
.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Models of a
Non-Associative Composition

Guillaume Munch-Maccagnoni

LIPN, Université Paris 13

17th International Conference on Foundations of
Software Science and Computation Structures (FoSSaCS)

April 11th 2014

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

When composition is not associative
Origins

• Part of my thesis defended in December 2013.

• In 2009-2011: explanation of CPS translations for delimited
control operators. Uniform reconstruction of many variants
of delimited control operators. (State of the art:
Curien-Herbelin’s 𝜇 and ̃𝜇 binders, polarisation and
focalisation from proof theory.)

• What was new? Composition was not associative!

• Here I show that non-associativity gives a direct
characterisation of polarisation in correspondence with
adjunction-based models of computation.

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

When composition is not associative
In computer science

(ℎ ∘ 𝑔) ∙ 𝑓 ≠ ℎ ∘ (𝑔 ∙ 𝑓)

∙: composition in call by value
∘: composition in call by name
ML let y = f x in h (fun () -> g y) ≠ h (fun () -> g (f x))

Haskell (\y->h (g y)) $! (f x) ≠ h (g $! (f x))

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

When composition is not associative
In computer science

Evidence of polarisation

• Implementing call-by-name in call-by-value (Hatcliff and
Danvy) or call-by-value in call-by-name (?)

• Value restriction for polymorphism, context restriction for
existential types...

Idea
Distinction between strict and lazy types inside the same
programming language.
(Indirect: Levy, Zeilberger. Direct: Murthy, M.-M.)

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

When composition is not associative
In Game semantics: the Blass problem

Blass problem Failure of the associativity of composition when
the middle morphism is of type 𝑃 → 𝑁

Samson Abramsky. Sequentiality vs. concurrency in games
and logic.Math. Struct. Comput. Sci., 13(4):531–565, 2003

Paul-André Melliès. Asynchronous Games 3 An Innocent
Model of Linear Logic. Electr. Notes Theor. Comput. Sci.,
122:171–192, 2005

following:
Andreas Blass. A game semantics for linear logic. Ann. Pure
Appl. Logic, 56(1-3):183–220, 1992

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

When composition is not associative
In logic

Polarisation = Making the distinction between positive (∃,∨...)
and negative (∀,→ ...) connectives formal.

• Focalisation in proof search (Andreoli)
• Type isomorphism 𝐴 ≃ ¬¬𝐴 in classical logic? (Girard)
(See my companion CSL-LICS paper,On the constructive
interpretation of an involutive negation)

• Disjunction in intuitionistic logic? (Girard)
• Categorical structure of game semantics? (Melliès)

The interpretation in a category is not immediate.

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Direct models

Direct denotational model: Exact correspondence between
operations of the model and constructions of the language.

Example
CCCs for simply-typed 𝜆-calculus

• Moggi’s 𝜆𝐶-models of call by value (strong monad + Kleisli
exponentials) are indirect, but:

Example
Thunks (+ pre-monoidal structure & exponents) model
call-by-value directly.

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Direct models

• Thunks implement call by name in call by value.

• A thunk 𝐿 is a co-monad such that everymorphism 𝑓 ∶ 𝐴 → 𝐵
has a co-extension ∗𝑓 ∶ 𝐴 → 𝐿𝐵. (Usually only true for
𝑓 ∶ 𝐿𝐴 → 𝐵.)
Think 𝐿𝐴 = unit → 𝐴.

• Correspondence between direct models of call-by-value and
Moggi’s monad-based models:

Carsten Führmann. Direct Models for the
Computational Lambda Calculus. Electr. Notes Theor.
Comput. Sci., 20:245–292, 1999

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Direct models

• Duploids generalise thunks.

• They mix strict types and lazy types.

• They generalise call-by-value and call-by-name.

• They are in correspondence with adjunctions.

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Duploid construction

Let ↑ ⊣ ↓ ∶ 𝓃 → 𝓅 be an adjunction:

𝑃 → ↓𝑁—(≃)
↑𝑃 → 𝑁

(↓ ∶ 𝓃 → 𝓅)
𝑃,𝑄 objects of 𝓅 and 𝑁,𝑀 objects of 𝓃
Example Structure of CPS: Adjunction of negation with itself:

𝑃 → ¬𝑄—(≃)
¬𝑃 ← 𝑄

Duploid construction Recipe for defining a notion of morphism
𝐴 → 𝐵 with 𝐴,𝐵 from either category 𝓅 or 𝓃.

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Duploid construction
Definition An oblique morphism 𝑓 ∶ 𝑃 →𝒟 𝑁

is (equivalently) either 𝑃 → ↓𝑁 or ↑𝑃 → 𝑁
Negative composition

𝑓 ∶ 𝑃 →𝒟 𝑁—(≃)
𝑓 ∶ 𝑃 → ↓𝑁

𝑔 ∶ ↓𝑁 →𝒟 𝑀
—(≃)𝑔 ∶ ↓𝑁 → ↓𝑀

—(∘)
𝑔 ∘ 𝑓 ∶ 𝑃 → ↓𝑀
—(≃)

𝑔 ∘ 𝑓 ∶ 𝑃 →𝒟 𝑀
Positive composition

𝑓 ∶ 𝑃 →𝒟 ↑𝑄—(≃)
𝑓 ∶ ↑𝑃 → ↑𝑄

𝑔 ∶ 𝑄 →𝒟 𝑁
—(≃)

𝑔 ∶ ↑𝑄 → 𝑁
—(∙)

𝑔 ∙ 𝑓 ∶ ↑𝑃 → 𝑁
—(≃)

𝑔 ∙ 𝑓 ∶ 𝑃 →𝒟 𝑁

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Duploid construction

We define:
𝑃 →𝒟 𝑄 ≝ 𝑃 →𝒟 ↑𝑄
𝑁 →𝒟 𝑀 ≝ ↓𝑁 →𝒟 𝑀
𝑁 →𝒟 𝑃 ≝ ↓𝑁 →𝒟 ↑𝑃

Thus:

𝑔 ∙ 𝑓 composition of 𝐴
𝑓

⎯⎯→𝒟 𝑃
𝑔

⎯→𝒟 𝐵

𝑔 ∘ 𝑓 composition of 𝐴
𝑓

⎯⎯→𝒟 𝑁
𝑔

⎯→𝒟 𝐵
Hint Generalises the Kleisli constructions of the monad ↓↑ and

of the co-monad ↑↓.

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Duploid construction

Generalises the polarised translation of classical logic.
Jean-Yves Girard. A new constructive logic: Classical logic.
Math. Struct. Comp. Sci., 1(3):255–296, 1991

Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx.
A New Deconstructive Logic: Linear Logic. Journal of
Symbolic Logic, 62 (3):755–807, 1997

Olivier Laurent. Etude de la polarisation en logique. Thèse
de doctorat, Université Aix-Marseille II, mar 2002

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Intuitions

𝑓 ∘ 𝑔 first computes 𝑓 while 𝑓 ∙ 𝑔 first computes 𝑔
Hence associativity:

(ℎ ∙ 𝑔) ∙ 𝑓 = ℎ ∙ (𝑔 ∙ 𝑓)
(ℎ ∘ 𝑔) ∘ 𝑓 = ℎ ∘ (𝑔 ∘ 𝑓)
(ℎ ∙ 𝑔) ∘ 𝑓 = ℎ ∙ (𝑔 ∘ 𝑓)

But:

(ℎ ∘ 𝑔) ∙ 𝑓 ≠ ℎ ∘ (𝑔 ∙ 𝑓) in general

See Loday’s duplicial algebras:
Jean-Louis Loday. Generalized bialgebras and triples of operads.
arXiv preprint math/0611885, 2006

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Intuitions

In practice, omit parentheses in any sequence of the form:

𝑓1 ∙ ⋯ ∙ 𝑓𝑖 ∘ ⋯ ∘ 𝑓𝑛

Remaining parentheses denote sequencing
(think boxes in proof nets)

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Need for cleanliness

𝐴
𝑓

⎯⎯→𝒟 𝐵
𝑔

⎯→𝒟 𝐶

2 polarities for each of 𝐴,𝐵,𝐶

= 8 cases ?

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Comparative table

Evaluation order By value By name
Polarised

Indirect model Monad 𝑇 Co-monad 𝐿 Adjunction
𝐹 ⊣ 𝐺

Direct model Thunk
(Führmann)

Runnable monad
(e.g. ¬¬ with
𝒞 ∶ ¬¬𝐴 → 𝐴)

Duploid

Programs Kleisli maps
𝑃 → 𝑇𝑄

co-Kleisli maps
𝐿𝑁 → 𝑀

Oblique maps
↑𝑃 → 𝑁

≃ 𝑃 → ↓𝑁
Syntactic data Values Stacks Both
Completion into Thunkable

expressions
Linear evalua-
tion contexts

Both

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Magmoids

𝒟
Objects 𝐴,𝐵
Morphisms 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐵 → 𝐶...
Composition 𝑔 ◉ 𝑓 ∶ 𝐴 → 𝐶
Identity id𝐴 neutral for ◉

“unital magmoid”
(category = above + associativity)

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Magmoids
Linear and thunkable morphisms

Definition
Linear morphism 𝑓 associates to its right 𝑓 ◉ (𝑔 ◉ℎ) = (𝑓 ◉ 𝑔) ◉ℎ
Thunkable morphism 𝑓 associates to its left ℎ ◉ (𝑔 ◉ 𝑓) = (ℎ ◉ 𝑔) ◉ 𝑓

𝒟𝑙 category of linear morphisms
𝒟𝑡 category of thunkable morphisms

Proposition
Hom-functor

�� ��𝒟(−, =) ∶ 𝒟𝑡
op ×𝒟𝑙 → Set

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Pre-duploids

Definition
Pre-duploid 𝒟
Objects, morphisms, composition, identity
Polarities Mapping 𝜋 ∶ Obj(𝒟) → {+, ⊝} such that:

Every 𝑓 ∶ 𝐴 → 𝑁 is thunkable. “𝑓 is called by name”
Every 𝑔 ∶ 𝑃 → 𝐴 is linear. “𝑔 calls by value”

No need to reason by cases on polarities :
Morphisms are treated uniformly via the hom-functor 𝒟 (−, =).

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Duploids
characterise a “Blass phenomenon”

Definition
Duploid 𝒟
Pre-duploid 𝒟 + Shifts

• For every 𝑃 a negative object ⇑𝑃,
• For every 𝑁 a positive object ⇓𝑁,
• Thunkable morphisms wrap𝑁 ∶ 𝑁 → ⇓𝑁 ,
• Linear morphisms force𝑃 ∶ ⇑𝑃 → 𝑃 ,
• Inverses:

unwrap𝑁 = wrap−1
𝑁 ∶ ⇑𝑁 → 𝑁

delay𝑃 = force−1
𝑃 ∶ 𝑃 → ⇑𝑃 .

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Duploids
Main lemma

Thunkability and linearity are characterised locally:

Proposition
𝑓 ∈ 𝒟 (𝐴,𝑃) is thunkable iff:

(wrap⇑𝑃 ∘ delay𝑃) ∙ 𝑓 = wrap⇑𝑃 ∘ (delay𝑃 ∙ 𝑓)

𝑓 ∈ 𝒟 (𝑁,𝐵) is linear iff:

𝑓 ∘ (unwrap𝑁 ∙ force⇓𝑁) = (𝑓 ∘ unwrap𝑁) ∙ force⇓𝑁

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Structure of Shifts

𝒩 sub-category of morphisms 𝑁 → 𝑀.
𝒫 sub-category of morphisms 𝑃 → 𝑄.

Proposition

• ⇑ extends into an equivalence of categories 𝒟𝑙
≃
⎯→ 𝒩𝑙

• ⇓ extends into an equivalence of categories 𝒟𝑡
≃
⎯→ 𝒫𝑡

This characterises duploids.

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Structure of Shifts

Corollary

1. Adjunction
�� ��⇓ ⊣ ⇑

2. Adjunction
�� ��⇑ ⊣ ⇓ when restricted to linear and thunkable

morphisms.

For those who are familiar: Distinguishes our approach from
continuation-passing style or focusing (as in Laurent or
Zeilberger)
They are based on adjunctions of the form ↑ ⊣ ↓.

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Duploid functors

Definition
Functor 𝒟 → 𝒟 ′

• 𝐹 ∶ Obj(𝒟) → Obj(𝒟 ′) that preserves polarities.
• 𝑓 ∶ 𝐴 → 𝐵 ⇒ 𝐹𝑓 ∶ 𝐹𝐴 → 𝐹𝐵
• 𝐹id𝐴 = id𝐹𝐴
• 𝐹(𝑓 ◉ 𝑔) = 𝐹𝑓 ◉𝐹𝑔
• 𝐹force𝑃 is linear and 𝐹wrap𝑁 is thunkable

Remark No ad hoc strictness condition unlike Führmann’s
functors of Thunk-force categories.

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Duploid functors

(Functor 𝐹 ∶ 𝒞 → 𝒞 ′ between categories: natural transformation
𝒞 (−, =) → 𝒞 ′(𝐹−, 𝐹=))
Proposition
Let 𝐹 be a function on objects and on morphisms. 𝐹 is a duploid
functor 𝒟 → 𝒟 if and only if:
1. 𝐹 preserves linearity 𝐹𝑙 ∶ 𝒟𝑙 → 𝒟 ′

𝑙
2. 𝐹 preserves thunkability 𝐹𝑡 ∶ 𝒟𝑡 → 𝒟 ′

𝑡
3. 𝐹 is a natural transformation:

𝐹 ∶ 𝒟 (−, =) → 𝒟 ′(𝐹𝑡−, 𝐹𝑙=)

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Main result

Dupl: Category of duploids and duploid functors
Adj: Category of adjunctions and pseudo-maps of adjunctions

Theorem
There is a reflection:

Dupl◁Adj

i.e., the duploid construction extends into a functor 𝑗 ∶ Adj → Dupl
that admits a full and faithful right adjoint 𝑖 ∶ Dupl → Adj.

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Main result
In more details:
1. The duploid construction extends into a functor

𝑗 ∶ Adj → Dupl;
2. Every duploid arises in this way

(functor 𝑖 ∶ Dupl → Mon such that 𝑗𝑖𝒟 ≃ 𝒟);
3. There is an adjunction 𝑗 ⊣ 𝑖.

The unit maps an adjunction ↑ ⊣ ↓ to a completed
adjunction 𝑖𝑗(↑ ⊣ ↓).

4. We characterise the completion. Duploids correspond to
adjunctions satisfying an equalising requirement.

Dupl ≃ Adjeq

An adjunction inAdjeq has all the linear and thunkable
morphisms in the sense of duploids.

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Main result
Additional results

1. Depolarisation condition: the duploid is a category if and
only if the adjunction is idempotent.

2. Kleisli categories are exactly duploids where ⇑ (for monads)
or ⇓ (for co-monads) are bijective on objects.
The structure dual to thunks are runnable monads which
implement call-by-value in call-by-name.

3. Internal language based on Curien-Herbelin’s 𝜇 and ̃𝜇,
polarisation and focalisation.
A core language for abstract machines and sequent calculus.
Applied to study focalisation, CPS translations and classical
logic in my Ph.D. thesis.
(Also related: Paul Downen’s talk at ESOP on last
Wednesday)

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Conclusion

Polarisation everywhere Indirect, Call-by-name, Call-by-value...
The various biases of denotational semantics are a way of
hiding the fact that composition is not always associative a
priori.

Internal language inspired from Curien-Herbelin’s 𝜆̄𝜇 ̃𝜇 enriched
with polarities (M.-M., CSL’09).
Curien and Herbelin’s 𝜆̄𝜇 ̃𝜇 scales gracefully towards richer
models of computation, better than the 𝜆 calculus — makes
direct term languages a potent approach.

.

. . .

Motivation
. . . .
. . . .

Duploid construction
. .
. . .
. .

Duploids
. .
. . .

Category of duploids
. .
Conclusion & Perspectives

Andmore !
Includes work in progress with Marcelo Fiore and Pierre-Louis Curien

Very simple syntax for connectives (only 𝛽 and 𝜂 rules)
Suggests an elegant characterisation in terms of universal
properties over duploids.

Equational reasoning with thunkable and linear morphisms The
completion of values and stacks has good syntactic
properties. (Clean semantic notion of stoup.)

Direct models of polarised intuitionistic logic / lambda-calculus
with extensional sums / call-by-push-value.
No reason for composition to be associative without strong
normalisation.

Thank you

Pseudo-morphisms of adjunctions
Bart Jacobs. Comprehension categories and the semantics of
type dependency.Theor. Comput. Sci., 107(2):169–207, 1993

Definition
Let 𝐹 ⊣(𝜂,𝜀) 𝐺 ∶ 𝒞1 → 𝒞2 and 𝐹′ ⊣(𝜂′,𝜀′) 𝐺′ ∶ 𝒞 ′

1 → 𝒞 ′
2 be two adjunctions.

A pseudo-morphism of adjunctions:�� ��(𝐻1,𝐻2, 𝜙,𝜓) ∶ (𝐹 ⊣(𝜂,𝜀) 𝐺) → (𝐹′ ⊣(𝜂′,𝜀′) 𝐺′)

is given by a pair of functors 𝐻1 ∶ 𝒞1 → 𝒞 ′
1 and 𝐻2 ∶ 𝒞2 → 𝒞 ′

2 and a pair
of natural isomorphisms 𝜙 ∶ 𝐹′𝐻2

≃→ 𝐻1𝐹 and 𝜓 ∶ 𝐺′𝐻1
≃→ 𝐻2𝐺, such

that 𝐻1 and 𝐻2 preserve 𝜂 and 𝜀 up to isomorphism:

𝐻2𝜂 = 𝜓𝐹 ∘ 𝐺′𝜙 ∘ 𝜂′
𝐻2 𝐻1𝜀 = 𝜀′

𝐻1 ∘ 𝐹′𝜓−1 ∘ 𝜙−1
𝐺 .

The composition of (𝐻1,𝐻2, 𝜙,𝜓) with (𝐻 ′
1,𝐻 ′

2, 𝜙′,𝜓 ′) is defined as:

(𝐻 ′
1,𝐻 ′

2, 𝜙′,𝜓 ′) ∘ (𝐻1,𝐻2, 𝜙,𝜓) = (𝐻 ′
1𝐻1,𝐻 ′

2𝐻2,𝐻 ′
1𝜙 ∘ 𝜙′

𝐻2 ,𝐻
′
2𝜓 ∘ 𝜓 ′

𝐻1)

Exercise

Let (𝐸, ∘, 𝑒⊝) and (𝐸, ∙, 𝑒+) be two monoids on the same set 𝐸,
that satisfy the following mixed associativity rule:

∀𝑥, 𝑦, 𝑧 ∈ 𝐸, 𝑥 ∙ (𝑦 ∘ 𝑧) = (𝑥 ∙ 𝑦) ∘ 𝑧

Let 𝑥 ∈ 𝐸. Show that the following two properties are equivalent:

𝑥 ∙ 𝑒⊝ = 𝑥 ∘ (𝑒⊝ ∙ 𝑒⊝) (1)
∀𝑦, 𝑧 ∈ 𝐸, (𝑥 ∘ 𝑦) ∙ 𝑧 = 𝑥 ∘ (𝑦 ∙ 𝑧) (2)

𝑥 is linear

Exercise

Symmetrically the following two propositions are equivalent:

(𝑒+ ∘ 𝑒+) ∙ 𝑥 = 𝑒+ ∘ 𝑥
∀𝑦, 𝑧 ∈ 𝐸, (𝑧 ∘ 𝑦) ∙ 𝑥 = 𝑧 ∘ (𝑦 ∙ 𝑥)

𝑥 is thunkable : without side-effect

Answer to the Exercise
𝑥 ∙ 𝑒− = 𝑥 ∘ (𝑒− ∙ 𝑒−) (1)

∀𝑦, 𝑧 ∈ 𝐸, (𝑥 ∘ 𝑦) ∙ 𝑧 = 𝑥 ∘ (𝑦 ∙ 𝑧) (2)

Quite trivially one has (2) ⇒ (1). We first prove that we have:

(1) ⇒ ∀𝑦 ∈ 𝐸, 𝑥 ∘ (𝑒− ∙ 𝑦) = 𝑥 ∙ 𝑦

Proof.
Assume (1) and let 𝑦 ∈ 𝐸. We have:

𝑥 ∘ (𝑒− ∙ 𝑦) = 𝑥 ∘ (𝑒− ∙ (𝑒− ∘ 𝑦))
= 𝑥 ∘ ((𝑒− ∙ 𝑒−) ∘ 𝑦)
= (𝑥 ∘ (𝑒− ∙ 𝑒−)) ∘ 𝑦
= (𝑥 ∙ 𝑒−) ∘ 𝑦
= 𝑥 ∙ (𝑒− ∘ 𝑦)
= 𝑥 ∙ 𝑦 ∎

Answer to the Exercise
Proof of (1) ⇒ (2).
Let 𝑦, 𝑧 ∈ 𝐸. We have:

𝑥 ∘ (𝑦 ∙ 𝑧) = 𝑥 ∘ ((𝑒− ∘ 𝑦) ∙ 𝑧)

= 𝑥 ∘ (((𝑒− ∙ 𝑒+) ∘ 𝑦) ∙ 𝑧)

= 𝑥 ∘ ((𝑒− ∙ (𝑒+ ∘ 𝑦)) ∙ 𝑧)

= 𝑥 ∘ (𝑒− ∙ ((𝑒+ ∘ 𝑦) ∙ 𝑧))

= 𝑥 ∙ ((𝑒+ ∘ 𝑦) ∙ 𝑧) as previously

= (𝑥 ∙ (𝑒+ ∘ 𝑦)) ∙ 𝑧

= (𝑥 ∘ (𝑒− ∙ (𝑒+ ∘ 𝑦))) ∙ 𝑧 as previously

= (𝑥 ∘ ((𝑒− ∙ 𝑒+) ∘ 𝑦)) ∙ 𝑧
= (𝑥 ∘ (𝑒− ∘ 𝑦)) ∙ 𝑧
= (𝑥 ∘ 𝑦) ∙ 𝑧 ∎

The syntactic unital magmoid

Terms, contexts, commands:

𝑡 ⩴ 𝑥 ∣ 𝜇𝛼.𝑐 ∣…
𝑒 ⩴ 𝛼 ∣ ̃𝜇𝑥.𝑐 ∣…
𝑐 ⩴ ⟨𝑡 || 𝑒⟩

—
𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴 ∣

—
∣ 𝛼 ∶ 𝐴 ⊢ 𝛼 ∶ 𝐴

𝑐 ∶ (𝑥 ∶ 𝐴 ⊢ Δ)—
∣ ̃𝜇𝑥.𝑐 ∶ 𝐴 ⊢ Δ

𝑐 ∶ (Γ ⊢ 𝛼 ∶ 𝐴)—Γ ⊢ 𝜇𝛼.𝑐 ∶ 𝐴 ∣
Γ ⊢ 𝑡 ∶ 𝐴 ∣ ∣ 𝑒 ∶ 𝐴 ⊢ Δ—

⟨𝑡 || 𝑒⟩ ∶ (Γ ⊢ Δ)
(Reads as a type system, from top to bottom!)

The syntactic unital magmoid

Composition:
�� ��let 𝑥 be 𝑡 in 𝑢 ≝ 𝜇𝛼.⟨𝑡 ∣∣ ̃𝜇𝑥.⟨𝑢 || 𝛼⟩⟩

Variables are values:

𝑉 ⩴ 𝑥 ∣…
𝜋 ⩴ 𝛼 ∣…

Reductions and expansions:

⟨𝑉 || ̃𝜇𝑥.𝑐⟩ ⊳ 𝑐[𝑉/𝑥] 𝑒 ⊳ ̃𝜇𝑥.⟨𝑥 || 𝑒⟩
⟨𝜇𝛼.𝑐 || 𝜋⟩ ⊳ 𝑐[𝜋/𝛼] 𝑡 ⊳ 𝜇𝛼.⟨𝑡 || 𝛼⟩

One has:

let 𝑥 be 𝑦 in 𝑡 ≃ 𝑡[𝑦/𝑥]
let 𝑦 be 𝑡 in 𝑦 ≃ 𝑡

The syntactic pre-duploid

Now variables are either positive or negative:

—
𝑥+ ∶ 𝑃 ⊢ 𝑥+ ∶ 𝑃 ∣

—
𝑥⊝ ∶ 𝑁 ⊢ 𝑥⊝ ∶ 𝑁 ∣

—
∣ 𝛼+ ∶ 𝑃 ⊢ 𝛼+ ∶ 𝑃

—
∣ 𝛼⊝ ∶ 𝑁 ⊢ 𝛼⊝ ∶ 𝑁

Terms and contexts are either positive or negative:

𝑡+ ⩴ 𝑥+ ∣ 𝜇𝛼+.𝑐 ∣… 𝑡⊝ ⩴ 𝑥⊝ ∣ 𝜇𝛼⊝.𝑐 ∣…
𝑒+ ⩴ 𝛼+ ∣ ̃𝜇𝑥+.𝑐 ∣… 𝑒⊝ ⩴ 𝛼⊝ ∣ ̃𝜇𝑥⊝.𝑐 ∣…

𝑐 ⩴ ⟨𝑡+ || 𝑒+⟩ ∣ ⟨𝑡⊝ || 𝑒⊝⟩

The syntactic pre-duploid
Negative terms are values, positive contexts are stacks:

𝑉 ⩴ 𝑥+ ∣ 𝑡⊝ ∣…
𝜋 ⩴ 𝛼⊝ ∣ 𝑒+ ∣…

In particular:

⟨𝜇𝛼⊝.𝑐 || ̃𝜇𝑥⊝.𝑐′⟩ ⊳ 𝑐′[𝜇𝛼⊝.𝑐/𝑥⊝] 𝑥⊝ is called by name
⟨𝜇𝛼+.𝑐 || ̃𝜇𝑥+.𝑐′⟩ ⊳ 𝑐[̃𝜇𝑥+.𝑐′/𝛼+] 𝑥+ is called by value

Proposition
Associativity of composition:

let 𝑦 be (let 𝑥 be 𝑡 in 𝑢) in 𝑣 ≃ let 𝑥 be 𝑡 in let 𝑦 be 𝑢 in 𝑣

unless 𝑡 is positive and 𝑢 is negative.

The syntactic duploid

Coercions:
𝑉+ ⩴… ∣ {𝑡⊝} ∣… 𝑡⊝ ⩴… ∣ 𝜇{𝛼+}.𝑐 ∣…
𝑒+ ⩴… ∣ ̃𝜇{𝑥⊝}.𝑐 ∣… 𝜋⊝ ⩴… ∣ {𝑒+} ∣…

Γ ⊢ 𝑡⊝ ∶ 𝑁—Γ ⊢ {𝑡⊝} ∶ ⇓𝑁
𝑐 ∶ (𝑥⊝ ∶ 𝑁 ⊢ Δ)—

∣ ̃𝜇{𝑥⊝}.𝑐 ∶ ⇓𝑁 ⊢ Δ
𝑒+ ∶ 𝑃 ⊢ Δ—

{𝑒+} ∶ ⇑𝑃 ⊢ Δ
𝑐 ∶ (Γ ⊢ 𝛼+ ∶ 𝑃)—

Γ ⊢ 𝜇{𝛼+}.𝑐 ∶ ⇑𝑃

New reductions and expansions:

⟨{𝑡⊝} || ̃𝜇{𝑥⊝}.𝑐⟩ ⊳ 𝑐[𝑡⊝/𝑥⊝] 𝑒+ ⊳ ̃𝜇{𝑥⊝}.⟨{𝑥⊝} || 𝑒+⟩
⟨𝜇{𝛼+}.𝑐 || {𝑒+}⟩ ⊳ 𝑐[𝑒+/𝛼+] 𝑡⊝ ⊳ 𝜇{𝛼+}.⟨𝑡⊝ || {𝛼+}⟩

The syntactic duploid

A term 𝑡 is thunkable if and only if either:

1. for all 𝑐, 𝑒, 𝑞, 𝑞′,
�� ��⟨𝜇𝑞′.⟨𝑡 || ̃𝜇𝑞.𝑐⟩ ∣∣ 𝑒⟩ ≃RE𝑝

⟨𝑡 ∣∣ ̃𝜇𝑞.⟨𝜇𝑞′.𝑐 || 𝑒⟩⟩
where 𝑞 denotes an arbitrary pattern-matching
(̃𝜇𝑥, 𝜇𝛼, ̃𝜇{𝑥}, 𝜇{𝛼}…);

2. for all 𝑐, 𝑥,
�� ��⟨𝑡 || ̃𝜇𝑥.𝑐⟩ ≃RE𝑝

𝑐[𝑡/𝑥] .

Symmetrically, a context 𝑒 is linear if and only if either:

1. for all 𝑐, 𝑡, 𝑞, 𝑞′,
�� ��⟨𝑡 ∣∣ ̃𝜇𝑞′.⟨𝜇𝑞.𝑐 || 𝑒⟩⟩ ≃RE𝑝

⟨𝜇𝑞.⟨𝑡 || ̃𝜇𝑞′.𝑐⟩ ∣∣ 𝑒⟩ ; or

2. for all 𝑐, 𝛼,
�� ��⟨𝜇𝛼.𝑐 || 𝑒⟩ ≃RE𝑝

𝑐[𝑒/𝛼] .

We can easily prove many properties of linear contexts and
thunkable terms thanks to having both a global and a local
characterisation.

Führmann’s result
Dualised

Carsten Führmann. Direct Models for the Computational Lambda
Calculus. Electr. Notes Theor. Comput. Sci., 20:245–292, 1999

Runnable monads implement call-by-value in call-by-name.

Definition
(𝑇, 𝜂, 𝜌) runnable monad on a category 𝒞 : 𝑇 ∶ 𝒞 → 𝒞 functor,
𝜂 ∶ 1 .→ 𝑇 natural transformation,

�� ��𝜌 ∶ 𝑇 → 1 transformation such
that 𝜌𝑇 ∶ 𝑇2 → 𝑇 is natural, such that 𝜌 ∘ 𝜂 = id; 𝜌𝑇 ∘ 𝑇𝜂 = id𝑇 and
𝜌 ∘ 𝑇𝜌 = 𝜌 ∘ 𝜌𝑇 . ((𝑇, 𝜂, 𝜌𝑇) is a monad)

Syntactic idea 𝜆 calculus + a constant 𝜂 + a term constructor −∗.
𝑡∗ evaluates its argument until the latter is of the form 𝜂 𝑢.
Then it continues with 𝑡 𝑢.

Führmann’s result
Dualised

Comon: category of co-monads
RunMon: category of runnable monads

Theorem
ReflectionRunMon◁Comon; in other words:
The Kleisli construction determines a functor Comon → RunMon
that has a full and faithful right adjoint (RunMon → Comon)
1. Every co-monad determines a runnable monad in the Kleisli
2. Every runnable monad arises in this way
3. The co-monad we retrieve from a runnable monad has special

properties:
The set of stacks is completed into the set of all linear contexts
(+quotient of undistinguishable stacks)

4. ... and compositionally so.

Example

Rel! has a runnable monad (𝑇, 𝜂, 𝜌) defined with:
• 𝑇𝐴 ≝ 𝑀fin(𝐴);
• ([𝑚1 +⋯+𝑚𝑛], [𝑎1,… , 𝑎𝑛]) ∈ 𝑇𝑓 whenever 𝑛 ∈ ℕ and

(𝑚𝑖, 𝑎𝑖) ∈ 𝑓 for all 𝑖 ≤ 𝑛;
• ∀𝑎 ∈ 𝐴, ([[𝑎]], 𝑎) ∈ 𝜌𝐴;
• ∀𝑚 ∈ !𝐴, (𝑚,𝑚) ∈ wrap𝐴.

(Underlies Girard’s boring translation:

𝐴 → 𝐵 = !(𝐴 ⊸ 𝐵)

which is a model of commutative call-by-value.)

Example
continued

Definition
𝑓 ∙ 𝑔 ≝ 𝜌 ∘ 𝑇𝑓 ∘ 𝑔

Proposition
𝑓 ∈ Rel!(𝐴,𝐵) is linear:

∀𝑔, ℎ ∈ 𝐸, (𝑓 ∘ 𝑔) ∙ ℎ = 𝑓 ∘ (𝑔 ∙ ℎ)

if and only if:

∀𝑚 ∈ 𝑀fin(𝐴), ((𝑚, 𝑏) ∈ 𝑓 ⟹ #𝑚 = 1)

	Motivation
	When composition is not associative
	Direct models

	Duploid construction
	Duploid construction
	Intuitions

	Duploids
	Magmoids
	Duploids
	Structure of Shifts

	Category of duploids
	Duploid functors
	Main result

	Conclusion & Perspectives
	Conclusion & perspectives

	Appendix

