ◦ f = h • (g ◦ f).

4. For all A ∈ |D |, a morphism idA ∈ D(A, A) neutral for .

The mapping $ defines a partition of |D | into the positive objects P,Q... in |P | def
=

$−1({+}) and the negative objects N ,M ... in |N |
def
= $−1({�}). This partition defines

categories P (whose composition is given by •) and N (whose composition is given
by ◦) in an obvious way.

2.1 Linear and Thunkable Morphisms

Definition 2. Let D be a pre-duploid. A morphism f of D is linear if for all g, h one
has:

f (g h) = (f g) h

A morphism f of D is thunkable if for all g, h one has:

h (g f) = (h g) f

Thus any morphism f : P → A is linear, and any morphism f : A → N is thunkable.
The terminology thunkable is borrowed from [24,6]. These notions are closed under
composition and identity.

Definition 3. We define sub-categories of D as follows:
Dl is the sub-category of linear morphisms of D .
Dt thunkable morphisms of D .
Nl linear morphisms of N .
Pt thunkable morphisms of P .

Observe that N and Nl are respectively the full sub-categories of Dt and Dl with
negative objects. Symmetrically, P and Pt are respectively the full sub-categories of
Dl and Dt whose objects are positive.

Proposition 4. The hom-sets D(A, B) of a pre-duploid D extend to a (pro-)functor�� ��D(−,=) : Dt
op
× Dl → Set defined for f ∈ Dt (A, B) and g ∈ Dl (C , D) with

D(f , g) : D(B,C)→ D(A, D); D(f , g)(h) = g h f .

Proof. Restricting to f thunkable and g linear makes the definition unambiguous. Func-
toriality follows from (g1 g2) h (f2 f1) = g1 (g2 h f2) f1, which holds when
f1 and f2 are thunkable and g1 and g2 are linear. �

2.2 Examples of Pre-duploids

Girard’s Classical Logic. Girard’s correlation spaces are a denotational semantics for
classical logic. They do not form a category for lack of associativity of the composi-
tion [7,12]. However, they form a pre-duploid.

4

Blass Games. Blass [3] gives a game model for linear logic that fails to satisfy the asso-
ciativity of composition. Thanks to Abramsky’s analysis of this issue [1], we know that
associativity fails due to composites of the form N −→ P −→ M −→ Q. According to Ab-
ramsky, “none of the other 15 polarisations give rise to a similar problem”. Therefore,
Abramsky’s formalisation of Blass games yields a pre-duploid. Thanks to Melliès’s ana-
lysis of this so-called “Blass problem” [16], we know that the phenomenon is essentially
the same as for Girard’s classical logic.

Direct Models of Call by Value. Führmann [6] characterises the Kleisli category of a
monad via the presence of a structure called thunk. In the contexts of models of call by
value, the thunk implements laziness. Recall that a thunk-force category is a category
(P , •, id) together with a thunk (L, ε, ϑ) as defined next.

Definition 5 (Führmann). A thunk on P is given by a functor L : P → P together
with a natural transformation ε : L →̇ 1 and a transformation ϑ : 1 → L such that
the transformation ϑL : L → L2 is natural; satisfying the equations ε • ϑ = id and
Lε • ϑL = idL and ϑL • ϑ = Lϑ • ϑ.

A thunk induces a comonad (L, ε, ϑL).
Observe that in a thunk-force category (P , •, id, L, ϑ, ε), we can define a composite

of g : P → Q and f : LQ → R with g◦ f
def
= g•Lf •ϑP . This compositions admits εP as

a neutral element. This extends to a pre-duploid with compositions • and ◦ as follows.
The positive objects are the objects of P . The set of negative objects is given with
|N | = ⇑|P | for ⇑ a suitably chosen bijection with domain |P | (in other words |N | is a

disjoint copy of |P |). Then we take
�� ��D(A, B) def

= P(A, B) where we define P = P
def
= P

and ⇑P def
= LP and ⇑P def

= P. With this definition, ◦ is a map D(⇑P, B) × D(A, ⇑P) →
D(A, B) and εP is an element of D(⇑P, ⇑P). It is easy to check that this defines a pre-
duploid.

In the context of λC models, this pre-duploid formalises how thunks implement
laziness in call by value.

Now recall that Führmann calls thunkable any morphism f ∈ P(P,Q) such that
Lf • ϑP = ϑQ • f . Not all morphisms of P are thunkable in general because ϑ is not
necessarily natural. We can prove the following:

Proposition 6. A morphism f : P → Q is thunkable in the sense of thunk-force cat-
egories if and only if it is thunkable in the sense of pre-duploids.

Thus the transformation ϑ is natural if and only if the pre-duploid is a category (i.e.
statisfies ◦•-associativity).

Direct Models of Call by Name. The concept dual to Führmann’s thunk is the one of
runnable monad. A runnable monad on a category C is given by a functor T : C → C
together with a natural transformation η : 1 →̇ T and a transformation ρ : T → 1 such
that the transformation ρT : T 2 → T is natural; satisfying the equations ρ ◦ η = id;
ρT ◦ Tη = idT and ρ ◦ Tρ = ρ ◦ ρT .

Runnable monads implement strictness in call by name. An example of a category
with a runnable monad is given by Selinger’s direct models of the call-by-name λµ
calculus [23]. Given a runnable monad, we can define, symmetrically to thunk-force
categories above, a pre-duploid with a bijective map ⇓ : |N | → |P |.

5

2.3 Syntactic Pre-Duploid

The syntactic pre-duploid is given by a term syntax. It is made of terms (t) with a
polarity which are identified up to β- and η-like equations. These equations are best
described with auxiliary syntactic categories for evaluation contexts (e) and abstract
machines (c = 〈t || e〉); a technique that arose in the theory of control operators [4,8,2].

There are four sets of variables written x+, α+, x�, α� to consider, and the following
grammar (“. . . ” indicates that we consider an extensible grammar):

t+ F V+ | µα
+.c | . . .

t� F x� | µα�.c | . . .

V+ F x+ | . . .

V F V+ | t�

(a) Terms and values

e+ F α+ | µ̃x+.c | . . .

e� F π | µ̃x�.c | . . .

π� F α� | . . .

π F π� | e+

(b) Contexts and stacks

c F 〈t+ || e+〉 | 〈t� || e�〉

(c) Commands

Figure 1: The syntactic pre-duploid (the variables that appear before a dot are bound)

The binders are µ and µ̃. They allow us to define composition as follows:�� ��let x be t in u
def
= µα.

〈
t
∣∣∣∣∣∣ µ̃x .〈u ||α〉〉 (α < fv(t , u))

In this macro-definition, the polarities of t and x must be the same, and the polarity of
α and of “let x be t in u” is determined by the one of u.

The contextual equivalence relation ' determines the equality of morphisms. It is
induced by the following rewrite rules:

〈µα.c ||π〉 B c[π/α] t B µα.〈t ||α〉 (α < fv(t))
〈V || µ̃x .c〉 B c[V/x] e B µ̃x .〈x || e〉 (x < fv(e))

The intuition is that positive terms are called by value while negative terms are called
by name. Indeed we have:

〈let x beV in u ||π〉 B∗ 〈u[V/x] ||π〉

but for a positive non-value t+ instead of V , computation continues with t+. This de-
scribes a call-by-value reduction. And with a negative non-stack e� instead of π compu-
tation is delayed until a stack (a linear evaluation context) is reached. This describes a
call-by-name reduction. In the latter case, “let x beV in u” and therefore u are negative.

Among other equations, we have for all terms and variables:

let x be y in t ' t[y/x] (1)
let x be t in x ' t (2)

let y+ be (let x be t in u+) in v ' let x be t in let y+ be u+ in v (3)
let y be (let x� be t� in u) in v ' let x� be t� in let y be u in v (4)

6

The syntactic pre-duploid gives rise to a pre-duploid with two objects + and � and with
formal objects (x 7→ t) : ε1 → ε2 as morphisms, where ε1 and ε2 determine the po-
larities of x and t (respectively). Equations (1) and (2) mean that modulo α-conversion,
variables provide a neutral element for the composition. Equations (3) and (4) corres-
pond respectively to • - and ◦- associativity.

It is not possible to rewrite “let y� be (let x+ be t+ in u�) in v” into “let x+ be t+ in
let y� be u� in v”. In other words, without imposing additional equations, we have in
general h ◦ (g • f) , (h ◦ g) • f .

3 Duploids

We now enrich pre-duploids with operators of polarity coercion ⇓, ⇑ called shifts.2

Definition 7. A duploid is a pre-duploid D given with mappings ⇓ : |N | → |P | and
⇑ : |P | → |N |, together with, for all P ∈ |P | and N ∈ |N |, morphisms subject to
equations:�

�
�
�

delayP : P → ⇑P

forceP : ⇑P → P

wrapN : N → ⇓N
unwrapN : ⇓N → N

�

�

�

�
forceP ◦ (delayP • f) = f (∀f ∈ D(A, P))

(f ◦ unwrapN) • wrapN = f (∀f ∈ D(N , A))
delayP • forceP = id⇑P

wrapN ◦ unwrapN = id⇓N

Proposition 8. For any N , wrapN is thunkable. Dually, for any P, forceP is linear.

Proof. For all g, h we have h ◦ (g • wrapN) = (h ◦ (g • wrapN) ◦ unwrapN) • wrapN =

(h ◦ (g • wrapN ◦ unwrapN)) • wrapN = (h ◦ g) • wrapN . Hence wrapN is linear. The
other result follows by symmetry. �

Thus we have the following equivalent definition of a duploid:

Definition 9. A duploid is a pre-duploid D given with mappings ⇓ : |N | → |P | and
⇑ : |P | → |N |, together with a family of invertible linear maps forceP : ⇑P → P and
a family of invertible thunkable maps wrapN : N → ⇓N .

3.1 Syntactic Duploid

Let us start with the syntax, with which we provide computational intuitions for the
shifts. The syntactic duploid extends the syntactic pre-duploid with a type ⇑P of sus-
pended strict computations, and a type ⇓N of lazy computations encapsulated into a
value. Then delay• f represents the suspended strict computation f and the inverse oper-
ation force triggers the evaluation of its argument (this is why it is linear in its negative
argument). The morphism wrap ◦ f represents f encapsulated into a value (this is why
it is thunkable) and unwrap removes the encapsulation.

We extend the syntactic pre-duploid as follows:

2 Our notation is reminiscent of Melliès [16].

7

V+ F . . . | {t�} | . . .

t� F . . . | µ{α+}.c | . . .

(a) Terms and values

e+ F . . . | µ̃{x�}.c | . . .

π� F . . . | {e+} | . . .

(b) Contexts and stacks

Figure 2: The syntactic duploid (extending the syntactic pre-duploid)

We also extend the relation B with the following rules:�
�

�
�〈{t�} || µ̃{x

�}.c〉 B c[t�/x�] e+ B µ̃{x
�}.〈{x�} || e+〉 (x� < fv(e+))

〈µ{α+}.c || {e+}〉 B c[e+/α
+] t� B µ{α+}.〈t� || {α

+}〉 (α+ < fv(t�)) .

The new constructions add to the syntax of terms the following operations (in addition
to values {t�}):

let {x�} be t+ in u
def
= µα.

〈
t+

∣∣∣∣∣∣ µ̃{x�}.〈u ||α〉〉
delay(t+) def

= µ{α+}.〈t+ ||α
+〉

force(t�) def
= µα+.〈t� || {α

+}〉

We have in particular:

let {x�} be {t�} in u ' u[t�/x�] let {x�} be t+ in {x�} ' t+

force(delay(t+)) ' t+ delay(force(t�)) ' t� .

We can show that this extends the syntactic pre-duploid into a duploid (with wrap and
unwrap interpreted as x� 7→ {x�} and x+ 7→ let {y�} be x+ in y�, respectively).

3.2 The Duploid Construction

Let C1 and C2 be two categories and F a G : C1 → C2 an adjunction given by natural
transformations] : C1(F−,=)→ C2(−,G=) and [=]−1. Note G : C1 → C2.

The goal of the duploid construction is to define a notion of morphisms A → B

for A and B objects of either category C1 and C2. Let us introduce the convention that
objects of C1 are negative and written N ,M ..., while the objects of C2 are positive and
written P,Q... Also, we write • the composition in C1 and ◦ the composition in C2.

We first define oblique morphisms P →D N , with P ∈ |C2 | and N ∈ |C1 |, equival-
ently as maps P → GN or FP → N (thanks to the isomorphism]). Then we observe
that oblique morphisms compose either in C1 or in C2 as follows:

f : P →D FQ

f : FP → FQ

g : Q →D N

g : FQ → N

g • f : FP → N

g • f : P →D N

f : P →D N

f : P → GN

g : GN →D M

g : GN → GM

g ◦ f : P → GM

g ◦ f : P →D M

Thus we define morphisms A→D B as oblique morphisms:�� ��A+ →D B� , where
P+ def

= P P�
def
= FP

N+ def
= GN N�

def
= N

8

In other words, we define |D | def
= |C1 |] |C2 | and (taking an irrelevant bias towards C1)

we define D(A, B) def
= C1(FA+ , B�). Positive composition is given by the composition

in C1. Composition of f ∈ D(A, N) and g ∈ D(N , B) is given by g ◦D f
def
= (g] ◦C2 f])[.

Identities are given with idD
P

def
= idC1

FP
and idD

N

def
= idC2

GN

[
.

Proposition 10. The above defines a pre-duploid D .

Proof (sketch). ••-associativity is given, and ◦◦-associativity is immediate using the
fact that] and [are inverse. •◦-associativity relies on the fact that the transformations]
and [are natural. �

Remark 11. In particular P is the Kleisli category (C2)GF of the monad GF and N is
the Kleisli category (C1)FG of the co-monad FG.

The pre-duploid has shifts, defined as follows:

⇑P
def
= FP ⇓N

def
= GN

D(P, ⇑P) 3 delayP
def
= idC1

FP
∈ C1(FP, FP)

D(⇑P, P) 3 forceP
def
= (idGFP)[∈ C1(FGFP, FP)

D(N , ⇓N) 3 wrapN
def
= idC1

FGN
∈ C1(FGN , FGN)

D(⇓N , N) 3 unwrapN
def
= (idGN)[∈ C1(FGN , N)

It is easy to see that:

Proposition 12. Every adjunction determines a duploid as above.

3.3 Linear and Thunkable Morphisms in Duploids

In duploids, we have the following useful characterisation of linear and thunkable
morphisms.

Proposition 13. In a duploid D , let f ∈ D(A, P). Then f is thunkable if and only if:

(wrap⇑P ◦ delayP) • f = wrap⇑P ◦ (delayP • f) (5)

Dually, let f ∈ D(N , B). Then f is linear if and only if:

f ◦ (unwrapN • force⇓N) = (f ◦ unwrapN) • force⇓N

Proof. We establish the non-trivial implication for the first case. The second case is
obtained by symmetry. First we prove that any morphism that satisfies (5) also satisfies
(h ◦ delayP) • f = h ◦ (delayP • f) for any h ∈ D(⇑P, A). Indeed for any such h we have:

(h ◦ delayP) • f = (h ◦ unwrap⇑P) • (wrap⇑P ◦ delayP) • f

= (h ◦ unwrap⇑P) • wrap⇑P ◦ (delayP • f) (by hypothesis)

= h ◦ (delayP • f)

9

Now we prove that f is thunkable. For any g, h we have:

(h ◦ g) • f = (h ◦ (g • forceP) ◦ delayP) • f

= h ◦ (g • forceP) ◦ (delayP • f) (with the above)

= h ◦ ((g • forceP ◦ delayP) • f) (with the above again)

= h ◦ (g • f) �

By applying the above proposition to the duploid construction, we easily deduce the
following:

Proposition 14. Let F a(η,ε) G : C1 → C2 be an adjunction, and consider the associ-
ated duploid D . Then f ∈ D(N , A) is linear if and only if f ◦εFGN = f ◦FGεN (in C1),
and f ∈ D(A, P) is thunkable if and only if its transpose f] ∈ C2(A+ ,GFP) satisfies
ηGFP ◦ f

] = GFηP ◦ f
] (in C2).

Now recall that an adjunction F a G that satisfies either of the following equivalent
statements is called idempotent: the multiplication of the associated monad is an iso-
morphism; or the co-multiplication of the associated co-monad is an isomorphism; or
we have εGF = GFε ; or we have ηFG = FGη. Thus we deduce the following:

Corollary 15. Let F a(η,ε) G : C1 → C2. The associated duploid D is a category if
and only if the adjunction is idempotent.

3.4 Structure of Shifts

As we have seen, the Kleisli category of a co-monad is described by a runnable monad;
and the Klesli category of a monad is described by a thunk, which is a co-monad. We ob-
serve a similar phenomenon with duploids. We show that there is a reversed adjunction,
in the sense that the right adjoint ⇑ is from positives to negatives:�� ��⇓ a ⇑ : P → N

Actually, we state a wider adjunction. First remark that we can extend the shifts ⇓, ⇑ to
all objects in a straightforward manner:

⇓A
def
=

⇓N if A = N

P if A = P

⇑A
def
=

N if A = N

⇑P if A = P

delayN
def
= idN : N → ⇑N

forceN
def
= idN : ⇑N → N

wrapP
def
= idP : P → ⇓P

unwrapP
def
= idP : ⇓P → P

By “extend”, we mean that we have for all f , g:

(f forceA) ◦ (delayA g) = f g delayA forceA = idA

(f unwrapA) • (wrapA g) = f g wrapA unwrapA = idA

Also, extending proposition 8, we have, for all objects A, that unwrapA and wrapA are
thunkable whereas delayA and forceA are linear.

10

Proposition 16. Let D be a duploid. The following:

⇑ f
def
= delayB f forceA ⇓ f

def
= wrapB f unwrapA

define functors ⇑ : Dl → Nl and ⇓ : Dt →Pt that take part in adjoint equivalences of
categories I a(delay,force) ⇑ : Dl → Nl and I a(wrap,unwrap) ⇓ : Dt →Pt , where I denotes
the inclusion functors.

Proof (sketch). The result follows from the fact that delay and force are inverse natural
transformations in Dl ; likewise for wrap and unwrap in Dt . �

We can deduce the following:

Proposition 17. Let D be a duploid. We have natural isomorphisms between (pro-)func-
tors

�� ��Dt (−, I⇑=) ' D(−,=) ' Dl (I⇓−,=) : Dt
op
× Dl → Set where I denotes the

inferrable inclusion functors.

In particular, leaving the inclusion functors implicit, we have the adjunctions:

Dt

⇓
((

⊥ Dl

⇑

ii N

⇓
))

⊥ P
⇑

ii

The adjunction ⇓ a ⇑ distinguishes our interpretation of polarities from ones based
on adjunctions of the form ↑ a ↓ that appears in the context of focusing in logic and
continuation-passing style in programming (see Laurent [11], Zeilberger [25]). Our dir-
ect notion of polarities adds a level of granularity. In terms of continuations, our po-
larities makes the distinction between continuations that are meant to be applied and
continuations that are meant to be passed.

3.5 The Category of Duploids

Definition 18. A functor of pre-duploids F : D1 → D2 is given by a mapping on ob-
jects |F | : |D1 | → |D2 | that preserves polarities, together with mappings on morphisms
FA ,B : D1(A, B) → D2(FA, FB), satisfying FidA = idFA and F(g f) = Fg F f .
A functor of duploids F : D1 → D2 is a functor of pre-duploids such that F forceP is
linear for all P ∈ |P1 |, and FwrapN is thunkable for all N ∈ |N1 |.

Proposition 19. Let D and D ′ be two duploids and let F : D → D ′ be a mapping on
objects |F | : |D | → |D ′ | that preserves polarities, together with mappings on morph-
isms FA ,B : D(A, B) → D ′(FA, FB). Then F is a functor of duploids if and only if F
restricts to functors Ft : Dt → D ′t and Fl : Dl → D ′l , such that the transformation
F : D(−,=)→ D ′(Ft−, Fl=) is natural.

Proof. (⇐) is easy to prove. (⇒): Suppose that F is a functor of duploids. First we
establish that the full sub-pre-duploid FD of D ′ with objects of the form FA for A ∈

|D | has a duploid structure given by Fdelay, F force, Fwrap and Funwrap. This follows
from definition 9, using the hypothesis that F force is linear and Fwrap is thunkable.

11

Then, considering proposition 13 applied to the duploid FD , we show that F preserves
linearity and thunkability. In other words it restricts to functors Ft : Dt → D ′t and
Fl : Dl → D ′l . That F : D(−,=)→ D ′(Ft−, Fl=) is a natural transformation follows
from Fh Fg F f = F(h g f) which makes sense for h linear and f thunkable. �

Definition 20. Dupl is the category whose objects are duploids and whose morphisms
are duploid functors. The obvious identity inDupl is written 1D .

3.6 Examples of Duploids

The Blass Phenomenon in Conway Games. Melliès [16] comes close to building a
duploid using the construction of Blass games. According to his analysis [16, Sec-
tion 3], the Blass problem comes down to the fact that the (pro-)functor C1(F−,=) :
C2

op
× C1 → Set, in the terminology of Section 3.2, does not extend into a functor

Pop ×N → Set where P and N are respectively the Kleisli categories of the monad
GF and the co-monad FG. This is the essence of proposition 15. He then defines a cat-
egory for an asynchronous variant of Conway games. As he shows, asynchronism is
a way to force the double-negation monad to be idempotent, and therefore to recover
associativity of composition. He builds this way a game model of linear logic.

Girard’s Polarisation. Girard’s polarised translation of the classical logic LC into
intuitionistic logic [7], further formulated by Danos, Joinet and Schellinx [5] and
Laurent [11], inspired the duploid construction. Girard’s translation corresponds to
considering in the duploid construction the self-adjunction of the negation functor
¬ = R− in Set for R arbitrary. But obviously, the duploid obtained from the self-
adjunction of negation in any response category (in the terminology of Selinger [23])
gives a denotational semantics of LC. Thielecke [24] later noticed the importance of
this self-adjunction in the understanding of continuation-passing style.

Response categories have recently been refined into dialogue categories by Melliès
and Tabareau [17] to provide a denotational semantics of linear logic via the polarised
translation. This was conceived as an abstract account of the asynchronous games of
Melliès [16] mentioned above.

Direct Models of Call by Value and of Call by Name. We defined a pre-duploid with a
bijection ⇑ : |P | → |N | from a thunk-force category (P , •, id, L, ϑ, ε). We complete
the definition into a duploid by defining ⇓ : |N | → |P | with ⇓⇑P def

= LP; and delay,
force, wrap, unwrap in an obvious manner. We can show that thunk-force categories are
characterised as duploids where ⇑ is bijective on objects. Symmetrically, we can show
that categories with a runnable monad are characterised as duploids where ⇓ is bijective
on objects.

4 Structure Theorem

4.1 Every Duploid Comes From an Adjunction

Proposition 21. Let D be a duploid. We define ↑ : Pt → Nl the restriction of ⇑ and
↓ : Nl → Pt the restriction of ⇓. There is an adjunction ↑ a ↓ with unit wrap⇑ ◦ delay
and co-unit unwrap • force⇓.

12

Proof. Due to the adjoint equivalences from proposition 16, we have the following nat-
ural isomorphisms:

Nl (⇑I−,=) ' Dl (I−, I=) : Pt
op
× Nl → Set

Pt (−, ⇓I=) ' Dt (I−, I=) : Pt
op
× Nl → Set ,

where I denotes the inferrable inclusion functors. Since we have Dl (P, N) =

D(P, N) = Dt (P, N), we also have Dl (I−, I=) = Dt (I−, I=) above. Thus we have a
natural isomorphism Nl (↑−,=) = Nl (⇑I−,=) ' Pt (−, ⇓I=) = Pt (−, ↓=). We can
check that the unit is wrap⇑ ◦ delay and the co-unit is unwrap • force⇓. �

Proposition 22. There is an isomorphism between D and the duploid D ′ obtained from
the above adjunction ↑ a ↓.

Proof (sketch). Recall that D ′ is defined with |D ′ | = |D | and D ′(A, B) = Nl (↑⇓A,
⇑B). According to propositions 16 and 17, we have natural isomorphisms D(−,=) '
Dl (I⇓−,=) ' Nl (↑⇓−, ⇑=), and thus for all A, B ∈ |D | we have a bijection D(A, B)→
D ′(A, B). It is easy to verify that this mapping defines a functor of duploids F : D →
D ′. Using the characterisation of proposition 19, its inverse is a functor of duploids. �

4.2 The Equalising Requirement

Definition 23. An adjunction F a(η,ε) G : C1 → C2 satisfies the equalising require-
ment if and only if for all P ∈ |C2 |, ηP is an equaliser of ηGFP and GFηP , and for all
N ∈ |C1 |, εN is a co-equaliser of εFGN and FGεN .

We give an equivalent formulation of this condition in terms of the associated duploid:

Proposition 24. Let F a(η,ε) G : C1 → C2 be an adjunction, and consider the associ-
ated duploid D . The adjunction satisfies the equalising requirement if and only if for all
objects A, P, N the following three conditions hold:

1. εN is an epimorphism and ηP is a monomorphism; or equivalently G and F are
faithful;

2. all linear morphisms f ∈ D(N , A) are of the form g ◦ εN with g ∈ C1(N , A−); or
equivalently all linear morphisms are in the image of G modulo the adjunction;

3. all thunkable morphisms f ∈ D(A, P) are (modulo the adjunction) of the form
ηP ◦ g with g ∈ C2(A+ , P); or equivalently all thunkable morphisms are in the
image of F;

Proof (sketch). Follows from the characterisation in proposition 14. �

Proposition 25. Let D be a duploid and consider the adjunction ↑ a ↓ : Nl → Pt .
The adjunction satisfies the equalising requirement.

Proof (sketch). Follows easily from the fact that ε = unwrap• force⇓ has a section in N ,
namely delay⇓ • wrap : 1 →̇ ⇑⇓, and symmetrically for η. �

13

4.3 Main Result

We consider pseudo maps of adjunctions as defined by Jacobs [9]:

Definition 26. Let F a(η,ε) G : C1 → C2 and F′ a(η′ ,ε′) G′ : C ′1 → C ′2 be two
adjunctions. A pseudo map of adjunctions:�� ��(H1 , H2 , φ,ψ) : (F a(η,ε) G)→ (F′ a(η′ ,ε′) G

′)

is given by a pair of functors H1 : C1 → C ′1 and H2 : C2 → C ′2 together with natural

isomorphisms φ : F′H2
'
→ H1F and ψ : G′H1

'
→ H2G, such that H1 and H2 preserve

η and ε up to isomorphism: H2η = ψF ◦G
′φ ◦ η′

H2
and H1ε = ε′

H1
◦ F′ψ−1 ◦ φ−1

G
.

As noted by Jacobs, two pseudo maps (H1 , H2 , φ,ψ) and (H ′1 , H
′
2 , φ
′ ,ψ′) compose as:

(H ′1 , H
′
2 , φ
′ ,ψ′) ◦ (H1 , H2 , φ,ψ) = (H ′1H1 , H

′
2H2 , H

′
1φ ◦ φ

′
H2
, H ′2ψ ◦ψ

′
H1

) .

Definition 27. The category of adjunctionsAdj has adjunctions between locally small
categories as objects and pseudo maps of adjunctions as morphisms. The full subcat-
egoryAdjeq ofAdj consists in adjunctions that satisfy the equalising requirement.

Theorem 28. There are a reflection and an equivalence as follows:

Dupl 'Adjeq /Adj

Proof (sketch). The functor j : Adj → Dupl is given on objects by the duploid con-
struction. The functor i :Dupl →Adjeq is given on objects by proposition 25. Propos-
ition 22 gives the family of isomorphisms jiD ' D .

The complete proof appears in the author’s PhD thesis, Chapter II [20].
Intuitively, theorem 28 together with proposition 24 mean that the duploid construc-

tion j completes the values with all the expressions that are pure, and completes the
stacks with all the evaluation contexts that are linear. Moreover j identifies any two val-
ues that denote the same expression, and any two stacks that denote the same evaluation
context.

5 Ongoing Work

This work was developed during a collaboration with Marcelo Fiore and Pierre-Louis
Curien, in an effort to connect the L system [4,8,19,20] with adjunction models. The
calculus suggests that connectives should have an elegant characterisation in terms of
duploids, which is the subject of an ongoing work.

Acknowledgements. I am grateful to Pierre-Louis Curien and Marcelo Fiore for their
influence and support, as well as for their careful reading and suggestions. I am grateful
to Paul-André Melliès for the many discussions. For discussions relevant to this article
I also wish to thank Jean-Yves Girard, Hugo Herbelin and Olivier Danvy. Thanks to the
anonymous reviewers for their suggestions. This work has been partially supported by
the French National Research Agency3 and by the Fondation Sciences Mathématiques
de Paris.
3 Projects Choco (ANR-07-BLAN-0324), Coquas (ANR-12-JS02-006-01), Logoi (ANR-10-

BLAN-0213) and Recre (ANR-11-BS02-0010).

14

References

1. Abramsky, S.: Sequentiality vs. concurrency in games and logic. Math. Struct. Comput. Sci.
13(4), 531–565 (2003)

2. Ariola, Z.M., Herbelin, H.: Control Reduction Theories: the Benefit of Structural Substitu-
tion. Journal of Functional Programming 18(3), 373–419 (May 2008)

3. Blass, A.: A game semantics for linear logic. Ann. Pure Appl. Logic 56(1-3), 183–220 (1992)
4. Curien, P.L., Herbelin, H.: The duality of computation. ACM SIGPLAN Notices 35, 233–243

(2000)
5. Danos, V., Joinet, J.B., Schellinx, H.: A New Deconstructive Logic: Linear Logic. Journal of

Symbolic Logic 62 (3), 755–807 (1997)
6. Führmann, C.: Direct Models for the Computational Lambda Calculus. Electr. Notes Theor.

Comput. Sci. 20, 245–292 (1999)
7. Girard, J.Y.: A new constructive logic: Classical logic. Math. Struct. Comp. Sci. 1(3), 255–

296 (1991)
8. Herbelin, H.: C’est maintenant qu’on calcule, au cœur de la dualité (2005), habilitation thesis
9. Jacobs, B.: Comprehension categories and the semantics of type dependency. Theor. Comput.

Sci. 107(2), 169–207 (1993)
10. Lafont, Y., Reus, B., Streicher, T.: Continuation Semantics or Expressing Implication by Neg-

ation. Tech. rep., University of Munich (1993)
11. Laurent, O.: Etude de la polarisation en logique. Thèse de doctorat, Université Aix-

Marseille II (mar 2002)
12. Laurent, O., Quatrini, M., Tortora de Falco, L.: Polarized and focalized linear and classical

proofs. Ann. Pure Appl. Logic 134(2-3), 217–264 (2005)
13. Levy, P.B.: Call-by-Push-Value: A Subsuming Paradigm. In: Proc. TLCA ’99. pp. 228–242

(1999)
14. Levy, P.B.: Adjunction models for call-by-push-value with stacks. In: Proc. Cat. Th. and

Comp. Sci., ENTCS. vol. 69 (2005)
15. Loday, J.L.: Generalized bialgebras and triples of operads. arXiv preprint math/0611885

(2006), http://arxiv.org/abs/math/0611885
16. Melliès, P.A.: Asynchronous Games 3 An Innocent Model of Linear Logic. Electr. Notes

Theor. Comput. Sci. 122, 171–192 (2005)
17. Melliès, P.A., Tabareau, N.: Resource modalities in tensor logic. Ann. Pure Appl. Logic

161(5), 632–653 (2010)
18. Moggi, E.: Computational Lambda-Calculus and Monads. In: LICS (1989)
19. Munch-Maccagnoni, G.: Focalisation and Classical Realisability. In: Proc. CSL ’09. LNCS,

Springer-Verlag (2009)
20. Munch-Maccagnoni, G.: Syntax and Models of a non-Associative Composition of Programs

and Proofs. Ph.D. thesis, Univ. Paris Diderot (2013)
21. Murthy, C.R.: A Computational Analysis of Girard’s Translation and LC. In: LICS. pp. 90–

101. IEEE Computer Society (1992)
22. Selinger, P.: Re: co-exponential question. Message to the Category Theory mailing list

(July 1999), http://permalink.gmane.org/gmane.science.mathematics.
categories/1181

23. Selinger, P.: Control Categories and Duality: On the Categorical Semantics of the Lambda-
Mu Calculus. Math. Struct in Comp. Sci. 11(2), 207–260 (2001)

24. Thielecke, H.: Categorical Structure of Continuation Passing Style. Ph.D. thesis, University
of Edinburgh (1997)

25. Zeilberger, N.: On the unity of duality. Ann. Pure and App. Logic 153:1 (2008)

15

http://arxiv.org/abs/math/0611885
http://permalink.gmane.org/gmane.science.mathematics.categories/1181
http://permalink.gmane.org/gmane.science.mathematics.categories/1181

