# Formulae-as-Types for an Involutive Negation

Guillaume Munch-Maccagnoni



LIPN, Université Paris 13

Joint meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (CSL-LICS 2014) July 18th 2014

#### **Proposition (Joyal)**

Any Cartesian closed category  $\mathscr{C}$  with an object 0 satisfying a natural isomorphism  $0^{0^A} \simeq A$  is a boolean algebra (= does not distinguish proofs).

Not easy to see which hypotheses of CCCs we should relinquish.

- $\neg \neg A$  retract of A and  $\bot$  not initial Call-by-name  $\lambda C$  calculus
- Symmetric monoidal instead of Cartesian Multiplicative Linear Logic
- Composition not always associative Evaluation order defined by polarities (Here)



- Gödel-Gentzen ¬¬-translation
  - + Friedman-Dragalin's A-translation  $\Pi^0_2$ -conservativity of Peano Arithmetic over Heyting Arithmetic
- Gödel-Gentzen ¬¬-translation
  - + Gödel's Dialectica interpretation Interpretation of the axiom of dependent choice using bar recursion (Spector)
- Cut-elimination in Girard's variant LC of Gentzen's LK
   + analysis of cut-free proofs
   Sequent calculus satisfying A = ¬¬A
- CPS translation + passing the identity continuation Translations for control operators (Griffin, Murthy) in a certain relationship with Gödel-Gentzen ¬¬-translations (Lafont-Reus-Streicher, Laurent)



#### **Example**

Kuroda translation (1951) / Call-by-value CPS translation

$$X(t_{1}, \dots, t_{n})^{*} \stackrel{\text{def}}{=} X(t_{1}, \dots, t_{n})$$

$$(P \lor Q)^{*} \stackrel{\text{def}}{=} P^{*} \lor Q^{*}$$

$$(P \land Q)^{*} \stackrel{\text{def}}{=} P^{*} \land Q^{*}$$

$$(\exists x P)^{*} \stackrel{\text{def}}{=} \exists x P^{*}$$

$$(P \rightarrow Q)^{*} \stackrel{\text{def}}{=} \neg (P^{*} \land \neg Q^{*})$$

$$(\forall x P)^{*} \stackrel{\text{def}}{=} \neg \exists x \neg P^{*}$$

## **Proposition**

- If  $P \vdash Q$  classically then  $P^* \vdash \neg \neg Q^*$  intuitionistically
- If  $P \vdash Q$  classically then  $P \vdash Q$  intuitionistically when P and Q are purely positive (transform an intuitionistic derivation of  $P \vdash \neg \neg Q$  into one of  $P \vdash (Q \rightarrow Q) \rightarrow Q$ ).



#### **Direct interpretations**

- Gentzen's sequent calculus refined by Girard and Danos, Joinet and Schellinx
  - $= \neg \neg$ -translation + A-translation
- Formulae-as-types,  $\lambda$  calculi with control operators: Griffin ( $\lambda C$ ); Parigot ( $\lambda \mu$ ); Curien and Herbelin ( $\bar{\lambda} \mu \tilde{\mu}$ ) =  $\neg \neg$ -translation + A-translation
- Krivine's classical realisability
   ¬¬-translation + A-translation + modified realisability
   (+ Cohen's Forcing)

And others (Selinger, Coquand, Avigad, Aschieri-Berardi-de'Liguoro...)



The  $\lambda C$  calculus

- The control operator C can be typed with  $\neg \neg P \rightarrow P$  (Griffin)
- The most convenient way of reducing terms is with abstract machines (Krivine, Curien-Herbelin)
   The call-by-name machine of Reus and Streicher:

• Amounts to studying at once the translations and the target.



- Expressiveness ex. "Is it possible to realise the formula A?"
  - Cut-elimination
  - Witness extraction
  - Consistency
- Understanding the fine details
   ex. "Is there a behaviour common to all realisers of A?"
  - In particular: type isomorphisms (thus: Equational theory with η laws)
  - Rewriting theory
  - · Böhm theorem
  - Is there a canonical interpretation for classical logic?



Does the  $\lambda C$  calculus give a fine-grained interpretation ?

Example:

$$(\neg \forall x \in \mathbb{N} A) \to \exists y \in \mathbb{N} \neg A$$

has a proof with the following skeleton:

$$\lambda xy.(C \lambda k.(x \lambda e.(C \lambda l.(k (y e l)))))$$

 Reasoning by contrapositive is non-trivial and counter-intuitive (Yet e.g. Krivine realises the axiom of dependent choice via its contrapositive)



Does the  $\lambda C$  calculus give a fine-grained interpretation ?

Realising  $(\neg \forall x \in \mathbb{N} A) \rightarrow \exists y \in \mathbb{N} \neg A \text{ should be as simple as:}$ 

- **1.** Evaluating the argument until a stack of the form  $n \cdot \pi$  appears where n is an integer
- **2.** Return the pair  $(n, k_{\pi})$  where  $k_{\pi}$  is the continuation of type  $\neg A$

This is more or less what happens in the  $\lambda\ell$  calculus



The  $\lambda\ell$  calculus

#### The $\lambda \ell$ calculus is both:

A term syntax for classical natural deduction that satisfies:

$$A \simeq \neg \neg A$$
 ,  $\neg \forall x (A \to B) \simeq \exists x (A \land \neg B) \dots$ 

(i.e. reasoning by contrapositive)

• A Curry-style  $\lambda$  calculus with a delimited control operator ( $\ell$ ) that implements the fact that *captured stacks, contrarily to continuations, can be inspected* 



#### 1) Solving equations on abstract machines

• The  $\lambda$  calculus is universal in the sense that it represents combinators abstractly by their reduction rules. Ex:

- **1.** One can prove  $S \simeq_{\beta\eta} \lambda xyz.xz(yz)$
- **2.**  $S = \lambda xyz.xz(yz)$  is a solution
- Similarly, L calculi (here Curien-Herbelin's  $\bar{\lambda}\mu\tilde{\mu}_T$ ) are universal because they extend the above principle to abstract machines the transitions rules on the left are *solved* on the right using the  $\mu$  binder:

$$\begin{array}{lll} t \; u : & \pi \mapsto \langle t \parallel u \cdot \pi \rangle & t \; u \stackrel{\mathrm{def}}{=} \; \mu \alpha. \langle t \parallel u \cdot \alpha \rangle \\ & \mathsf{k}_{\pi} : & t \cdot \pi' \mapsto \langle t \parallel \pi \rangle & \mathsf{k}_{e} \stackrel{\mathrm{def}}{=} \; \lambda x. \mu \alpha. \langle x \parallel e \rangle \\ & C : & u \cdot \pi \mapsto \langle u \parallel \mathsf{k}_{\pi} \cdot \mathsf{stop} \rangle & C \stackrel{\mathrm{def}}{=} \; \lambda x. \mu \alpha. \langle x \parallel \mathsf{k}_{\alpha} \cdot \mathsf{stop} \rangle \end{array}$$

Caution: μ has nothing to do with least fixed-points.



#### 2) Correspondence with sequent calculus

$$\frac{\Gamma' \vdash u : A \mid \Delta' \qquad \overline{\mid \alpha : B \vdash \alpha : B} \stackrel{(ax \vdash)}{(\rightarrow \vdash)}}{\Gamma' \mid u \cdot \alpha : A \rightarrow B \vdash \alpha : B, \Delta'} \stackrel{(ax \vdash)}{(\rightarrow \vdash)}}{\frac{\langle t \parallel u \cdot \alpha \rangle : (\Gamma, \Gamma' \vdash \alpha : B, \Delta, \Delta')}{\Gamma, \Gamma' \vdash \mu \alpha. \langle t \parallel u \cdot \alpha \rangle : B \mid \Delta, \Delta'}} \stackrel{(cut)}{(\vdash \mu)}}{}_{\tau, \Gamma' \vdash \mu \alpha. \langle t \parallel u \cdot \alpha \rangle : B \mid \Delta, \Delta'}}$$



#### 3) Delimited control interprets ⊥: logic side

- Units (e.g. ⊥) are problematic when combining Curry-style + extensionality Restrict the β and η laws vs still have enough isomorphisms involving ⊥
- Dynamically-scoped variable tp:

$$\frac{c: (\Gamma \vdash \Delta)}{\Gamma \vdash \mu \hat{\mathsf{tp}}.c: \bot \mid \Delta} (\vdash \bot) \qquad \overline{\Gamma \mid \hat{\mathsf{tp}}: \bot \vdash \Delta} (\bot \vdash)$$

We do have:

$$\mu \hat{\text{tp.}} \langle t \parallel \hat{\text{tp}} \rangle \simeq t$$
  
 $\langle \mu \hat{\text{tp.}} c \parallel \hat{\text{tp}} \rangle \simeq c$ 

but no longer  $\langle \mu \alpha. c \parallel \hat{tp} \rangle \triangleright c [\hat{tp}/\alpha]$ 



#### 3) Delimited control interprets ⊥: programming side

• Auxiliary stack of stacks:

push: 
$$\langle \mu \hat{\mathfrak{p}}.c \parallel \pi_1 \rangle \{\pi_2, \ldots, \pi_n\} \triangleright c \{\pi_1, \pi_2, \ldots, \pi_n\}$$
  
pop:  $\langle t \parallel \hat{\mathfrak{p}} \rangle \{\pi_1, \pi_2, \ldots, \pi_n\} \triangleright \langle t \parallel \pi_1 \rangle \{\pi_2, \ldots, \pi_n\}$ 

• The  $\mu$  binder does not capture the auxiliary stack:

$$\langle \mu \alpha. c \parallel \pi \rangle \{ \sigma \} \rhd c[\pi/\alpha] \{ \sigma \}$$

#### "Delimited control"

(Felleisen, Danvy-Filinski — in logic: Ariola-Herbelin-Sabry, Herbelin-Ghilezan)



#### 4) Polarisation

**What** Giving a formal status to the polarities of connectives **Why** Reconcile  $\beta$ -reductions with  $\eta$ -expansions

 For negative connectives, η-expansion delays evaluation. E.g. for →:

$$tu$$
  $vs$   $\lambda x.tux$ 

For positive connectives, η-expansion forces evaluation.
 E.g. for ∨:

$$u$$
 match  $u$  with  $(l(x).l(x) | r(x).r(x))$ 

**How** Variables and terms have a polarity that determines the local reduction strategy

- Terms of a negative type like → are called by name
- Terms of a positive type like ∃ are called by value

(Girard, Danos-Joinet-Schellinx, also my 2009 paper at CSL)



#### 4) Polarisation

 Composition is not associative but reminiscent of Loday's duplicial algebras

$$(h \cdot g) \cdot f = h \cdot (g \cdot f)$$

$$(h \cdot g) \cdot f = h \cdot (g \cdot f)$$

$$(h \cdot g) \cdot f = h \cdot (g \cdot f)$$

$$(h \cdot g) \cdot f \neq h \cdot (g \cdot f) \text{ in general}$$

M.-M. Models of a non-associative composition. In A. Muscholl, editor, *FoSSaCS*, volume 8412 of *LNCS*, pages 397–412. Springer, 2014

Introduced by Girard in order to give a meaning to A = ¬¬A
 in classical sequent calculus (the logic LC)
 In LC, negation is defined by duality and is therefore not given as a connective. Negation inverts the polarity.



5) Captured contexts are not continuations

The main insight of *LC* is, to me, the idea that the introduction rules of negation, taken as a connective, hide cuts (*focalisation*)

$$\frac{ \begin{array}{c|c} \Gamma, N \stackrel{\pi}{\vdash} \Delta \\ \hline \Gamma \vdash \neg N, \Delta \\ \hline \Gamma, \Gamma' \vdash \Delta, \Delta' \end{array} \quad \triangleright \quad \frac{ \begin{array}{c|c} \hline N \vdash N \\ \hline \vdash \neg N, N \\ \hline \hline \end{array} \quad \begin{array}{c|c} \Gamma', \neg N \stackrel{\pi'}{\vdash} \Delta' \\ \hline \hline \begin{array}{c|c} \Gamma' \vdash N, \Delta' \\ \hline \hline \end{array} \quad \begin{array}{c|c} \Gamma, N \stackrel{\pi}{\vdash} \Delta \end{array} \quad \begin{array}{c|c} \Gamma, N \stackrel{\pi}{\vdash} \Delta \end{array}$$



5) Captured contexts are not continuations

- We show that Girard's LC is related to the idea in programming of having high-level access to the components of the contexts captured by control operators
- The type of captured contexts is therefore different from the type of continuations  $A \to \bot$ . Continuations are functions, and the contents of functions cannot be accessed in an immediate way
- It is obvious in "real-world" programming languages such as C (getcontext) or Smalltalk (thisContext) that captured contexts are positive objects that can be inspected. Clements' thesis theorises having high-level access to the components of the contexts.



5) Captured contexts are not continuations

#### One more motivation:

- Krivine simplifies reasoning in the  $\lambda C$  calculus, by allowing certain *pseudo-types* in the left-hand side of implications.
- For technical reasons, an essential pseudo-type in Krivine's work is the set {k<sub>π</sub> | π ∈ X}. This also amounts to distinguishing a positive type of captured stacks from the type of continuations X → ⊥.
- The difference is, we will do so in a direct manner, making such types first class, in the sense that we define their meaning also when they are on the right-hand side of implications.



Summary of the method

 $\begin{array}{c} \lambda\ell \text{ calculus} \\ \text{Classical natural deduction} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ 



- We introduce the positive type ~A of inspectable stacks, which is distinct from the negative type A → ⊥ of continuations
- We define negation in function of the polarity with:

$$\neg P \stackrel{\text{def}}{=} P \rightarrow \bot$$
 ,  $\neg N \stackrel{\text{def}}{=} \sim N$ 

(defining negation in function of the polarity is reminiscent of Danos, Joinet and Schellinx)

• In the  $\lambda \ell$  calculus we have the following isomorphisms:

$$P \qquad \cong \sim (P \to \bot)$$

$$N \qquad \cong (\sim N) \to \bot$$

$$\sim \forall x (A \to B) \qquad \cong \qquad \exists x (A \land \sim B)$$



- The values that inhabit the type  $\sim A$  are of the form  $[\pi]$  where  $\pi$  is a context of the abstract machine
- We introduce combinators that let us access the contents of these inspectable stacks

$$D_{\rightarrow} : (\sim (A \rightarrow B)) \rightarrow (A \land \sim B)$$

$$D_{\forall} : (\sim \forall x \, N) \rightarrow \exists x \sim N$$

$$D_{\perp} : \bot \rightarrow A \rightarrow A$$

$$\langle D_{\rightarrow} \parallel [V \cdot \pi_1] \cdot \pi_2 \rangle > \langle (V, [\pi_1]) \parallel \pi_2 \rangle$$

$$\langle D_{\forall} \parallel [\pi_1] \cdot \pi_2 \rangle > \langle [\pi_1] \parallel \pi_2 \rangle$$

$$\langle D_{\bot} \parallel [\pi_{\ominus}] \cdot t \cdot \pi' \rangle > \langle t \parallel \pi' \rangle \{\pi_{\ominus}\}$$



#### **Example**

We derive  $D_{\forall \neg} : (\neg \forall x (A \rightarrow B)) \rightarrow \exists x (A \land \neg B)$  as follows:

$$D_{\forall \rightarrow} \stackrel{\text{def}}{=} \lambda x^+ \text{let } y^+ \text{ be } D_{\forall} x^+ \text{ in } D_{\rightarrow} y^+$$

 $D_{\forall \rightarrow}$  reduces as follows:

$$\langle D_{\forall \rightarrow} \parallel \big[ V \cdot \pi \big] \cdot \pi_+ \rangle \{ \sigma \} \succ^* \langle (V, \big[ \pi \big]) \parallel \pi_+ \rangle \{ \sigma \}$$

*i.e.* in pattern-matching notation:

$$D_{\forall \to} \simeq \lambda[x \cdot \alpha].(x, [\alpha])$$

$$\stackrel{\text{def}}{=} \lambda[\gamma].\mu\beta.\langle \lambda x.\mu\alpha.\langle (x, [\alpha]) \parallel \beta \rangle \parallel \gamma \rangle$$

(compare to the term of the  $\lambda C$  calculus  $\lambda xy.(C \lambda k.(x \lambda e.(C \lambda l.(k (y e l))))))$ 



A captured stack  $[\pi]$  can be re-installed as the context of another term t by the constant send:

$$\langle \text{send} \parallel [\pi] \cdot t \cdot \pi' \rangle \{\sigma\} > \langle t \parallel \pi \rangle \{\pi', \sigma\}$$

In other words, the constant send converts a captured stack into a continuation:

$$\mathsf{send}: (\sim\!\!A) \to A \to \bot$$



The operator responsible for the apparition of inspectable stacks is  $\ell$ :

$$\ell: (A \to \bot) \to \sim A$$

This operation is formally described by introducing the  $j_{\pi}$  operator (analogous to the  $k_{\pi}$  of  $\lambda C$ ).

The operator  $\ell$  saves with j the context  $\pi$  in which  $\ell$  is applied:

$$\langle \ell \parallel t \cdot \pi \rangle \{ \pi', \sigma \} > \langle t \parallel j_{\pi} \cdot \pi' \rangle \{ \sigma \}$$

Once the operator  $j_{\pi}$  comes in head position, it captures the stack and restores the context  $\pi$ :

$$\langle \mathsf{j}_{\pi} \parallel \pi' \rangle \{ \sigma \} > \langle [\pi'] \parallel \pi \rangle \{ \sigma \}$$



#### **Contributions in details**

- Natural deduction, hence a language of untyped realisers (quasi-proofs), at the same time a delimited control calculus that implements high-level access to stacks
- An L calculus provides a confluent cut-elimination and an equational theory  $(L_{\mathrm{pol},\widehat{\mathfrak{p}}}$  inspired by Curien and Herbelin's  $\bar{\lambda}\mu\tilde{\mu})$
- CPS translations for  $\lambda\ell$  and  $L_{\mathrm{pol},\widehat{\mathfrak{p}}}$  simulate reductions and preserve equivalences (hence strong normalisation of typed terms and coherence)
- Subsumes call-by-value and call-by-name  $\lambda\mu$  calculus as well as De Groote-Saurin's  $\Lambda\mu$  calculus and variants of the shift<sub>0</sub>/reset<sub>0</sub> operators
- A direct computational interpretation of polarities being adapted for non-classical Call-by-Push-Value models



