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Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

Constructive interpretations of classical logic

Proposition (Joyal)
Any Cartesian closed category 𝒞 with an object 0 satisfying a
natural isomorphism 00𝐴 ≃ 𝐴 is a boolean algebra (= does not
distinguish proofs).
Not easy to see which hypotheses of CCCs we should relinquish.

• ¬¬𝐴 retract of 𝐴 and ⊥ not initial
Call-by-name 𝜆𝒞 calculus

• Symmetric monoidal instead of Cartesian
Multiplicative Linear Logic

• Composition not always associative
Evaluation order defined by polarities (Here)
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Constructive interpretations of classical logic
Two steps

• Gödel-Gentzen ¬¬-translation
+ Friedman-Dragalin’s A-translation
Π0

2-conservativity of Peano Arithmetic over Heyting Arithmetic
• Gödel-Gentzen ¬¬-translation
+ Gödel’s Dialectica interpretation
Interpretation of the axiom of dependent choice using bar
recursion (Spector)

• Cut-elimination in Girard’s variant LC of Gentzen’s LK
+ analysis of cut-free proofs
Sequent calculus satisfying 𝐴 = ¬¬𝐴

• CPS translation + passing the identity continuation
Translations for control operators (Griffin, Murthy) in a certain
relationship with Gödel-Gentzen ¬¬-translations
(Lafont-Reus-Streicher, Laurent)
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Constructive interpretations of classical logic
Example

Kuroda translation (1951) / Call-by-value CPS translation
𝑋(𝑡1,… , 𝑡𝑛)∗ ≝ 𝑋(𝑡1,… , 𝑡𝑛)

(𝑃 ∨ 𝑄)∗ ≝ 𝑃∗ ∨ 𝑄∗

(𝑃 ∧ 𝑄)∗ ≝ 𝑃∗ ∧ 𝑄∗

(∃𝑥 𝑃)∗ ≝ ∃𝑥 𝑃∗

(𝑃 → 𝑄)∗ ≝ ¬(𝑃∗ ∧¬𝑄∗)
(∀𝑥 𝑃)∗ ≝ ¬∃𝑥 ¬𝑃∗

Proposition

• If 𝑃 ⊢ 𝑄 classically then 𝑃∗ ⊢ ¬¬𝑄∗ intuitionistically
• If 𝑃 ⊢ 𝑄 classically then 𝑃 ⊢ 𝑄 intuitionistically when 𝑃 and 𝑄
are purely positive (transform an intuitionistic derivation of
𝑃 ⊢ ¬¬𝑄 into one of 𝑃 ⊢ (𝑄 → 𝑄) → 𝑄).
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Constructive interpretations of classical logic
Direct interpretations

• Gentzen’s sequent calculus refined by Girard and Danos,
Joinet and Schellinx
= ¬¬-translation + A-translation

• Formulae-as-types, 𝜆 calculi with control operators:
Griffin (𝜆𝒞); Parigot (𝜆𝜇); Curien and Herbelin (�̄�𝜇 ̃𝜇)
= ¬¬-translation + A-translation

• Krivine’s classical realisability
= ¬¬-translation + A-translation + modified realisability
(+ Cohen’s Forcing)

And others (Selinger, Coquand, Avigad,
Aschieri-Berardi-de’Liguoro...)
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Constructive interpretations of classical logic
The 𝜆𝒞 calculus

• The control operator 𝒞 can be typed with ¬¬𝑃 → 𝑃 (Griffin)
• The most convenient way of reducing terms is with abstract
machines (Krivine, Curien-Herbelin)
The call-by-name machine of Reus and Streicher:

⟨𝑡 𝑢 || 𝜋⟩ ≻𝑛 ⟨𝑡 || 𝑢⋅𝜋⟩
⟨𝜆𝑥.𝑡 || 𝑢⋅𝜋⟩ ≻𝑛 ⟨𝑡[𝑢/𝑥] || 𝜋⟩
⟨𝒞 || 𝑡⋅𝜋⟩ ≻𝑛 ⟨𝑡 || k𝜋⋅stop⟩
⟨k𝜋 || 𝑡⋅𝜋 ′⟩ ≻𝑛 ⟨𝑡 || 𝜋⟩

• Amounts to studying at once the translations and the target.
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Expressive vs. fine-grained interpretations

• Expressiveness
ex. “Is it possible to realise the formula 𝐴?”

• Cut-elimination
• Witness extraction
• Consistency

• Understanding the fine details
ex. “Is there a behaviour common to all realisers of 𝐴?”

• In particular: type isomorphisms
(thus: Equational theory with 𝜂 laws)

• Rewriting theory
• Böhm theorem
• Is there a canonical interpretation for classical logic?
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Expressive vs. fine-grained interpretations
Does the 𝜆𝒞 calculus give a fine-grained interpretation ?

• Example:
(¬∀x ∈ ℕ 𝐴) → ∃y ∈ ℕ ¬𝐴

has a proof with the following skeleton:

𝜆𝑥𝑦.(𝒞 𝜆𝑘.(𝑥 𝜆𝑒.(𝒞 𝜆𝑙.(𝑘 (𝑦 𝑒 𝑙)))))

• Reasoning by contrapositive is non-trivial and
counter-intuitive
(Yet e.g. Krivine realises the axiom of dependent choice via
its contrapositive)
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Expressive vs. fine-grained interpretations
Does the 𝜆𝒞 calculus give a fine-grained interpretation ?

Realising (¬∀x ∈ ℕ 𝐴) → ∃y ∈ ℕ ¬𝐴 should be as simple as:
1. Evaluating the argument until a stack of the form 𝑛 ⋅ 𝜋

appears where 𝑛 is an integer
2. Return the pair (𝑛, k𝜋) where k𝜋 is the continuation of type

¬𝐴
This is more or less what happens in the 𝜆ℓ calculus
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Expressive vs. fine-grained interpretations
The 𝜆ℓ calculus

The 𝜆ℓ calculus is both:
• A term syntax for classical natural deduction that satisfies:

𝐴 ≃ ¬¬𝐴 , ¬∀𝑥(𝐴 → 𝐵) ≃ ∃𝑥(𝐴 ∧¬𝐵)…

(i.e. reasoning by contrapositive)
• A Curry-style 𝜆 calculus with a delimited control operator
(ℓ) that implements the fact that captured stacks, contrarily to
continuations, can be inspected
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L calculi
1) Solving equations on abstract machines

• The 𝜆 calculus is universal in the sense that it represents
combinators abstractly by their reduction rules. Ex:

S𝑥𝑦𝑧 ≻ 𝑥𝑧(𝑦𝑧)
1. One can prove S ≃𝛽𝜂 𝜆𝑥𝑦𝑧.𝑥𝑧(𝑦𝑧)
2. S = 𝜆𝑥𝑦𝑧.𝑥𝑧(𝑦𝑧) is a solution

• Similarly, L calculi (here Curien-Herbelin’s �̄�𝜇 ̃𝜇𝑇) are
universal because they extend the above principle to abstract
machines — the transitions rules on the left are solved on the
right using the 𝜇 binder:

𝑡 𝑢 ∶ 𝜋 ↦ ⟨𝑡 || 𝑢⋅𝜋⟩ 𝑡 𝑢 ≝ 𝜇𝛼.⟨𝑡 || 𝑢⋅𝛼⟩
k𝜋 ∶ 𝑡⋅𝜋 ′ ↦ ⟨𝑡 || 𝜋⟩ k𝑒 ≝ 𝜆𝑥.𝜇𝛼.⟨𝑥 || 𝑒⟩
𝒞 ∶ 𝑢⋅𝜋 ↦ ⟨𝑢 || k𝜋⋅stop⟩ 𝒞 ≝ 𝜆𝑥.𝜇𝛼.⟨𝑥 || k𝛼⋅stop⟩

Caution: 𝜇 has nothing to do with least fixed-points.
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L calculi
2) Correspondence with sequent calculus

Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵 ∣ Δ
Γ′ ⊢ 𝑢 ∶ 𝐴 ∣ Δ′ —(ax ⊢)∣ 𝛼 ∶ 𝐵 ⊢ 𝛼 ∶ 𝐵—(→ ⊢)

Γ′ ∣ 𝑢⋅𝛼 ∶ 𝐴 → 𝐵 ⊢ 𝛼 ∶ 𝐵,Δ′
—(cut)

⟨𝑡 || 𝑢⋅𝛼⟩ ∶ (Γ, Γ′ ⊢ 𝛼 ∶ 𝐵,Δ,Δ′)—( ⊢ 𝜇)
Γ, Γ′ ⊢ 𝜇𝛼.⟨𝑡 || 𝑢⋅𝛼⟩

=𝑡 𝑢
∶ 𝐵 ∣ Δ,Δ′
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L calculi
3) Delimited control interprets ⊥: logic side

• Units (e.g. ⊥) are problematic when combining
Curry-style + extensionality
Restrict the 𝛽 and 𝜂 laws vs still have enough isomorphisms
involving ⊥

• Dynamically-scoped variable t̂p:

𝑐 ∶ (Γ ⊢ Δ)—(⊢ ⊥)Γ ⊢ 𝜇t̂p.𝑐 ∶ ⊥ ∣ Δ
—(⊥ ⊢)Γ ∣ t̂p ∶ ⊥ ⊢ Δ

We do have:

𝜇t̂p.⟨𝑡 || t̂p⟩ ≃ 𝑡
⟨𝜇t̂p.𝑐 || t̂p⟩ ≃ 𝑐

but no longer ⟨𝜇𝛼.𝑐 || t̂p⟩ ⊳ 𝑐[t̂p/𝛼]
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L calculi
3) Delimited control interprets ⊥: programming side

• Auxiliary stack of stacks:

push: ⟨𝜇t̂p.𝑐 || 𝜋1⟩{𝜋2,… , 𝜋𝑛} ⊳ 𝑐{𝜋1, 𝜋2,… , 𝜋𝑛}
pop: ⟨𝑡 || t̂p⟩{𝜋1, 𝜋2,… , 𝜋𝑛} ⊳ ⟨𝑡 || 𝜋1⟩{𝜋2,… , 𝜋𝑛}

• The 𝜇 binder does not capture the auxiliary stack:

⟨𝜇𝛼.𝑐 || 𝜋⟩{𝜎} ⊳ 𝑐[𝜋/𝛼]{𝜎}

“Delimited control”
(Felleisen, Danvy-Filinski — in logic:
Ariola-Herbelin-Sabry, Herbelin-Ghilezan)
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Polarisation and focalisation
4) Polarisation

What Giving a formal status to the polarities of connectives
Why Reconcile 𝛽-reductions with 𝜂-expansions

• For negative connectives, 𝜂-expansion delays
evaluation. E.g. for →:

𝑡𝑢 𝑣𝑠 𝜆𝑥.𝑡𝑢𝑥
• For positive connectives, 𝜂-expansion forces evaluation.
E.g. for ∨:

𝑢 𝑣𝑠 match 𝑢with (𝑙(𝑥).𝑙(𝑥) ∣ 𝑟(𝑥).𝑟(𝑥))

How Variables and terms have a polarity that determines the
local reduction strategy

• Terms of a negative type like → are called by name
• Terms of a positive type like ∃ are called by value

(Girard, Danos-Joinet-Schellinx, also my 2009 paper at CSL)
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Polarisation and focalisation
4) Polarisation

• Composition is not associative but reminiscent of Loday’s
duplicial algebras

(ℎ ∙ 𝑔) ∙ 𝑓 = ℎ ∙ (𝑔 ∙ 𝑓 )
(ℎ ∘ 𝑔) ∘ 𝑓 = ℎ ∘ (𝑔 ∘ 𝑓 )
(ℎ ∙ 𝑔) ∘ 𝑓 = ℎ ∙ (𝑔 ∘ 𝑓 )
(ℎ ∘ 𝑔) ∙ 𝑓 ≠ ℎ ∘ (𝑔 ∙ 𝑓 ) in general

M.-M. Models of a non-associative composition. In
A. Muscholl, editor, FoSSaCS, volume 8412 of LNCS, pages
397–412. Springer, 2014

• Introduced by Girard in order to give a meaning to 𝐴 = ¬¬𝐴
in classical sequent calculus (the logic LC)
In LC, negation is defined by duality and is therefore not
given as a connective. Negation inverts the polarity.
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Polarisation and focalisation
5) Captured contexts are not continuations

The main insight of LC is, to me, the idea that the introduction
rules of negation, taken as a connective, hide cuts (focalisation)

Γ,𝑁
𝜋
⊢ Δ—Γ ⊢ ¬𝑁,Δ Γ′, ¬𝑁

𝜋 ′

⊢ Δ′
—

Γ, Γ′ ⊢ Δ,Δ′
⊳

—
𝑁 ⊢ 𝑁—
⊢ ¬𝑁,𝑁 Γ′, ¬𝑁

𝜋 ′

⊢ Δ′
—

Γ′ ⊢ 𝑁,Δ′ Γ,𝑁
𝜋
⊢ Δ—

Γ, Γ′ ⊢ Δ,Δ′

Γ′ 𝜋 ′

⊢ ¬𝑃,Δ′
Γ

𝜋
⊢ 𝑃,Δ—Γ, ¬𝑃 ⊢ Δ—

Γ, Γ′ ⊢ Δ,Δ′
⊳

Γ
𝜋
⊢ 𝑃,Δ

Γ′ 𝜋 ′

⊢ ¬𝑃,Δ′

—
𝑃 ⊢ 𝑃—

𝑃, ¬𝑃 ⊢—
Γ′,𝑃 ⊢ Δ′

—
Γ, Γ′ ⊢ Δ,Δ′
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Polarisation and focalisation
5) Captured contexts are not continuations

• We show that Girard’s LC is related to the idea in
programming of having high-level access to the components
of the contexts captured by control operators

• The type of captured contexts is therefore different from the
type of continuations 𝐴 → ⊥. Continuations are functions,
and the contents of functions cannot be accessed in an
immediate way

• It is obvious in “real-world” programming languages such as
C (getcontext) or Smalltalk (thisContext) that captured
contexts are positive objects that can be inspected.
Clements’ thesis theorises having high-level access to the
components of the contexts.
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Polarisation and focalisation
5) Captured contexts are not continuations

One more motivation:
• Krivine simplifies reasoning in the 𝜆𝒞 calculus, by allowing
certain pseudo-types in the left-hand side of implications.

• For technical reasons, an essential pseudo-type in Krivine’s
work is the set {k𝜋 ∣ 𝜋 ∈ 𝑋}. This also amounts to
distinguishing a positive type of captured stacks from the
type of continuations 𝑋 → ⊥.

• The difference is, we will do so in a direct manner, making
such types first class, in the sense that we define their
meaning also when they are on the right-hand side of
implications.
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Polarisation and focalisation
Summary of the method

𝜆ℓ calculus
Classical natural deduction (quasi-proofs)

↓↓↓↓↓↓↓
solving equations

Lpol,t̂p
Sequent calculus

(confluence,
equational theory)

↓↓↓↓↓↓↓
CPS translation

𝜆 calculus with surjective pairs
Intuitionistic logic

(coherence,
strong normalisation)
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The 𝜆ℓ calculus
• We introduce the positive type ∼𝐴 of inspectable stacks,
which is distinct from the negative type 𝐴 → ⊥ of
continuations

• We define negation in function of the polarity with:

¬𝑃 ≝ 𝑃 → ⊥ , ¬𝑁 ≝ ∼𝑁

(defining negation in function of the polarity is reminiscent
of Danos, Joinet and Schellinx)

• In the 𝜆ℓ calculus we have the following isomorphisms:

𝑃 ≅ ∼(𝑃 → ⊥)
𝑁 ≅ (∼𝑁) → ⊥
∼∀x(𝐴 → 𝐵) ≅ ∃x(𝐴 ∧ ∼𝐵)
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The 𝜆ℓ calculus

• The values that inhabit the type ∼𝐴 are of the form [𝜋]
where 𝜋 is a context of the abstract machine

• We introduce combinators that let us access the contents of
these inspectable stacks

𝐷→ ∶ (∼(𝐴 → 𝐵)) → (𝐴 ∧ ∼𝐵)
𝐷∀ ∶ (∼∀𝑥 𝑁) → ∃𝑥 ∼𝑁
𝐷⊥ ∶ ⊥ → 𝐴 → 𝐴

⟨𝐷→ || [𝑉⋅𝜋1]⋅𝜋2⟩ ≻ ⟨(𝑉, [𝜋1]) || 𝜋2⟩
⟨𝐷∀ || [𝜋1]⋅𝜋2⟩ ≻ ⟨[𝜋1] || 𝜋2⟩

⟨𝐷⊥ || [𝜋⊝]⋅𝑡⋅𝜋 ′⟩ ≻ ⟨𝑡 || 𝜋 ′⟩{𝜋⊝}
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The 𝜆ℓ calculus
Example
We derive 𝐷∀→ ∶ (∼∀x(𝐴 → 𝐵)) → ∃x(𝐴 ∧ ∼𝐵) as follows:

𝐷∀→ ≝ 𝜆𝑥+.let 𝑦+ be𝐷∀ 𝑥+ in𝐷→ 𝑦+

𝐷∀→ reduces as follows:

⟨𝐷∀→ || [𝑉⋅𝜋]⋅𝜋+⟩{𝜎} ≻∗ ⟨(𝑉, [𝜋]) || 𝜋+⟩{𝜎}

i.e. in pattern-matching notation:

𝐷∀→ ≃ 𝜆[𝑥⋅𝛼].(𝑥, [𝛼])
≝ 𝜆[𝛾].𝜇𝛽.⟨𝜆𝑥.𝜇𝛼.⟨(𝑥, [𝛼]) || 𝛽⟩ ∣∣ 𝛾⟩

(compare to the term of the 𝜆𝒞 calculus
𝜆𝑥𝑦.(𝒞 𝜆𝑘.(𝑥 𝜆𝑒.(𝒞 𝜆𝑙.(𝑘 (𝑦 𝑒 𝑙))))))



Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

The 𝜆ℓ calculus

A captured stack [𝜋] can be re-installed as the context of another
term 𝑡 by the constant send:

⟨send || [𝜋]⋅𝑡⋅𝜋 ′⟩{𝜎} ≻ ⟨𝑡 || 𝜋⟩{𝜋 ′, 𝜎}

In other words, the constant send converts a captured stack into a
continuation:

send ∶ (∼𝐴) → 𝐴 → ⊥
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The 𝜆ℓ calculus

The operator responsible for the apparition of inspectable stacks
is ℓ:

ℓ ∶ (𝐴 → ⊥) → ∼𝐴
This operation is formally described by introducing the j𝜋
operator (analogous to the k𝜋 of 𝜆𝒞).
The operator ℓ saves with j the context 𝜋 in which ℓ is applied:

⟨ℓ || 𝑡⋅𝜋⟩{𝜋 ′, 𝜎} ≻ ⟨𝑡 || j𝜋⋅𝜋 ′⟩{𝜎}

Once the operator j𝜋 comes in head position, it captures the stack
and restores the context 𝜋:

⟨j𝜋 || 𝜋 ′⟩{𝜎} ≻ ⟨[𝜋 ′] || 𝜋⟩{𝜎}
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The 𝜆ℓ calculus
Contributions in details

• Natural deduction, hence a language of untyped realisers
(quasi-proofs), at the same time a delimited control calculus
that implements high-level access to stacks

• An L calculus provides a confluent cut-elimination and an
equational theory
(Lpol,t̂p inspired by Curien and Herbelin’s �̄�𝜇 ̃𝜇)

• CPS translations for 𝜆ℓ and Lpol,t̂p simulate reductions and
preserve equivalences
(hence strong normalisation of typed terms and coherence)

• Subsumes call-by-value and call-by-name 𝜆𝜇 calculus as well
as De Groote-Saurin’s Λ𝜇 calculus and variants of the
shift0/reset0 operators

• A direct computational interpretation of polarities
being adapted for non-classical Call-by-Push-Value models



Thank you
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