
A proposal for a
resource-management
model for OCaml
Guillaume Munch-Maccagnoni

Inria, LS2N CNRS

25th June 2018
Gallium Seminar

Long: the goal is not to get to the end of the talk
Interrupt me if anything sounds unclear/dubious

Manual resource management

void f () {
X * p = new X;
// ...
g(p);

}

void g(X * p) {
// ...
delete p;

}

Manual resource management

void f () {
X * p = new X;
// ...
g(p);

}

void g(X * p) {
// ...

}

Leak

Manual resource management

int f () {
X * p = new X;
// ...
return 0;
// ...
delete p;

}

Leak

Manual resource management

void f () {
X * p = new X;
// ...
g(p);
// ...
delete p;

}

void g(X * p) {
// ...
throw std::runtime_error("error");

}

Leak

Manual resource management

void f () {
X * p = new X;
// ...
g(p);
// ...
delete p;

}

void g(X * p) {
// ...
delete p;

}

Double-free

Manual resource management

void f () {
X * p = new X;
// ...
g(p);
// ...
h(p);

}

void g(X * p) {
// ...
delete p;

}

Use-after-free

Manual resource management

void f (std::vector<std::string> vec) {
std::string const & x = vec[0];
// ...
vec.push_back("resize");
// ...
g(x);

}

Iterator invalidation

Manual resource management

Resource: value which is hard to copy or dispose of
• large or shared data structures

(⇒ memory management)
• low-level abstractions (continuations...)
• anything that needs to be cleaned-up (file handle,

sockets, locks, values from a foreign runtime...)
• anything that restricts aliasing
• ...any data structure containing the above (lists of

resources, closures of resources...)

Automatic resource management

Garbage collection

Automatic resource management

Thanks
Questions?

Resource management Semantic foundations Resource Polymorphism

Automatic resource management

Garbage collection

A run-time optimisation that anticipates or delays the
collection of resources that can be trivially disposed of.

Resource management Semantic foundations Resource Polymorphism

Automatic resource management

Well done! Now what about the rest?

Resource management Semantic foundations Resource Polymorphism

Automatic resource management

Destructors

“Resource Acquisition Is Initialisation” (RAII)

Stroustrup

Resource management Semantic foundations Resource Polymorphism

Automatic resource management

void f () {
X a;
// ...
g(a);
// ...
// <- a.~X()

}

Resource management Semantic foundations Resource Polymorphism

Automatic resource management

void f () {
X a;
// ...
g(a); // <- a.~X()
// ...

}

void g (X const & a) {
// ...
throw std::runtime_error("error");

}

Resource management Semantic foundations Resource Polymorphism

Automatic resource management

Basic exception-safety (Stroustrup):
Leave data in a valid state, do not leak

Not GC-based finalizers
(need predictability and reliability)

Resource management Semantic foundations Resource Polymorphism

Automatic resource management

Move semantics

Baker (1994), Hinnant et al. (2003)

Ownership/affine types

Resource management Semantic foundations Resource Polymorphism

Automatic resource management

void f () {
auto a = make_unique<X>();
// ...
g(move(a));
// ...

}

void g (std::unique_ptr<X> a) {
// ...
// <- a.~X(); free(a);

}

Resource management Semantic foundations Resource Polymorphism

Automatic resource management

void f () {
auto a = make_unique<X>();
std::vector<std::unique_ptr<X>> vec{move(a)};
// ...
g(move(vec));
// ...

}

void g (std::vector<std::unique_ptr<X>> vec) {
// ...
// <- ~X(); delete vec;

}

Resource management Semantic foundations Resource Polymorphism

Automatic resource management
void f () {
auto a = make_unique<X>();
Mutex<X> m{move(a)};
// ...
g(m);
// ...
// <- ~X()

}

void g (Mutex const & m) {
Lock l = m.lock();
X & x = l.access();
// ...
// <- l.~Lock();

}

Resource management Semantic foundations Resource Polymorphism

Automatic resource management

void f () {
auto a = make_unique<X>();
// ...
g(move(a));
// ...

7 h(a); // We want a compile error
}

void g (std::unique_ptr<X> a) {
// ...
// <- a.~X(); free(a);

}

Resource management Semantic foundations Resource Polymorphism

Automatic resource management

Borrowing (regions)
Tofte-Talpin-Birkedal...

Cyclone

Resource management Semantic foundations Resource Polymorphism

Automatic resource management

int f () {
auto p = make_unique<X>();
X & val = *p;
// ...
g(move(p));
// ...

7 h(val); // We want a compile error
}

Resource management Semantic foundations Resource Polymorphism

Automatic resource management

Linear borrows (control of aliasing)
Rust

Resource management Semantic foundations Resource Polymorphism

Automatic resource management

void f (std::vector<std::string> vec) {
std::string const & x = vec[0];

7 vec.push_back("resize");
g(x); // We want a compile error

}

Resource management Semantic foundations Resource Polymorphism

Girard’s polarisation

Resource management Semantic foundations Resource Polymorphism

Girard’s polarisation

JA∨BK=? !A⊕ !B

!A⊕ !(!B⊕ !C) 6= !(!A⊕ !B)⊕ !C

Resource management Semantic foundations Resource Polymorphism

Girard’s polarisation

• Assign polarities to formulae corresponding to the
structural rules they satisfy

• Only introduce modalities where needed to force a
polarity

Resource management Semantic foundations Resource Polymorphism

Girard’s polarisation

Resource management Semantic foundations Resource Polymorphism

Girard’s polarisation

!A⊕ (!B⊕ !C)︸ ︷︷ ︸
+1

= (!A⊕ !B)⊕ !C

Resource management Semantic foundations Resource Polymorphism

Girard’s polarisation

Goal: minimise the number of modalities to maximise type
isomorphisms, valid η expansions...

Resource management Semantic foundations Resource Polymorphism

Girard’s polarisation

You know:
• Nullable
• lazy
• Reference-counted pointers

Resource management Semantic foundations Resource Polymorphism

Girard’s polarisation

Features from Girard & co:
• Polarity: type of types that share a computational

behaviour (Rust’s built-in traits, see also Eisenberg &
Peyton Jones’s “kinds as calling conventions”)

• Coercions between polarities which can possess a
computational contents

• Standard set of connectives & automatic inference of
polarities and coercions (polarity tables)

Resource management Semantic foundations Resource Polymorphism

Girard’s polarisation

The proposal

Polarity = Resource management mode

U (Unrestricted) GC
O (Ownership) RAII + move semantics
B (Borrow) Regions, allocation-method agnostic

A notion of resource polymorphism inspired by the C++98 →
C++11 transition (Hinnant et al.) for mixing polarities and
ensuring backwards-compatibility

Resource management Semantic foundations Resource Polymorphism

A resource modality for RAII

Joint work with G. Combette:

A resource modality for RAII

(talk at LOLA 2018 next month)

Resource management Semantic foundations Resource Polymorphism

A resource modality for RAII

Template for the Ownership modality

Resource management Semantic foundations Resource Polymorphism

A resource modality for RAII

—
A` A

∆` A Γ, A,Γ′`B—
Γ,∆,Γ′`B

Γ` A ∆`B—
Γ,∆` A⊗B

Γ, A,B,∆`C—
Γ, A⊗B,∆`C

—`1
Γ,∆`C—
Γ,1,∆`C

Γ, A`B—
Γ` A (B

Γ,B,Γ′`C ∆` A—
Γ, A (B,∆,Γ′`C

A,Γ`B—
Γ`B ◦− A

Γ,B,Γ′`C ∆` A—
Γ,∆,B ◦− A,Γ′`C

Γ, A,B,Γ′`C—
Γ,B, A,Γ′`C

Γ,Γ′`C—
Γ, A,Γ′`C

Resource management Semantic foundations Resource Polymorphism

A resource modality for RAII

Attach a destructor to a type,
to create a new type

Resource management Semantic foundations Resource Polymorphism

A resource modality for RAII

Affine typing is not at odds
with the linear logic narrative,

but arises from it

Resource management Semantic foundations Resource Polymorphism

A resource modality for RAII

Ordered data types

(A,δA→TI)⊗ (B,δ′B→TI)= (A⊗B,λ(a,b).(δ(a);δ′(b))A⊗B→TI)

(unless the monad T is commutative)

Resource management Semantic foundations Resource Polymorphism

A resource modality for RAII

Exceptions

Resource management Semantic foundations Resource Polymorphism

A resource modality for RAII

Destructors cannot raise

Resource management Semantic foundations Resource Polymorphism

A resource modality for RAII

Moving performs an effect

Resource management Semantic foundations Resource Polymorphism

This proposal

Propositions in language design and implementation
Looking for the “sweet spot”: between simplicity, modularity,
expressiveness...
Three levels
1. Type system
2. Language abstractions (here)
3. Runtime (here)

Resource management Semantic foundations Resource Polymorphism

This proposal

Moving and erasure perform effects

Key design point: do not guess linearity from use count

3 Force making clear when a function is designed
to be compatible with RAII (backwards-compatibility &
no surprise)

3 Separate linearity & borrow checking
from type inference (ease of implementation)

Resource management Semantic foundations Resource Polymorphism

Ownership polarity

Naive approach
• A special drop (typeclass|trait|modular implicit) baked

into the compiler
• Two types of types: Ownership (with drop and move

semantics) and Unrestricted (as usual)
• U <: O for parametric polymorphism
• Assume for now everything is GC-allocated

Resource management Semantic foundations Resource Polymorphism

Ownership polarity

type u = t with destructor f
(* must not raise *)

type file_in = in_channel
with destructor close_in_noerr

Resource management Semantic foundations Resource Polymorphism

Ownership polarity

let open_file name : file_in =
new file_in (open_in name)

Resource management Semantic foundations Resource Polymorphism

Ownership polarity

let drop *x = ()
(* val drop : ”a -> unit = <fun> *)

let fancy_drop *x =
try
let y = x in raise Exit

with
Exit -> ()

Resource management Semantic foundations Resource Polymorphism

Ownership polarity

let create_and_move name =
let x = open_file name in
f x (* move resource *)

Resource management Semantic foundations Resource Polymorphism

Ownership polarity

let twice1 name =
let f = open_file name in

7 (f,f) (* typing error: f is affine *)

Resource management Semantic foundations Resource Polymorphism

Ownership polarity

let open_list =
List.map (fun name ->

(name, open_file name))
(* (string * file_in) list : O *)

open_list l
(* Exception: Sys_error

"No such file or directory". *)

Resource management Semantic foundations Resource Polymorphism

Ownership polarity

let open_list =
List.map (fun name ->

(name, open_file name))
(* (string * file_in) list : O *)

open_list l
(* Exception: Sys_error

"No such file or directory". *)

Resource management Semantic foundations Resource Polymorphism

Ownership polarity

let rec map f = function
[] -> []

| *a::*l -> let *r = f a in r :: map f l
(* map : (”a -> ”b) -> ”a list -> ”b list *)

Compiling U <: O (abstract type)
Compile twice (monomorphisation of polarities)
U Compiled as usual
O Compiled according to RAII and move semantics,

receives destructor in argument (modular implicit)

Resource management Semantic foundations Resource Polymorphism

Ownership polarity

(What I do not speak about: Types of closures)

Practical Affine Types ∗

Jesse A. Tov Riccardo Pucella

Northeastern University
{tov,riccardo}@ccs.neu.edu

Abstract

Alms is a general-purpose programming language that supports practical
affine types. To offer the expressiveness of Girard’s linear logic while keeping
the type system light and convenient, Alms uses expressive kinds that minimize
notation while maximizing polymorphism between affine and unlimited types.

A key feature of Alms is the ability to introduce abstract affine types via
ML-style signature ascription. In Alms, an interface can impose stiffer resource
usage restrictions than the principal usage restrictions of its implementation.
This form of sealing allows the type system to naturally and directly express a
variety of resource management protocols from special-purpose type systems.

We present two pieces of evidence to demonstrate the validity of our design
goals. First, we introduce a prototype implementation of Alms and discuss our
experience programming in the language. Second, we establish the soundness
of the core language. We also use the core model to prove a principal kinding
theorem.

1 A Practical Affine Type System
Alms is a practical, general-purpose programming language with affine types. Affine
types enforce the discipline that some values are not used more than once, which
in Alms makes it easy to define new, resource-aware abstractions. General-purpose
means that Alms offers a full complement of modern language features suitable for
writing a wide range of programs. Practical means that Alms is neither vaporware
nor a minimal calculus—it is possible to download Alms today and try it out.

Rationale. Resource-aware type systems divide into two camps: foundational cal-
culi hewing closely to linear logic, and implementations of special-purpose type sys-
tems designed to solve special problems. We argue that a general, practical type
∗This is the extended version of a paper of the same title submitted to POPL 2011.

1

Resource management Semantic foundations Resource Polymorphism

Borrow polarity

&

let read_line name =
let f = open_file name in
print_endline (input_line &f);
flush stdout

Resource management Semantic foundations Resource Polymorphism

Borrow polarity

Cf. Real World OCaml

let read_line name =
let f = open_in name in
try
print_endline (input_line f);
flush stdout;
close_in f

with e ->
close_in_noerr f;
raise e

Resource management Semantic foundations Resource Polymorphism

Borrow polarity

type t = u with destructor f

x : t & ⇒ x : u &

Resource management Semantic foundations Resource Polymorphism

Borrow polarity

let read_line name =
let f = open_file name in
let g : file_in = &f in
drop f;
print_endline (input_line g)

(* Sys_error "Bad file descriptor" *)

Resource management Semantic foundations Resource Polymorphism

Borrow polarity
Linear Abstract Data Types (Baker)

module File : sig
type t : O
val open : string -> t
val input_line : t & -> string

end

let read_line name =
let f = File.open name in
let g : File.t & = &f in
drop f;
print_endline (File.input_line g)

(* Compilation error: g outlives its resource *)

Resource management Semantic foundations Resource Polymorphism

Borrow polarity

Operating on borrowed values

filter : (’a -> bool) -> ’a list -> ’a list
⇒ filter : (’a & -> bool) -> (’a &) list ->

(’a &) list

let x = &l in let y = filter f x in ...

(string * File.t) list &
vs.

(string * File.t &) list
?

Resource management Semantic foundations Resource Polymorphism

Borrow polarity

(string * File.t) list &
= ((string * File.t) &) list
= (string & * File.t &) list
= (string * File.t &) list

Resource management Semantic foundations Resource Polymorphism

Borrow polarity

(t * u) & = t & * u &
(t list) & = (t &) list
(t : G) & = t

Resource management Semantic foundations Resource Polymorphism

Borrow polarity

Mild case of iterator invalidation:

(* x : (string * File.t) list *)
let y = &x in
(* y : (string * File.t &) list *)
drop x;

7print_endline (match hd y with (x,y) -> x)

Resource management Semantic foundations Resource Polymorphism

Borrow polarity

No access to data
after destructors have been called

Resource management Semantic foundations Resource Polymorphism

Borrow polarity

A new polarity: the Borrow polarity
• Attach lifetime/region annotation to the polarity
• The lifetime/region annotation is inherited

t &@a : B@a
G <: B@a
t : B@a ∧ u : B@a ⇒ t * u : B@a

(annotation inspired by Leo White’s region-based resource
management with the type-and-effect system)

Resource management Semantic foundations Resource Polymorphism

Borrow polarity

The same design lets us consider
managing memory using RAII

Resource management Semantic foundations Resource Polymorphism

Summary
Discussed here:

• New types: affine(M : Droppable) | t &
with a built-in module type definition

Droppable = sig
type t
val drop : t -> unit

end

• New terms: new t (e) | &x
Optional ownership annotation for polymorphic bound
variables

Not discussed here: type-dependent polarities, linear
mutable state, linear borrows, types of closures, borrow
modality, affine continuations, tail calls, unsafe

Resource management Semantic foundations Resource Polymorphism

The essence of RAII allocation

Automatic memory management with RAII (C++11/Rust)
• Stack allocation & memcpy
• Unique pointers

• Ownership & borrowing discipline
• “As efficient” as raw malloc/free

• Reference-counted pointers
• Copiable
• Many costs
• Baker: minimise cost by moving, borrowing and

deferred copying

Resource management Semantic foundations Resource Polymorphism

The essence of RAII allocation

“tracing operates on live objects, while reference counting
operates on dead objects”

A Unified Theory of Garbage Collection

David F. Bacon
dfb@watson.ibm.com

Perry Cheng
perryche@us.ibm.com

V.T. Rajan
vtrajan@us.ibm.com

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

ABSTRACT
Tracing and reference counting are uniformly viewed as being fun-
damentally different approaches to garbage collection that possess
very distinct performance properties. We have implemented high-
performance collectors of both types, and in the process observed
that the more we optimized them, the more similarly they behaved
— that they seem to share some deep structure.

We present a formulation of the two algorithms that shows that
they are in fact duals of each other. Intuitively, the difference is that
tracing operates on live objects, or “matter”, while reference count-
ing operates on dead objects, or “anti-matter”. For every operation
performed by the tracing collector, there is a precisely correspond-
ing anti-operation performed by the reference counting collector.

Using this framework, we show that all high-performance col-
lectors (for example, deferred reference counting and generational
collection) are in fact hybrids of tracing and reference counting.
We develop a uniform cost-model for the collectors to quantify the
trade-offs that result from choosing different hybridizations of trac-
ing and reference counting. This allows the correct scheme to be
selected based on system performance requirements and the ex-
pected properties of the target application.

General Terms
Algorithms, Languages, Performance

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Dynamic storagemanagement; D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection);
D.4.2 [Operating Systems]: Storage Management—Garbage col-
lection

Keywords
Tracing, Mark-and-Sweep, Reference Counting, Graph Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

OOPSLA’04,Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 $5.00.

1. INTRODUCTION
By 1960, the two fundamental approaches to storage reclama-

tion, namely tracing [33] and reference counting [18] had been de-
veloped.

Since then there has been a great deal of work on garbage collec-
tion, with numerous advances in both paradigms. For tracing, some
of the major advances have been iterative copying collection [15],
generational collection [41, 1], constant-space tracing [36], barrier
optimization techniques [13, 45, 46], soft real-time collection [2, 7,
8, 14, 26, 30, 44], hard real-time collection [5, 16, 23], distributed
garbage collection [29], replicating copying collection [34], and
multiprocessor concurrent collection [21, 22, 27, 28, 39].

For reference counting, some of the major advances have been
incremental freeing [42], deferred reference counting [20], cycle
collection [17, 32, 6], compile-time removal of counting opera-
tions [9], and multiprocessor concurrent collection [3, 19, 31].

However, all of these advances have been refinements of the two
fundamental approaches that were developed at the dawn of the era
of high-level languages.

Tracing and reference counting have consistently been viewed as
being different approaches to storage reclamation. We have imple-
mented both types of collector: a multiprocessor concurrent refer-
ence counting collector with cycle collection [3, 6] and a uniproces-
sor real-time incremental tracing collector [4, 5]. In this process,
we found some striking similarities between the two approaches.
In particular, once substantial optimizations had been applied to
the naı̈ve algorithms, the difficult issues that arose were remark-
ably similar. This led us to speculate that the two algorithms in fact
share a “deep structure”.

In this paper we show that the two fundamental approaches to
storage reclamation, namely tracing and reference counting, are al-
gorithmic duals of each other. Intuitively, one can think of tracing
as operating upon live objects or “matter”, while reference count-
ing operates upon dead objects or “anti-matter”. For every oper-
ation performed by the tracing collector, there is a corresponding
“anti-operation” performed by the reference counting collector.

Approaching the two algorithms in this way sheds new light on
the trade-offs involved, the potential optimizations, and the pos-
sibility of combining reference counting and tracing in a unified
storage reclamation framework.

We begin with a qualitative comparison of tracing and reference
counting (Section 2) and then show that the two algorithms are in
fact duals of each other (Section 3). We then show that all real-
istic, high-performance collectors are in fact hybrids that combine
tracing and reference counting (Section 4). We then discuss the
problem of cycle collection (Section 5) and extend our framework
to collectors with arbitrary numbers of separate heaps (Section 6).
Using our categorization of collectors, we then present a uniform

50

Resource management Semantic foundations Resource Polymorphism

The essence of RAII allocation

Issues with reference-counting
7 Count-update is costly and inefficient
7 Cycles leak
7 Upfront allocation cost
7 Latency due to upfront deallocation cost, sometimes

cascading

Resource management Semantic foundations Resource Polymorphism

The essence of RAII allocation

RAII allocation

Trace dead cells (with destructors)

= RC restricted to a unique reference
(old idea, see Baker)

Cyclone’s dynamic regions

Resource management Semantic foundations Resource Polymorphism

The essence of RAII allocation

Allocate with RAII
3 No reference count to update
3 No cycles
• Automatic re-use of cells
• Allocator informed as soon as cells are freed, but can

delay / do it in a separate thread

Resource management Semantic foundations Resource Polymorphism

Mixing tracing GC and RAII

Set lowest bit to distinguish traced pointers
from untraced RAII pointers

Resource management Semantic foundations Resource Polymorphism

Mixing tracing GC and RAII

↓U
O : U→O

Register GC root; set destructor to unregister root.

Resource management Semantic foundations Resource Polymorphism

Mixing tracing GC and RAII

↑B
O : O→B

Forgetful functor
Uniform representation of values between GC&RAII.

Resource management Semantic foundations Resource Polymorphism

Mixing tracing GC and RAII

↓B
U : B→U

Stop propagation of region information in the type(
↓B

U(t&)⊗↓B
U(u&) 6= (↓B

Ut⊗↓B
Uu)&

)

Resource management Semantic foundations Resource Polymorphism

Mixing tracing GC and RAII

A B A * B A list A &

U U A⊗GC B µXU.(1⊕GC (A⊗GC X)) A

O U A⊗RAII ↓U
OB µXO.(1⊕RAII (A⊗RAII X)) ↑B

OA

B U A⊗G/R B µXB.(1⊕G/R (A⊗G/R X)) A

O O A⊗RAII B

B O ↓U
O↓B

UA⊗RAII B

B B A⊗G/R B

Semantics

Resource management Semantic foundations Resource Polymorphism

Mixing tracing GC and RAII

A B A * B A list A &

U U U U U

O U O O B

B U B B B

O O O

B O O

B B B

Types (resulting polarity)

Resource management Semantic foundations Resource Polymorphism

Mixing tracing GC and RAII

A B A * B A list A &

U U 0 0 0

O U 1 1 1

B U 0 0 0/1

O O 1

B O 1

B B 0

Runtime (tag for newly-introduced values, 0=traced)

Resource management Semantic foundations Resource Polymorphism

Mixing tracing GC and RAII

Generational GC (tracing live)
3 No discipline

• Shared data structures & shared mutable state
• Cycles

3 Cheap on allocation
3 Almost free for short-lived values

Resource management Semantic foundations Resource Polymorphism

Mixing tracing GC and RAII

RAII (tracing dead)
3 During life: no cost & no interruption
3 Pointers do not move

• No read/write barrier
• Can by given or lent to foreign runtimes

3 No synchronisation

Resource management Semantic foundations Resource Polymorphism

Mixing tracing GC and RAII

RAII allocation suitable for
• very-long-lived and large data (no GC load)
• interoperability with systems languages (efficiently and

expressively)
• performance-sensitive paths (pre-allocate a free list,

re-use cells during hot path, and clean-up after)

Resource management Semantic foundations Resource Polymorphism

Mixing tracing GC and RAII

Implementation: a design space for the allocator to explore.

How to best take advantage of the
statically-known re-usability and timeliness?

Resource management Semantic foundations Resource Polymorphism

Mixing tracing GC and RAII

Language design : expressiveness vs. concision

“RAII hypothesis”

(cf. generational hypothesis)
• RAII-allocated types ⊆ types with destructors

(obviously)
• Anybody using destructors already pays most of the

costs (ownership & borrowing discipline, traversing the
whole structure on destruction)

• Heuristic: types with destructors ⊆ RAII-allocated types

Resource management Semantic foundations Resource Polymorphism

Mixing tracing GC and RAII

3 Leaves the door open to affine types without destructors,
still using GC (e.g. mutable borrows)

7 Could still greatly benefit from a better support for
stack allocation/unboxing

3 Will be able to compare GC-allocation and
RAII-allocation for O types, all other things remaining
equal (meaningful benchmarks)

Resource management Semantic foundations Resource Polymorphism

Mixing tracing GC and RAII

Resources can be explored FP-style
with GC-allocated structures by borrowing

cf. Rust’s borrow splitting, slice patterns

Example: the borrowed zipper (blackboard)

Resource management Semantic foundations Resource Polymorphism

Towards a type system
Nourished from discussions with Leo White and integrating
contributions from him.
3 separate components
1. Type inference & type checking:

• Main novelty: structural functors
(t * u) & = (t &) * (u &), etc.

• Abstract types: type-dependent polarities
type +’a t : <’a> (cf. Tov & Pucella)

2. Linearity and borrow checking: integration with the
type-and-effect system

• Accessing a value of polarity B@a performs an effect @a
(non-lexical lifetimes)

• Decomposition of Rust’s copiable, read-only borrow as
t & const

3. A separation logic to verify unsafe code (à la RustBelt)

References I

Jean-Yves Girard. Linear Logic. Theoretical Computer Science, 50:
1–102, 1987.

Jean-Yves Girard. A new constructive logic: Classical logic. Math.
Struct. Comp. Sci., 1(3):255–296, 1991.

Jean-Yves Girard. On the Unity of Logic. Ann. Pure Appl. Logic,
59(3):201–217, 1993.

Henry G. Baker. Linear logic and permutation stacks - the forth
shall be first. SIGARCH Computer Architecture News, 22(1):
34–43, 1994a. doi: 10.1145/181993.181999.

Henry G. Baker. Minimum reference count updating with deferred
and anchored pointers for functional data structures. SIGPLAN
Notices, 29(9):38–43, 1994b. doi: 10.1145/185009.185016.

Henry G. Baker. "use-once" variables and linear objects - storage
management, reflection and multi-threading. SIGPLAN Notices,
30(1):45–52, 1995. doi: 10.1145/199818.199860.

References II
Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. A

New Deconstructive Logic: Linear Logic. Journal of Symbolic
Logic, 62 (3):755–807, 1997.

Mads Tofte and Jean-Pierre Talpin. Region-based memory
management. Information and computation, 132(2):109–176,
1997.

Howard E. Hinnant, Peter Dimov, and Dave Abrahams. A
proposal to add move semantics support to the c++ language,
2002. URL http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2002/n1377.htm.

Dave Clarke and Tobias Wrigstad. External uniqueness is unique
enough. In Luca Cardelli, editor, ECOOP 2003 - Object-Oriented
Programming, 17th European Conference, Darmstadt, Germany,
July 21-25, 2003, Proceedings, volume 2743 of Lecture Notes in
Computer Science, pages 176–200. Springer, 2003. doi:
10.1007/978-3-540-45070-2_9.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1377.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1377.htm

References III

David F. Bacon, Perry Cheng, and V. T. Rajan. A unified theory of
garbage collection. In John M. Vlissides and Douglas C.
Schmidt, editors, Proceedings of the 19th Annual ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2004, October
24-28, 2004, Vancouver, BC, Canada, pages 50–68. ACM, 2004.
doi: 10.1145/1028976.1028982.

Matthew Fluet, Greg Morrisett, and Amal J. Ahmed. Linear
regions are all you need. In Peter Sestoft, editor, Programming
Languages and Systems, 15th European Symposium on
Programming, ESOP 2006, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2006,
Vienna, Austria, March 27-28, 2006, Proceedings, volume 3924
of Lecture Notes in Computer Science, pages 7–21. Springer,
2006. doi: 10.1007/11693024_2.

References IV

Jesse A. Tov and Riccardo Pucella. Practical affine types. In
Thomas Ball and Mooly Sagiv, editors, Proceedings of the 38th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2011, Austin, TX, USA,
January 26-28, 2011, pages 447–458. ACM, 2011. doi:
10.1145/1926385.1926436.

Nicholas D Matsakis and Felix S Klock II. The rust language. In
ACM SIGAda Ada Letters, volume 34, pages 103–104. ACM,
2014.

Richard A. Eisenberg and Simon Peyton Jones. Levity
polymorphism. In Albert Cohen and Martin T. Vechev, editors,
Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI
2017, Barcelona, Spain, June 18-23, 2017, pages 525–539. ACM,
2017. doi: 10.1145/3062341.3062357.

References V

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek
Dreyer. Rustbelt: securing the foundations of the rust
programming language. PACMPL, 2(POPL):66:1–66:34, 2018.
doi: 10.1145/3158154.

	Resource management
	Manual resource management
	Automatic resource management

	Semantic foundations
	Girard's polarisation
	A resource modality for RAII

	Resource Polymorphism
	Ownership polarity
	The essence of RAII allocation
	Towards a type system

	Appendix
	References

