
Polarities and
classical constructiveness

Guillaume Munch-Maccagnoni

LIPN, Université Paris 13

Semantics of proofs and certified mathematics
Institut Henri Poincaré thematic trimester

June 4th 2014
(slides as of June 5th)

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

Overview
Proposition (Joyal)
Any Cartesian closed category 𝒞 with an object 0 satisfying a
natural isomorphism 00𝐴 ≃ 𝐴 is a boolean algebra.

Proof.

• The co-Cartesian structure is obtained by the duality 0−.
• One has 𝒞 (0×0, 0) ≃ 𝒞 (0, 00) and 00 ≃ 𝐼 is terminal

thus one has 𝜋1 = 𝜋2 ∶ 0×0 → 0.
• Thus for any 𝑓 , 𝑔 ∶ 𝐴 → 0 one has 𝑓 = 𝑔

because the two projections of ⟨𝑓 , 𝑔⟩ ∶ 𝐴 → 0×0 are equal.

• Thus 𝒞 (𝐴×0𝐵, 0) contains at most one morphism, yet we have:
𝒞 (𝐴,𝐵) ≃ 𝒞 (𝐴, 00𝐵) ≃ 𝒞 (𝐴×0𝐵, 0) ∎

Moral: Not easy to see which hypotheses we should relinquish.

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

Overview
Indirect interpretations

• Gödel-Gentzen ¬¬-translation + Friedman-Dragalin’s
A-translation
Π0

2-conservativity of Peano Arithmetic over Heyting Arithmetic
• Gödel-Gentzen ¬¬-translation + Gödel’s Dialectica
interpretation
Interpretation of the axiom of dependent choice using bar
recursion

• Translations into Girard’s linear logic
Denotational semantics satisfying 𝐴 = ¬¬𝐴

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

Overview
Example

𝑋(𝑡1,… , 𝑡𝑛)∗ ≝ 𝑋(𝑡1,… , 𝑡𝑛)
(𝑃 ∨ 𝑄)∗ ≝ 𝑃∗ ∨ 𝑄∗

(𝑃 ∧ 𝑄)∗ ≝ 𝑃∗ ∧ 𝑄∗

(∃𝑥 𝑃)∗ ≝ ∃𝑥 𝑃∗

(𝑃 → 𝑄)∗ ≝ ¬(𝑃∗ ∧¬𝑄∗)
(∀𝑥 𝑃)∗ ≝ ¬∃𝑥 ¬𝑃∗

Proposition

• If 𝑃 ⊢ 𝑄 classically then 𝑃∗ ⊢ ¬¬𝑄∗ intuitionistically
• If 𝑃 ⊢ 𝑄 classically then 𝑃 ⊢ 𝑄 intuitionistically when 𝑃 and 𝑄
are purely positive (transform an intuitionistic derivation of
𝑃 ⊢ ¬¬𝑄 into one of 𝑃 ⊢ (𝑄 → 𝑄) → 𝑄).

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

Overview
Direct interpretations

• Gentzen’s sequent calculus (consistency of arithmetic),
notably refined by Girard and Danos, Joinet and Schellinx

• Games (Gentzen; Novikoff; Coquand)
• Formulae-as-types, 𝜆 calculi with control operators:
Griffin (𝜆𝒞); Parigot (𝜆𝜇); Curien and Herbelin (𝜆̄𝜇 ̃𝜇)

• Categorical interpretations of double-negation translations:
Selinger; Hofmann and Streicher.

• Avigad’s classical realisability
• Krivine’s classical realisability
• Aschieri, Berardi and de’ Liguoro’s interactive realisability

and more

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

Direct interpretations
The 𝜆𝒞 calculus

• Griffin showed that the control operator 𝒞 has type ¬¬𝑃 → 𝑃
• The most convenient way of reducing terms is with abstract
machines

• The call-by-name machine of Reus and Streicher:

⟨𝑡 𝑢 || 𝜋⟩ ≻𝑛 ⟨𝑡 || 𝑢⋅𝜋⟩
⟨𝜆𝑥.𝑡 || 𝑢⋅𝜋⟩ ≻𝑛 ⟨𝑡[𝑢/𝑥] || 𝜋⟩
⟨𝒞 || 𝑡⋅𝜋⟩ ≻𝑛 ⟨𝑡 || k𝜋⋅stop⟩
⟨k𝜋 || 𝑡⋅𝜋 ′⟩ ≻𝑛 ⟨𝑡 || 𝜋⟩

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

Direct interpretations
Themeaning of Π0

2-conservativity

• In the presence of side effects such as control, programs of
certain types (functions, etc.) are opaque at runtime.

• But programs of type 𝑃 ⊢ 𝑄 are still algorithms when 𝑃 and
𝑄 are purely positive.

In other words, we do not assume that the behaviour of proofs
has to be referentially transparent. Thus a proof of 𝐴 ∨¬𝐴 needs
not provide a decision procedure for 𝐴.

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

Direct interpretations
Lots of relationships

• Continuation-passing-style (CPS) translations that implement
control operators are ¬¬-translations (Murthy) in a certain
relationship with Gödel-Gentzen ¬¬-translations (Lafont, Reus
and Streicher and Laurent)

• Girard’s classical sequent calculus = refined ¬¬-translation
+ A-translation (Murthy)

• Avigad’s classical realisability = ¬¬-translation + A-translation
+ modified realisability (Avigad)

• Interactive realisability = A-translation + modified realisability
(Aschieri and Berardi)

• Krivine’s classical realisability = ¬¬-translation + A-translation
+ modified realisability (+ Cohen’s Forcing) (Oliva and Streicher)

• (2014) Formulae-as-types for Gödel’s Dialectica interpretation
(Pédrot)

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

Direct interpretations
Lots of relationships

• Coherent picture emerges

• Understanding the translations is at least as important as
understanding the intuitionistic target

• Direct interpretations amount to studying both translations
and their target at the same time

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

Expressive vs. fine-grained interpretations

• Expressiveness
ex. “Is it possible to realise the formula 𝐴?”

• Cut-elimination
• Witness extraction
• Consistency

(easier)

• Understanding the fine details
ex. “Is there a behaviour common to all realisers of 𝐴?”

• In particular: type isomorphisms
(thus: Equational theory with 𝜂 laws)

• Rewriting theory
• Böhm theorem
• Is there a canonical interpretation for classical logic?

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

Expressive vs. fine-grained interpretations

Here: Classical natural deduction that satisfies:

𝐴 ≃ ¬¬𝐴 , ¬∀𝑥(𝐴 → 𝐵) ≃ ∃𝑥(𝐴 ∧¬𝐵)…

(i.e. reasoning by contrapositive)
with a clear constructive (i.e. programming) content:

the 𝜆ℓ calculus, where ℓ is a control operator that we introduce

Guillaume Munch-Maccagnoni. Formulae-as-types for an
involutive negation. In Proceedings of the joint meeting of the
Twenty-Third EACSL Annual Conference on Computer Science
Logic and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (CSL-LICS), 2014. To appear

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

Expressive vs. fine-grained interpretations
The 𝜆𝒞 calculus is not fine-grained enough

• Cartesian closed (i.e. call-by-name 𝜆 calculus)
• 𝐴 is a retract of ¬¬𝐴
• Example:

(¬∀x ∈ ℕ 𝐴) → ∃y ∈ ℕ ¬𝐴
has a proof with the following skeleton:

𝜆𝑥𝑦.(𝒞 𝜆𝑘.(𝑥 𝜆𝑒.(𝒞 𝜆𝑙.(𝑘 (𝑦 𝑒 𝑙)))))

• Reasoning by contrapositive is non-trivial and
counter-intuitive
(Yet e.g. Krivine realises the axiom of dependent choice via
its contrapositive)

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

Expressive vs. fine-grained interpretations
The 𝜆𝒞 calculus is not fine-grained enough

Realising (¬∀x ∈ ℕ 𝐴) → ∃y ∈ ℕ ¬𝐴 should be as simple as:
1. Evaluating the argument until a stack of the form 𝑛 ⋅ 𝜋

appears
2. Return the pair (𝑛, k𝜋) where k𝜋 is the continuation of type

¬𝐴
This is more or less what happens in the 𝜆ℓ calculus

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

Formulae-as-types for an involutive negation
Polarisation

• Give a formal status to the polarities of connectives
Goal: reconcile 𝛽-reductions with 𝜂-expansions

• For negative connectives, 𝜂-expansion delays evaluation. E.g.
for →:

𝑡𝑢 𝑣𝑠 𝜆𝑥.𝑡𝑢𝑥

Consequently, terms of a negative type are called by name
• For positive connectives, 𝜂-expansion forces evaluation. E.g.
for ∨:

𝐸[𝑢] 𝑣𝑠 match 𝑢with (𝑙(𝑥).𝐸[𝑙(𝑥)] ∣ 𝑟(𝑥).𝐸[𝑟(𝑥)])

Consequently, terms of a positive type are called by value

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

Formulae-as-types for an involutive negation
Polarisation

• Introduced by Girard in order to give a meaning to 𝐴 = ¬¬𝐴
in classical sequent calculus (the logic LC)

• In LC, negation is defined by duality and is therefore not
given as a connective

• Negation inverts the polarity
• The main insight of LC is, to me, the idea that the
introduction rules of negation, taken as a connective, hide
cuts

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

Formulae-as-types for an involutive negation
Polarisation

Γ,𝑁
𝜋
⊢ Δ—Γ ⊢ ¬𝑁,Δ Γ′, ¬𝑁

𝜋 ′

⊢ Δ′
—

Γ, Γ′ ⊢ Δ,Δ′
⊳

—
𝑁 ⊢ 𝑁—
⊢ ¬𝑁,𝑁 Γ′, ¬𝑁

𝜋 ′

⊢ Δ′
—

Γ′ ⊢ 𝑁,Δ′ Γ,𝑁
𝜋
⊢ Δ—

Γ, Γ′ ⊢ Δ,Δ′

Γ′ 𝜋 ′

⊢ ¬𝑃,Δ′
Γ

𝜋
⊢ 𝑃,Δ—Γ, ¬𝑃 ⊢ Δ—

Γ, Γ′ ⊢ Δ,Δ′
⊳

Γ
𝜋
⊢ 𝑃,Δ

Γ′ 𝜋 ′

⊢ ¬𝑃,Δ′

—
𝑃 ⊢ 𝑃—

𝑃, ¬𝑃 ⊢—
Γ′,𝑃 ⊢ Δ′

—
Γ, Γ′ ⊢ Δ,Δ′

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

Formulae-as-types for an involutive negation
Captured contexts are not continuations

• We show that Girard’s logic is related to the idea in
programming of having high-level access to the components
of the contexts captured by control operators

• The type of captured contexts is therefore different from the
type of continuations. Continuations are functions, and the
contents of functions cannot be accessed in an immediate
way

• It is obvious in “real-world” programming languages such as
C that captured contexts are more primitive than
continuations

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

Formulae-as-types for an involutive negation
Captured contexts are not continuations

One more motivation:
• Krivine simplifies reasoning in the 𝜆𝒞 calculus, by allowing
certain pseudo-types in the left-hand side of implications.

• For technical reasons, an essential pseudo-type in Krivine’s
work is the set {k𝜋 ∣ 𝜋 ∈ 𝑋}. This also amounts to
distinguishing a positive type of captured stacks from the
type of continuations 𝑋 → ⊥.

• The difference is, we will do so in a direct manner, making
such types first class, in the sense that we define their
meaning also when they are on the right-hand side of
implications.

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

The 𝜆ℓ calculus
• We introduce the positive type ∼𝐴 of inspectable stacks,
which is distinct from the negative type 𝐴 → ⊥ of
continuations

• We define negation in function of the polarity with:

¬𝑃 ≝ 𝑃 → ⊥ , ¬𝑁 ≝ ∼𝑁

(defining negation in function of the polarity is reminiscent
of Danos, Joinet and Schellinx)

• In the 𝜆ℓ calculus we have the following isomorphisms:

𝑃 ≅ ∼(𝑃 → ⊥)
𝑁 ≅ (∼𝑁) → ⊥
∼∀x(𝐴 → 𝐵) ≅ ∃x(𝐴 ∧ ∼𝐵)

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

The 𝜆ℓ calculus

• The values that inhabit the type ∼𝐴 are of the form [𝜋]
where 𝜋 is a context of the abstract machine

• We introduce combinators that let us access the contents of
these inspectable stacks

𝐷→ ∶ (∼(𝐴 → 𝐵)) → (𝐴 ∧ ∼𝐵)
𝐷∀ ∶ (∼∀𝑥 𝑁) → ∃𝑥 ∼𝑁

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

The 𝜆ℓ calculus

Example
We derive 𝐷∀→ ∶ (∼∀x(𝐴 → 𝐵)) → ∃x(𝐴 ∧ ∼𝐵) as follows:

𝐷∀→ ≝ 𝜆𝑥+.let 𝑦+ be𝐷∀ 𝑥+ in𝐷→ 𝑦+

𝐷∀→ reduces as follows:

⟨𝐷∀→ || [𝑉⋅𝜋]⋅𝜋+⟩ ≻∗
𝑝 ⟨(𝑉, [𝜋]) || 𝜋+⟩

In pattern-matching notation, 𝐷∀→ is the function:

𝜆[𝑥 ⋅ 𝛼].(𝑥, [𝛼])

(compare to the term of the 𝜆𝒞 calculus)

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

The 𝜆ℓ calculus

A captured stack [𝜋] can be re-installed as the context of another
term 𝑡 by the constant send1:

⟨send || [𝜋]⋅𝑡⋅𝜋 ′⟩ ≻𝑝 ⟨𝑡 || 𝜋⟩

In other words, the constant send converts a captured stack into a
continuation:

send ∶ (∼𝐴) → 𝐴 → ⊥

1For didactic reasons, the present versions of send and ℓ (next slide) are
undelimited variants of the operators from the article.

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

The 𝜆ℓ calculus

The operator responsible for the apparition of inspectable stacks
is ℓ:

ℓ ∶ (𝐴 → ⊥) → ∼𝐴
This operation is formally described by introducing the j𝜋
operator (analogous to the k𝜋 of 𝜆𝒞).
The operator ℓ saves with j the context 𝜋 in which ℓ is applied:

⟨ℓ || 𝑡⋅𝜋⟩ ≻𝑝 ⟨𝑡 || j𝜋⋅stop⟩

Once the operator j𝜋 comes in head position, it captures the stack
and restores the context 𝜋:

⟨j𝜋 || 𝜋 ′⟩ ≻𝑝 ⟨[𝜋 ′] || 𝜋⟩

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

The 𝜆ℓ calculus
Contributions in details

• A language of untyped realisers (quasi-proofs)
• The issue of ⊥ in an untyped setting is solved with control
delimiters (inspired by Ariola, Herbelin and Sabry; Herbelin
and Ghilezan)

• 𝜆ℓ is provided with an equational theory by embedding into
a sequent calculus whose cut-elimination is confluent
(Lpol,t̂p inspired by Curien and Herbelin’s 𝜆̄𝜇 ̃𝜇)

• Double-negation translations for 𝜆ℓ and Lpol,t̂p simulate
reductions and preserve equivalences
(hence strong normalisation of typed terms and coherence)

• A direct computational interpretation of polarities, which
can be adapted for non-classical Call-by-Push-Value models

• Contains De Groote-Saurin’s Λ𝜇 and variants of the the
shift0/reset0 operators

. . . .

. . . .

Constructiveness, in classical logic
. . . .
.

Involutive negation
.
The 𝜆ℓ calculus

The 𝜆ℓ calculus
Contributions in details

The catch is: we give up associativity of composition when the
middle map is from positive to negative (duploids, see the second
part)

Thank you

	Constructiveness in classical logic
	Overview
	Direct interpretations

	Involutive negation
	Expressive vs. fine-grained interpretations
	Formulae-as-types for an involutive negation

	The lambda-ell calculus
	The lambda-ell calculus

	Appendix

