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Abstract Application of recent insights from logic and beautiful ideas from functional programming
and linear logic to solving a long-standing problem for resource-management in modern systems
programming languages (Rust/C++11): the generation of efficient destructors (clean-up functions) by
the compilers.
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General presentation of the topic

A major evolution in programming languages in the recent years has been the advent of modern
resource-management features in the systems programming languages C++11 (Stroustrup et al.,
2015) and Rust (Matsakis and Klock II, 2014). In what one might initially think unrelated, many re-
cent advances in the theory of programming languages are due to the Curry-Howard correspondence
between functional programming, logic and category theory.

In our team, we have been studying some of these systems programming features, via the Curry-
Howard correspondence, from the point of view of linear logic (Girard, 1987; Melliès, 2009; Baker,
1994), and established a connection with a variant called ordered logic or non-commutative logic
(Lambek, 1958).1 This opened further research directions on the general theme of merging of sys-
tems programming and functional programming (with the ultimate goal of creating the Next Best
Programming Language).2

Of these research directions, some can interest future young researchers who are looking for a
hands-on approach to programming language development, others can interest more mathematically-
inclined ones who are interested in advancing the theory of programming languages and its connec-
tion to logic. This internship subject can interest both and can evolve into a PhD subject in either
direction.

1Combette and Munch-Maccagnoni, 2018.
2Munch-Maccagnoni, 2018.
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Goal of the internship

Types with destructor Recently, we have proposed the notion of ordered algebraic data types to
model the types of resources in C++11/Rust: those types with an associated destructor, a clean-up
action (such as freeing some memory, closing a file. . . ) that has to be called reliably and predictably
at the end of the value’s lifetime.3 This is the primary mechanism for dealing with memory in these
languages without a garbage collector.

Ordered algebraic data types are algebraic data types (like in OCaml) to which a destructor is
associated, in a way that follows structurally from the type. For instance, when A and B have
associated destructors (for instance if they have been defined by the user with an explicit effectful
destructor), the type of pairs A⊗B has a destructor which first calls the destructor of A and then the
one of B. The types A⊗B and B⊗ A are distinct, because they do not destroy A and B in the same
order, hence the adjective ordered.

There are for instance two types of list: µX .(1⊕(A⊗X )) defines the type of lists whose elements are
destroyed in list order, whereas µX .(1⊕(X⊗A)) defines the type of lists whose elements are destroyed
in reverse order.4 In Rust, this corresponds to the following two types which differ similarly in the
way they dispose of their values:

pub struct List<A> { node: Option<Box<(A, List<A>)>>, }

pub struct List2<A> { node: Option<Box<(List2<A>, A)>>, }

For such types defined by the user, the destructor is automatically generated by the compiler based
on whatever destructor is associated to type parameter A.

The stack overflow issue It is a known issue in C++11 and Rust that the naive destructor imple-
mented recursively (as currently done by all compilers currently) causes a stack overflow (does too
many recursive calls) on too deep data. The user is then encouraged to reimplement the destructor
by hand, sometimes trading stack space for time (by traversing repeatedly) or for heap space (by
enqueuing elements to be destroyed), and sometimes by altering its meaning (changing the order
or delaying the destruction). It was widely believed that the ideal destructor did not exist and thus
could not be generated by the compiler.

In M.-M. and Douence (2019), we showed how for ordered algebraic data types, the correct destruc-
tor could be implemented with constant stack and heap space usage, and how it could be derived in
a systematic manner. It combines and extends two beautiful ideas developed in functional program-
ming. (It can be read for a more detailed contextualisation, as it is quite short.)

Scaling the solution We want to make this theoretical result applicable, for instance as a concrete
proposal in discussions with Rust developers. For this purpose, it is necessary to extend the result to
abstract data types. Abstract data types are those whose definition is hidden from the user, and not
known in advance to the compiler (this includes library-defined container types such as vectors). In
practice, types found in programs are composed from such container types (e.g. Box in the Rust ex-
ample), while the method we have developed so far only works on fully-known types. This extension
seems doable and interesting.

Internship task The internship task is to understand the paper (Munch-Maccagnoni and Douence,
2019) with the help of the advisor, be able to present it in more details, and, as a research in team

3Munch-Maccagnoni and Douence, 2019.
4Using analogies between functional programming and linear logic that are important here, we write ⊗ for the constructor

of pairs and ⊕ for the constructor of variant type (also called sum types). µ denotes a least fixed-point.
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with the advisor, to extend the result as explained above, and, if successful, to contribute to the
publication of the result in an international conference or journal.

According to the student’s taste, the development can remain purely theoretical, or it can be sup-
ported by a prototype implementation in OCaml, or a formalisation of proofs in the Coq proof as-
sistant (the student interested in the Coq proof assistant will benefit from the Gallinette team’s
expertise on Coq).

Notes

• Our team Gallinette provides a nice atmosphere. It is a large and young team of researchers
in Nantes, specialised in logic, programming languages, and the formalisation of mathemat-
ics. Many colleagues and students work on the development and application of the Coq proof
assistant.

• My speciality is in logic and denotational semantics (e.g. lambda-calculus). More recently, I
have found this area of application of my works to programming languages5, and I started
hacking and contributing to the OCaml language runtime. I interact both with researchers in
logic/semantics and with OCaml/Rust researchers and implementers in the industry.

• Funding is available for travel (e.g. workshops and visits abroad). Collaborations are possible
with the University of Cambridge.

Expected abilities of the student As a young researcher, you probably already have:

• outstanding creativity,
• taste and capacity for acquiring a bibliographic knowledge of a topic,
• teamwork,
• clear and rigorous writing,
• good oral presentation skills.

More specifically for this topic, and less importantly, one expects:

• Some interest in programming languages, their theory and implementation, or the Curry-
Howard correspondence.

• Knowledge of, or interest, in learning Rust (or C++) at a basic level.
• Optionally some experience in, and taste for, programming in OCaml.
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