Polarities and classical constructiveness

Guillaume Munch-Maccagnoni

LIPN, Université Paris 13

Semantics of proofs and certified mathematics Institut Henri Poincaré thematic trimester June 4th 2014 (slides as of June 5th)

The $\lambda \ell$ calculus

Overview

Proposition (Joyal)

Any Cartesian closed category \mathcal{C} with an object 0 satisfying a natural isomorphism $0^{0^A} \simeq A$ is a boolean algebra.

Proof.

- The co-Cartesian structure is obtained by the duality 0⁻.
- One has $\mathscr{C}(0 \times 0, 0) \simeq \mathscr{C}(0, 0^0)$ and $0^0 \simeq I$ is terminal thus one has $\pi_1 = \pi_2 : 0 \times 0 \to 0$.
- Thus for any *f*, *g* : *A* → 0 one has *f* = *g* because the two projections of ⟨*f*, *g*⟩ : *A* → 0×0 are equal.
- Thus $\mathscr{C}(A \times 0^B, 0)$ contains at most one morphism, yet we have: $\mathscr{C}(A, B) \simeq \mathscr{C}(A, 0^{0^B}) \simeq \mathscr{C}(A \times 0^B, 0)$

Moral: Not easy to see which hypotheses we should relinquish.

Constructiveness, in classical logic ○●○○ ○○○○ Involutive negation

The $\lambda \ell$ calculus

Overview Indirect interpretations

- Gödel-Gentzen ¬¬-translation + Friedman-Dragalin's A-translation Π⁰₂-conservativity of Peano Arithmetic over Heyting Arithmetic
- Gödel-Gentzen ¬¬-translation + Gödel's Dialectica interpretation Interpretation of the axiom of dependent choice using bar recursion
- Translations into Girard's linear logic Denotational semantics satisfying A = ¬¬A

Involutive negation

The $\lambda \ell$ calculus

Overview

Example

$X(t_1,\ldots,t_n)^*$	def	$X(t_1, \ldots, t_n)$
$(P \lor Q)^*$	def	$P^* \lor Q^*$
$(P \land Q)^*$	def	$P^* \wedge Q^*$
$(\exists x P)^*$	def	$\exists x P^*$
$(P \rightarrow Q)^*$	₫	$\neg (P^* \land \neg Q^*)$
$(\forall x P)^*$	def	$\neg \exists x \neg P^*$

Proposition

- If $P \vdash Q$ classically then $P^* \vdash \neg \neg Q^*$ intuitionistically
- If $P \vdash Q$ classically then $P \vdash Q$ intuitionistically when P and Q are purely positive (transform an intuitionistic derivation of $P \vdash \neg \neg Q$ into one of $P \vdash (Q \rightarrow Q) \rightarrow Q$).

Constructiveness, in classical logic ○○○● ○○○○ Involutive negation

The $\lambda \ell$ calculus

Overview

Direct interpretations

- Gentzen's sequent calculus (consistency of arithmetic), notably refined by Girard and Danos, Joinet and Schellinx
- Games (Gentzen; Novikoff; Coquand)
- Formulae-as-types, λ calculi with control operators: Griffin (λC); Parigot (λμ); Curien and Herbelin (λ
 μμ̃)
- Categorical interpretations of double-negation translations: Selinger; Hofmann and Streicher.
- Avigad's classical realisability
- Krivine's classical realisability
- Aschieri, Berardi and de' Liguoro's interactive realisability and more

The $\lambda \ell$ calculus

Direct interpretations The λC calculus

- Griffin showed that the control operator *C* has type $\neg \neg P \rightarrow P$
- The most convenient way of reducing terms is with abstract machines
- The call-by-name machine of Reus and Streicher:

$\langle t \ u \parallel \pi \rangle$	\succ_n	$\langle t \parallel u \cdot \pi \rangle$
$\langle \lambda x.t \parallel u \cdot \pi \rangle$	\succ_n	$\langle t[u/x] \parallel \pi \rangle$
$\langle C \parallel t \cdot \pi \rangle$	\succ_n	$\langle t \parallel {f k}_\pi {f \cdot} { m stop} angle$
$\langle k_{\pi} \parallel t \cdot \pi' \rangle$	\succ_n	$\langle t \parallel \pi \rangle$

 $\begin{array}{c} \textbf{Constructiveness, in classical logic}\\ \circ \circ \circ \circ \\ \circ \bullet \circ \circ \end{array}$

Involutive negation 0000 00000 The $\lambda \ell$ calculus

Direct interpretations The meaning of Π_2^0 -conservativity

- In the presence of side effects such as control, programs of certain types (functions, etc.) are opaque at runtime.
- But programs of type $P \vdash Q$ are still algorithms when P and Q are purely positive.

In other words, we do not assume that the behaviour of proofs has to be referentially transparent. Thus a proof of $A \lor \neg A$ needs not provide a decision procedure for A.

The $\lambda \ell$ calculus 0000000

Direct interpretations Lots of relationships

- Continuation-passing-style (CPS) translations that implement control operators are ¬¬-translations (*Murthy*) in a certain relationship with Gödel-Gentzen ¬¬-translations (*Lafont, Reus and Streicher and Laurent*)
- Girard's classical sequent calculus = refined ¬¬-translation + A-translation (*Murthy*)
- Avigad's classical realisability = ¬¬-translation + A-translation + modified realisability (Avigad)
- Interactive realisability = A-translation + modified realisability (*Aschieri and Berardi*)
- Krivine's classical realisability = ¬¬-translation + A-translation + modified realisability (+ Cohen's Forcing) (Oliva and Streicher)
- (2014) Formulae-as-types for Gödel's Dialectica interpretation (*Pédrot*)

 $\begin{array}{c} \textbf{Constructiveness, in classical logic}\\ \circ\circ\circ\circ\\ \circ\circ\circ\bullet \end{array}$

Involutive negation

The $\lambda \ell$ calculus

Direct interpretations Lots of relationships

- Coherent picture emerges
- Understanding the translations is at least as important as understanding the intuitionistic target
- Direct interpretations amount to studying both translations and their target at the same time

Expressive vs. fine-grained interpretations

- Expressiveness ex. "Is it possible to realise the formula A?"
 - Cut-elimination
 - Witness extraction
 - Consistency

(easier)

- Understanding the fine details ex. "Is there a behaviour common to all realisers of A?"
 - In particular: type isomorphisms (thus: Equational theory with η laws)
 - Rewriting theory
 - Böhm theorem
 - Is there a canonical interpretation for classical logic?

Expressive vs. fine-grained interpretations

Here: Classical natural deduction that satisfies:

 $A\simeq \neg\neg A \quad , \quad \neg \, \forall x(A\rightarrow B)\simeq \exists x(A\wedge \neg B) \, \dots$

(*i.e.* reasoning by contrapositive) with a clear constructive (*i.e.* programming) content: the $\lambda \ell$ calculus, where ℓ is a control operator that we introduce

Guillaume Munch-Maccagnoni. Formulae-as-types for an involutive negation. In Proceedings of the joint meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (CSL-LICS), 2014. To appear

Expressive vs. fine-grained interpretations The λC calculus is not fine-grained enough

- Cartesian closed (i.e. call-by-name λ calculus)
- *A* is a retract of $\neg \neg A$
- Example:

 $(\neg \forall \mathbf{x} \in \mathbb{N} A) \to \exists \mathbf{y} \in \mathbb{N} \neg A$

has a proof with the following skeleton:

 $\lambda xy.(C \lambda k.(x \lambda e.(C \lambda l.(k (y e l)))))$

 Reasoning by contrapositive is non-trivial and counter-intuitive (Yet *e.g.* Krivine realises the axiom of dependent choice via its contrapositive)

Expressive vs. fine-grained interpretations The λC calculus is not fine-grained enough

Realising $(\neg \forall x \in \mathbb{N} A) \rightarrow \exists y \in \mathbb{N} \neg A$ should be as simple as:

- **1.** Evaluating the argument until a stack of the form $n \cdot \pi$ appears
- **2.** Return the pair (n, k_{π}) where k_{π} is the continuation of type $\neg A$

This is more or less what happens in the $\lambda \ell$ calculus

Formulae-as-types for an involutive negation Polarisation

- Give a formal status to the polarities of connectives Goal: reconcile β-reductions with η-expansions
- For negative connectives, η -expansion delays evaluation. E.g. for \rightarrow :

tu vs $\lambda x.tux$

Consequently, terms of a negative type are called by name

For positive connectives, η-expansion forces evaluation. E.g. for ∨:

E[u] *vs* match *u* with (l(x).E[l(x)] | r(x).E[r(x)])Consequently, terms of a positive type are called by value

Formulae-as-types for an involutive negation Polarisation

- Introduced by Girard in order to give a meaning to A = ¬¬A in classical sequent calculus (the logic *LC*)
- In *LC*, negation is defined by duality and is therefore not given as a connective
- Negation inverts the polarity
- The main insight of *LC* is, to me, the idea that the introduction rules of negation, taken as a connective, hide cuts

The $\lambda \ell$ calculus

Formulae-as-types for an involutive negation

$$\frac{\Gamma, N \stackrel{\pi}{\vdash} \Delta}{\Gamma \vdash \neg N, \Delta} \qquad \Gamma', \neg N \stackrel{\pi'}{\vdash} \Delta' \qquad \triangleright \qquad \frac{N \vdash N}{\vdash \neg N, N} \qquad \Gamma', \neg N \stackrel{\pi'}{\vdash} \Delta' \qquad \Gamma, N \stackrel{\pi}{\vdash} \Delta' \qquad \\ \frac{\Gamma' \vdash \neg N, \Delta' \qquad \Gamma, \Gamma' \vdash \Delta, \Delta'}{\Gamma, \Gamma' \vdash \Delta, \Delta'} \qquad \triangleright \qquad \frac{\Gamma' \vdash N, \Delta' \qquad \Gamma, N \stackrel{\pi}{\vdash} \Delta}{\Gamma, \Gamma' \vdash \Delta, \Delta'} \qquad \\ \frac{\Gamma' \stackrel{\pi'}{\vdash} \neg P, \Delta' \qquad \frac{\Gamma \stackrel{\pi}{\vdash} P, \Delta}{\Gamma, \Gamma' \vdash \Delta, \Delta'} \qquad \triangleright \qquad \frac{\Gamma' \stackrel{\pi'}{\vdash} \neg P, \Delta' \qquad \frac{P \vdash P}{P, \neg P \vdash}{\Gamma', P \vdash \Delta'}}{\Gamma, \Gamma' \vdash \Delta, \Delta'}$$

Formulae-as-types for an involutive negation Captured contexts are not continuations

- We show that Girard's logic is related to the idea in programming of having high-level access to the components of the contexts captured by control operators
- The type of captured contexts is therefore different from the type of continuations. Continuations are functions, and the contents of functions cannot be accessed in an immediate way
- It is obvious in "real-world" programming languages such as *C* that captured contexts are more primitive than continuations

Formulae-as-types for an involutive negation Captured contexts are not continuations

One more motivation:

- Krivine simplifies reasoning in the λC calculus, by allowing certain *pseudo-types* in the left-hand side of implications.
- For technical reasons, an essential pseudo-type in Krivine's work is the set $\{k_{\pi} \mid \pi \in X\}$. This also amounts to distinguishing a positive type of captured stacks from the type of continuations $X \to \bot$.
- The difference is, we will do so in a direct manner, making such types first class, in the sense that we define their meaning also when they are on the right-hand side of implications.

Involutive negation

The $\lambda \ell$ calculus

The $\lambda \ell$ calculus

- We introduce the positive type $\sim A$ of *inspectable stacks*, which is distinct from the negative type $A \rightarrow \bot$ of continuations
- We define negation in function of the polarity with:

$$\neg P \stackrel{\text{\tiny def}}{=} P \rightarrow \bot \qquad , \qquad \neg N \stackrel{\text{\tiny def}}{=} \sim N$$

(defining negation in function of the polarity is reminiscent of Danos, Joinet and Schellinx)

• In the $\lambda \ell$ calculus we have the following isomorphisms:

$$P \simeq \sim (P \to \bot)$$
$$N \simeq (\sim N) \to \bot$$
$$\sim \forall \mathbf{x} (A \to B) \simeq \exists \mathbf{x} (A \land \sim B)$$

Involutive negation

The $\lambda \ell$ calculus $0 \bullet 00000$

The $\lambda \ell$ calculus

- The values that inhabit the type ~*A* are of the form [π] where π is a context of the abstract machine
- We introduce combinators that let us access the contents of these inspectable stacks

$$D_{\rightarrow} : (\sim (A \rightarrow B)) \rightarrow (A \land \sim B)$$
$$D_{\forall} : (\sim \forall x N) \rightarrow \exists x \sim N$$

Involutive negation

The $\lambda \ell$ calculus 000000

The $\lambda \ell$ calculus

Example

We derive $D_{\forall \rightarrow} : (\sim \forall x(A \rightarrow B)) \rightarrow \exists x(A \land \sim B)$ as follows:

$$D_{\forall \rightarrow} \stackrel{\text{\tiny def}}{=} \lambda x^+ \text{.let } y^+ \text{ be } D_{\forall} x^+ \text{ in } D_{\rightarrow} y^+$$

 $D_{\forall \rightarrow}$ reduces as follows:

$$\langle D_{\forall \rightarrow} \| [V \cdot \pi] \cdot \pi_+ \rangle \succ_p^* \langle (V, [\pi]) \| \pi_+ \rangle$$

In pattern-matching notation, $D_{\forall \rightarrow}$ is the function:

 $\lambda[x \cdot \alpha].(x, [\alpha])$

(compare to the term of the λC calculus)

The $\lambda \ell$ calculus 000000

The $\lambda \ell$ calculus

A captured stack $[\pi]$ can be re-installed as the context of another term *t* by the constant send¹:

$$\langle \text{send} \| [\pi] \cdot t \cdot \pi' \rangle >_p \langle t \| \pi \rangle$$

In other words, the constant send converts a captured stack into a continuation:

send: $(\sim A) \rightarrow A \rightarrow \bot$

¹For didactic reasons, the present versions of send and ℓ (next slide) are undelimited variants of the operators from the article.

The $\lambda \ell$ calculus 0000000

The $\lambda \ell$ calculus

The operator responsible for the apparition of inspectable stacks is ℓ :

$$\ell: (A \to \bot) \to \sim A$$

This operation is formally described by introducing the j_{π} operator (analogous to the k_{π} of λC). The operator ℓ saves with j the context π in which ℓ is applied:

$$\langle \ell \parallel t \cdot \pi \rangle \succ_p \langle t \parallel j_{\pi} \cdot \text{stop} \rangle$$

Once the operator j_{π} comes in head position, it captures the stack and restores the context π :

$$\langle \mathbf{j}_{\pi} \parallel \pi' \rangle \succ_p \langle [\pi'] \parallel \pi \rangle$$

Involutive negation

The $\lambda \ell$ calculus 0000000

The $\lambda \ell$ calculus Contributions in details

- A language of untyped realisers (quasi-proofs)
- The issue of ⊥ in an untyped setting is solved with control delimiters (inspired by Ariola, Herbelin and Sabry; Herbelin and Ghilezan)
- $\lambda \ell$ is provided with an equational theory by embedding into a sequent calculus whose cut-elimination is confluent $(L_{pol,\hat{tp}} \text{ inspired by Curien and Herbelin's } \bar{\lambda}\mu\tilde{\mu})$
- Double-negation translations for λl and L_{pol,ŵ} simulate reductions and preserve equivalences (hence strong normalisation of typed terms and coherence)
- A direct computational interpretation of polarities, which can be adapted for non-classical Call-by-Push-Value models
- Contains De Groote-Saurin's $\Lambda\mu$ and variants of the the $shift_0/reset_0$ operators

Involutive negation

The $\lambda \ell$ calculus 000000

The $\lambda \ell$ calculus Contributions in details

The catch is: we give up associativity of composition when the middle map is from positive to negative (*duploids*, see the second part)

Thank you