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Overview
Proposition (Joyal)
Any Cartesian closed category 𝒞 with an object 0 satisfying a
natural isomorphism 00𝐴 ≃ 𝐴 is a boolean algebra.

Proof.

• The co-Cartesian structure is obtained by the duality 0−.
• One has 𝒞 (0×0, 0) ≃ 𝒞 (0, 00) and 00 ≃ 𝐼 is terminal

thus one has 𝜋1 = 𝜋2 ∶ 0×0 → 0.
• Thus for any 𝑓 , 𝑔 ∶ 𝐴 → 0 one has 𝑓 = 𝑔

because the two projections of ⟨𝑓 , 𝑔⟩ ∶ 𝐴 → 0×0 are equal.

• Thus 𝒞 (𝐴×0𝐵, 0) contains at most one morphism, yet we have:
𝒞 (𝐴,𝐵) ≃ 𝒞 (𝐴, 00𝐵) ≃ 𝒞 (𝐴×0𝐵, 0) ∎

Moral: Not easy to see which hypotheses we should relinquish.



. . . .

. . . .

Constructiveness, in classical logic
. . . .
. . . . .

Involutive negation
. . . . . . .
The 𝜆ℓ calculus

Overview
Indirect interpretations

• Gödel-Gentzen ¬¬-translation + Friedman-Dragalin’s
A-translation
Π0

2-conservativity of Peano Arithmetic over Heyting Arithmetic
• Gödel-Gentzen ¬¬-translation + Gödel’s Dialectica
interpretation
Interpretation of the axiom of dependent choice using bar
recursion

• Translations into Girard’s linear logic
Denotational semantics satisfying 𝐴 = ¬¬𝐴
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Overview
Example

𝑋(𝑡1,… , 𝑡𝑛)∗ ≝ 𝑋(𝑡1,… , 𝑡𝑛)
(𝑃 ∨ 𝑄)∗ ≝ 𝑃∗ ∨ 𝑄∗

(𝑃 ∧ 𝑄)∗ ≝ 𝑃∗ ∧ 𝑄∗

(∃𝑥 𝑃)∗ ≝ ∃𝑥 𝑃∗

(𝑃 → 𝑄)∗ ≝ ¬(𝑃∗ ∧¬𝑄∗)
(∀𝑥 𝑃)∗ ≝ ¬∃𝑥 ¬𝑃∗

Proposition

• If 𝑃 ⊢ 𝑄 classically then 𝑃∗ ⊢ ¬¬𝑄∗ intuitionistically
• If 𝑃 ⊢ 𝑄 classically then 𝑃 ⊢ 𝑄 intuitionistically when 𝑃 and 𝑄
are purely positive (transform an intuitionistic derivation of
𝑃 ⊢ ¬¬𝑄 into one of 𝑃 ⊢ (𝑄 → 𝑄) → 𝑄).
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Overview
Direct interpretations

• Gentzen’s sequent calculus (consistency of arithmetic),
notably refined by Girard and Danos, Joinet and Schellinx

• Games (Gentzen; Novikoff; Coquand)
• Formulae-as-types, 𝜆 calculi with control operators:
Griffin (𝜆𝒞); Parigot (𝜆𝜇); Curien and Herbelin (𝜆̄𝜇 ̃𝜇)

• Categorical interpretations of double-negation translations:
Selinger; Hofmann and Streicher.

• Avigad’s classical realisability
• Krivine’s classical realisability
• Aschieri, Berardi and de’ Liguoro’s interactive realisability

and more
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Direct interpretations
The 𝜆𝒞 calculus

• Griffin showed that the control operator 𝒞 has type ¬¬𝑃 → 𝑃
• The most convenient way of reducing terms is with abstract
machines

• The call-by-name machine of Reus and Streicher:

⟨𝑡 𝑢 || 𝜋⟩ ≻𝑛 ⟨𝑡 || 𝑢⋅𝜋⟩
⟨𝜆𝑥.𝑡 || 𝑢⋅𝜋⟩ ≻𝑛 ⟨𝑡[𝑢/𝑥] || 𝜋⟩
⟨𝒞 || 𝑡⋅𝜋⟩ ≻𝑛 ⟨𝑡 || k𝜋⋅stop⟩
⟨k𝜋 || 𝑡⋅𝜋 ′⟩ ≻𝑛 ⟨𝑡 || 𝜋⟩



. . . .

. . . .

Constructiveness, in classical logic
. . . .
. . . . .

Involutive negation
. . . . . . .
The 𝜆ℓ calculus

Direct interpretations
Themeaning of Π0

2-conservativity

• In the presence of side effects such as control, programs of
certain types (functions, etc.) are opaque at runtime.

• But programs of type 𝑃 ⊢ 𝑄 are still algorithms when 𝑃 and
𝑄 are purely positive.

In other words, we do not assume that the behaviour of proofs
has to be referentially transparent. Thus a proof of 𝐴 ∨¬𝐴 needs
not provide a decision procedure for 𝐴.
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Direct interpretations
Lots of relationships

• Continuation-passing-style (CPS) translations that implement
control operators are ¬¬-translations (Murthy) in a certain
relationship with Gödel-Gentzen ¬¬-translations (Lafont, Reus
and Streicher and Laurent)

• Girard’s classical sequent calculus = refined ¬¬-translation
+ A-translation (Murthy)

• Avigad’s classical realisability = ¬¬-translation + A-translation
+ modified realisability (Avigad)

• Interactive realisability = A-translation + modified realisability
(Aschieri and Berardi)

• Krivine’s classical realisability = ¬¬-translation + A-translation
+ modified realisability (+ Cohen’s Forcing) (Oliva and Streicher)

• (2014) Formulae-as-types for Gödel’s Dialectica interpretation
(Pédrot)
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Direct interpretations
Lots of relationships

• Coherent picture emerges

• Understanding the translations is at least as important as
understanding the intuitionistic target

• Direct interpretations amount to studying both translations
and their target at the same time
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Expressive vs. fine-grained interpretations

• Expressiveness
ex. “Is it possible to realise the formula 𝐴?”

• Cut-elimination
• Witness extraction
• Consistency

(easier)

• Understanding the fine details
ex. “Is there a behaviour common to all realisers of 𝐴?”

• In particular: type isomorphisms
(thus: Equational theory with 𝜂 laws)

• Rewriting theory
• Böhm theorem
• Is there a canonical interpretation for classical logic?
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Expressive vs. fine-grained interpretations

Here: Classical natural deduction that satisfies:

𝐴 ≃ ¬¬𝐴 , ¬∀𝑥(𝐴 → 𝐵) ≃ ∃𝑥(𝐴 ∧¬𝐵)…

(i.e. reasoning by contrapositive)
with a clear constructive (i.e. programming) content:

the 𝜆ℓ calculus, where ℓ is a control operator that we introduce

Guillaume Munch-Maccagnoni. Formulae-as-types for an
involutive negation. In Proceedings of the joint meeting of the
Twenty-Third EACSL Annual Conference on Computer Science
Logic and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (CSL-LICS), 2014. To appear
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Expressive vs. fine-grained interpretations
The 𝜆𝒞 calculus is not fine-grained enough

• Cartesian closed (i.e. call-by-name 𝜆 calculus)
• 𝐴 is a retract of ¬¬𝐴
• Example:

(¬∀x ∈ ℕ 𝐴) → ∃y ∈ ℕ ¬𝐴
has a proof with the following skeleton:

𝜆𝑥𝑦.(𝒞 𝜆𝑘.(𝑥 𝜆𝑒.(𝒞 𝜆𝑙.(𝑘 (𝑦 𝑒 𝑙)))))

• Reasoning by contrapositive is non-trivial and
counter-intuitive
(Yet e.g. Krivine realises the axiom of dependent choice via
its contrapositive)
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Expressive vs. fine-grained interpretations
The 𝜆𝒞 calculus is not fine-grained enough

Realising (¬∀x ∈ ℕ 𝐴) → ∃y ∈ ℕ ¬𝐴 should be as simple as:
1. Evaluating the argument until a stack of the form 𝑛 ⋅ 𝜋

appears
2. Return the pair (𝑛, k𝜋) where k𝜋 is the continuation of type

¬𝐴
This is more or less what happens in the 𝜆ℓ calculus
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Formulae-as-types for an involutive negation
Polarisation

• Give a formal status to the polarities of connectives
Goal: reconcile 𝛽-reductions with 𝜂-expansions

• For negative connectives, 𝜂-expansion delays evaluation. E.g.
for →:

𝑡𝑢 𝑣𝑠 𝜆𝑥.𝑡𝑢𝑥

Consequently, terms of a negative type are called by name
• For positive connectives, 𝜂-expansion forces evaluation. E.g.
for ∨:

𝐸[𝑢] 𝑣𝑠 match 𝑢with (𝑙(𝑥).𝐸[𝑙(𝑥)] ∣ 𝑟(𝑥).𝐸[𝑟(𝑥)])

Consequently, terms of a positive type are called by value
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Formulae-as-types for an involutive negation
Polarisation

• Introduced by Girard in order to give a meaning to 𝐴 = ¬¬𝐴
in classical sequent calculus (the logic LC)

• In LC, negation is defined by duality and is therefore not
given as a connective

• Negation inverts the polarity
• The main insight of LC is, to me, the idea that the
introduction rules of negation, taken as a connective, hide
cuts
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Formulae-as-types for an involutive negation
Polarisation

Γ,𝑁
𝜋
⊢ Δ—Γ ⊢ ¬𝑁,Δ Γ′, ¬𝑁

𝜋 ′

⊢ Δ′
—

Γ, Γ′ ⊢ Δ,Δ′
⊳

—
𝑁 ⊢ 𝑁—
⊢ ¬𝑁,𝑁 Γ′, ¬𝑁

𝜋 ′

⊢ Δ′
—

Γ′ ⊢ 𝑁,Δ′ Γ,𝑁
𝜋
⊢ Δ—

Γ, Γ′ ⊢ Δ,Δ′

Γ′ 𝜋 ′

⊢ ¬𝑃,Δ′
Γ

𝜋
⊢ 𝑃,Δ—Γ, ¬𝑃 ⊢ Δ—

Γ, Γ′ ⊢ Δ,Δ′
⊳

Γ
𝜋
⊢ 𝑃,Δ

Γ′ 𝜋 ′

⊢ ¬𝑃,Δ′

—
𝑃 ⊢ 𝑃—

𝑃, ¬𝑃 ⊢—
Γ′,𝑃 ⊢ Δ′

—
Γ, Γ′ ⊢ Δ,Δ′
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Formulae-as-types for an involutive negation
Captured contexts are not continuations

• We show that Girard’s logic is related to the idea in
programming of having high-level access to the components
of the contexts captured by control operators

• The type of captured contexts is therefore different from the
type of continuations. Continuations are functions, and the
contents of functions cannot be accessed in an immediate
way

• It is obvious in “real-world” programming languages such as
C that captured contexts are more primitive than
continuations
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Formulae-as-types for an involutive negation
Captured contexts are not continuations

One more motivation:
• Krivine simplifies reasoning in the 𝜆𝒞 calculus, by allowing
certain pseudo-types in the left-hand side of implications.

• For technical reasons, an essential pseudo-type in Krivine’s
work is the set {k𝜋 ∣ 𝜋 ∈ 𝑋}. This also amounts to
distinguishing a positive type of captured stacks from the
type of continuations 𝑋 → ⊥.

• The difference is, we will do so in a direct manner, making
such types first class, in the sense that we define their
meaning also when they are on the right-hand side of
implications.
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The 𝜆ℓ calculus
• We introduce the positive type ∼𝐴 of inspectable stacks,
which is distinct from the negative type 𝐴 → ⊥ of
continuations

• We define negation in function of the polarity with:

¬𝑃 ≝ 𝑃 → ⊥ , ¬𝑁 ≝ ∼𝑁

(defining negation in function of the polarity is reminiscent
of Danos, Joinet and Schellinx)

• In the 𝜆ℓ calculus we have the following isomorphisms:

𝑃 ≅ ∼(𝑃 → ⊥)
𝑁 ≅ (∼𝑁) → ⊥
∼∀x(𝐴 → 𝐵) ≅ ∃x(𝐴 ∧ ∼𝐵)
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The 𝜆ℓ calculus

• The values that inhabit the type ∼𝐴 are of the form [𝜋]
where 𝜋 is a context of the abstract machine

• We introduce combinators that let us access the contents of
these inspectable stacks

𝐷→ ∶ (∼(𝐴 → 𝐵)) → (𝐴 ∧ ∼𝐵)
𝐷∀ ∶ (∼∀𝑥 𝑁) → ∃𝑥 ∼𝑁
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The 𝜆ℓ calculus

Example
We derive 𝐷∀→ ∶ (∼∀x(𝐴 → 𝐵)) → ∃x(𝐴 ∧ ∼𝐵) as follows:

𝐷∀→ ≝ 𝜆𝑥+.let 𝑦+ be𝐷∀ 𝑥+ in𝐷→ 𝑦+

𝐷∀→ reduces as follows:

⟨𝐷∀→ || [𝑉⋅𝜋]⋅𝜋+⟩ ≻∗
𝑝 ⟨(𝑉, [𝜋]) || 𝜋+⟩

In pattern-matching notation, 𝐷∀→ is the function:

𝜆[𝑥 ⋅ 𝛼].(𝑥, [𝛼])

(compare to the term of the 𝜆𝒞 calculus)
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The 𝜆ℓ calculus

A captured stack [𝜋] can be re-installed as the context of another
term 𝑡 by the constant send1:

⟨send || [𝜋]⋅𝑡⋅𝜋 ′⟩ ≻𝑝 ⟨𝑡 || 𝜋⟩

In other words, the constant send converts a captured stack into a
continuation:

send ∶ (∼𝐴) → 𝐴 → ⊥

1For didactic reasons, the present versions of send and ℓ (next slide) are
undelimited variants of the operators from the article.
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The 𝜆ℓ calculus

The operator responsible for the apparition of inspectable stacks
is ℓ:

ℓ ∶ (𝐴 → ⊥) → ∼𝐴
This operation is formally described by introducing the j𝜋
operator (analogous to the k𝜋 of 𝜆𝒞).
The operator ℓ saves with j the context 𝜋 in which ℓ is applied:

⟨ℓ || 𝑡⋅𝜋⟩ ≻𝑝 ⟨𝑡 || j𝜋⋅stop⟩

Once the operator j𝜋 comes in head position, it captures the stack
and restores the context 𝜋:

⟨j𝜋 || 𝜋 ′⟩ ≻𝑝 ⟨[𝜋 ′] || 𝜋⟩
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The 𝜆ℓ calculus
Contributions in details

• A language of untyped realisers (quasi-proofs)
• The issue of ⊥ in an untyped setting is solved with control
delimiters (inspired by Ariola, Herbelin and Sabry; Herbelin
and Ghilezan)

• 𝜆ℓ is provided with an equational theory by embedding into
a sequent calculus whose cut-elimination is confluent
(Lpol,t̂p inspired by Curien and Herbelin’s 𝜆̄𝜇 ̃𝜇)

• Double-negation translations for 𝜆ℓ and Lpol,t̂p simulate
reductions and preserve equivalences
(hence strong normalisation of typed terms and coherence)

• A direct computational interpretation of polarities, which
can be adapted for non-classical Call-by-Push-Value models

• Contains De Groote-Saurin’s Λ𝜇 and variants of the the
shift0/reset0 operators
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The 𝜆ℓ calculus
Contributions in details

The catch is: we give up associativity of composition when the
middle map is from positive to negative (duploids, see the second
part)



Thank you
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