
Formulae-as-Types
for an Involutive Negation

Guillaume Munch-Maccagnoni

LIPN, Université Paris 13

Joint meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science

(CSL-LICS 2014)
July 18th 2014

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

Constructive interpretations of classical logic

Proposition (Joyal)
Any Cartesian closed category 𝒞 with an object 0 satisfying a
natural isomorphism 00𝐴 ≃ 𝐴 is a boolean algebra (= does not
distinguish proofs).
Not easy to see which hypotheses of CCCs we should relinquish.

• ¬¬𝐴 retract of 𝐴 and ⊥ not initial
Call-by-name 𝜆𝒞 calculus

• Symmetric monoidal instead of Cartesian
Multiplicative Linear Logic

• Composition not always associative
Evaluation order defined by polarities (Here)

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

Constructive interpretations of classical logic
Two steps

• Gödel-Gentzen ¬¬-translation
+ Friedman-Dragalin’s A-translation
Π0

2-conservativity of Peano Arithmetic over Heyting Arithmetic
• Gödel-Gentzen ¬¬-translation
+ Gödel’s Dialectica interpretation
Interpretation of the axiom of dependent choice using bar
recursion (Spector)

• Cut-elimination in Girard’s variant LC of Gentzen’s LK
+ analysis of cut-free proofs
Sequent calculus satisfying 𝐴 = ¬¬𝐴

• CPS translation + passing the identity continuation
Translations for control operators (Griffin, Murthy) in a certain
relationship with Gödel-Gentzen ¬¬-translations
(Lafont-Reus-Streicher, Laurent)

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

Constructive interpretations of classical logic
Example

Kuroda translation (1951) / Call-by-value CPS translation
𝑋(𝑡1,… , 𝑡𝑛)∗ ≝ 𝑋(𝑡1,… , 𝑡𝑛)

(𝑃 ∨ 𝑄)∗ ≝ 𝑃∗ ∨ 𝑄∗

(𝑃 ∧ 𝑄)∗ ≝ 𝑃∗ ∧ 𝑄∗

(∃𝑥 𝑃)∗ ≝ ∃𝑥 𝑃∗

(𝑃 → 𝑄)∗ ≝ ¬(𝑃∗ ∧¬𝑄∗)
(∀𝑥 𝑃)∗ ≝ ¬∃𝑥 ¬𝑃∗

Proposition

• If 𝑃 ⊢ 𝑄 classically then 𝑃∗ ⊢ ¬¬𝑄∗ intuitionistically
• If 𝑃 ⊢ 𝑄 classically then 𝑃 ⊢ 𝑄 intuitionistically when 𝑃 and 𝑄
are purely positive (transform an intuitionistic derivation of
𝑃 ⊢ ¬¬𝑄 into one of 𝑃 ⊢ (𝑄 → 𝑄) → 𝑄).

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

Constructive interpretations of classical logic
Direct interpretations

• Gentzen’s sequent calculus refined by Girard and Danos,
Joinet and Schellinx
= ¬¬-translation + A-translation

• Formulae-as-types, 𝜆 calculi with control operators:
Griffin (𝜆𝒞); Parigot (𝜆𝜇); Curien and Herbelin (�̄�𝜇 ̃𝜇)
= ¬¬-translation + A-translation

• Krivine’s classical realisability
= ¬¬-translation + A-translation + modified realisability
(+ Cohen’s Forcing)

And others (Selinger, Coquand, Avigad,
Aschieri-Berardi-de’Liguoro...)

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

Constructive interpretations of classical logic
The 𝜆𝒞 calculus

• The control operator 𝒞 can be typed with ¬¬𝑃 → 𝑃 (Griffin)
• The most convenient way of reducing terms is with abstract
machines (Krivine, Curien-Herbelin)
The call-by-name machine of Reus and Streicher:

⟨𝑡 𝑢 || 𝜋⟩ ≻𝑛 ⟨𝑡 || 𝑢⋅𝜋⟩
⟨𝜆𝑥.𝑡 || 𝑢⋅𝜋⟩ ≻𝑛 ⟨𝑡[𝑢/𝑥] || 𝜋⟩
⟨𝒞 || 𝑡⋅𝜋⟩ ≻𝑛 ⟨𝑡 || k𝜋⋅stop⟩
⟨k𝜋 || 𝑡⋅𝜋 ′⟩ ≻𝑛 ⟨𝑡 || 𝜋⟩

• Amounts to studying at once the translations and the target.

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

Expressive vs. fine-grained interpretations

• Expressiveness
ex. “Is it possible to realise the formula 𝐴?”

• Cut-elimination
• Witness extraction
• Consistency

• Understanding the fine details
ex. “Is there a behaviour common to all realisers of 𝐴?”

• In particular: type isomorphisms
(thus: Equational theory with 𝜂 laws)

• Rewriting theory
• Böhm theorem
• Is there a canonical interpretation for classical logic?

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

Expressive vs. fine-grained interpretations
Does the 𝜆𝒞 calculus give a fine-grained interpretation ?

• Example:
(¬∀x ∈ ℕ 𝐴) → ∃y ∈ ℕ ¬𝐴

has a proof with the following skeleton:

𝜆𝑥𝑦.(𝒞 𝜆𝑘.(𝑥 𝜆𝑒.(𝒞 𝜆𝑙.(𝑘 (𝑦 𝑒 𝑙)))))

• Reasoning by contrapositive is non-trivial and
counter-intuitive
(Yet e.g. Krivine realises the axiom of dependent choice via
its contrapositive)

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

Expressive vs. fine-grained interpretations
Does the 𝜆𝒞 calculus give a fine-grained interpretation ?

Realising (¬∀x ∈ ℕ 𝐴) → ∃y ∈ ℕ ¬𝐴 should be as simple as:
1. Evaluating the argument until a stack of the form 𝑛 ⋅ 𝜋

appears where 𝑛 is an integer
2. Return the pair (𝑛, k𝜋) where k𝜋 is the continuation of type

¬𝐴
This is more or less what happens in the 𝜆ℓ calculus

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

Expressive vs. fine-grained interpretations
The 𝜆ℓ calculus

The 𝜆ℓ calculus is both:
• A term syntax for classical natural deduction that satisfies:

𝐴 ≃ ¬¬𝐴 , ¬∀𝑥(𝐴 → 𝐵) ≃ ∃𝑥(𝐴 ∧¬𝐵)…

(i.e. reasoning by contrapositive)
• A Curry-style 𝜆 calculus with a delimited control operator
(ℓ) that implements the fact that captured stacks, contrarily to
continuations, can be inspected

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

L calculi
1) Solving equations on abstract machines

• The 𝜆 calculus is universal in the sense that it represents
combinators abstractly by their reduction rules. Ex:

S𝑥𝑦𝑧 ≻ 𝑥𝑧(𝑦𝑧)
1. One can prove S ≃𝛽𝜂 𝜆𝑥𝑦𝑧.𝑥𝑧(𝑦𝑧)
2. S = 𝜆𝑥𝑦𝑧.𝑥𝑧(𝑦𝑧) is a solution

• Similarly, L calculi (here Curien-Herbelin’s �̄�𝜇 ̃𝜇𝑇) are
universal because they extend the above principle to abstract
machines — the transitions rules on the left are solved on the
right using the 𝜇 binder:

𝑡 𝑢 ∶ 𝜋 ↦ ⟨𝑡 || 𝑢⋅𝜋⟩ 𝑡 𝑢 ≝ 𝜇𝛼.⟨𝑡 || 𝑢⋅𝛼⟩
k𝜋 ∶ 𝑡⋅𝜋 ′ ↦ ⟨𝑡 || 𝜋⟩ k𝑒 ≝ 𝜆𝑥.𝜇𝛼.⟨𝑥 || 𝑒⟩
𝒞 ∶ 𝑢⋅𝜋 ↦ ⟨𝑢 || k𝜋⋅stop⟩ 𝒞 ≝ 𝜆𝑥.𝜇𝛼.⟨𝑥 || k𝛼⋅stop⟩

Caution: 𝜇 has nothing to do with least fixed-points.

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

L calculi
2) Correspondence with sequent calculus

Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵 ∣ Δ
Γ′ ⊢ 𝑢 ∶ 𝐴 ∣ Δ′ —(ax ⊢)∣ 𝛼 ∶ 𝐵 ⊢ 𝛼 ∶ 𝐵—(→ ⊢)

Γ′ ∣ 𝑢⋅𝛼 ∶ 𝐴 → 𝐵 ⊢ 𝛼 ∶ 𝐵,Δ′
—(cut)

⟨𝑡 || 𝑢⋅𝛼⟩ ∶ (Γ, Γ′ ⊢ 𝛼 ∶ 𝐵,Δ,Δ′)—(⊢ 𝜇)
Γ, Γ′ ⊢ 𝜇𝛼.⟨𝑡 || 𝑢⋅𝛼⟩

=𝑡 𝑢
∶ 𝐵 ∣ Δ,Δ′

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

L calculi
3) Delimited control interprets ⊥: logic side

• Units (e.g. ⊥) are problematic when combining
Curry-style + extensionality
Restrict the 𝛽 and 𝜂 laws vs still have enough isomorphisms
involving ⊥

• Dynamically-scoped variable t̂p:

𝑐 ∶ (Γ ⊢ Δ)—(⊢ ⊥)Γ ⊢ 𝜇t̂p.𝑐 ∶ ⊥ ∣ Δ
—(⊥ ⊢)Γ ∣ t̂p ∶ ⊥ ⊢ Δ

We do have:

𝜇t̂p.⟨𝑡 || t̂p⟩ ≃ 𝑡
⟨𝜇t̂p.𝑐 || t̂p⟩ ≃ 𝑐

but no longer ⟨𝜇𝛼.𝑐 || t̂p⟩ ⊳ 𝑐[t̂p/𝛼]

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

L calculi
3) Delimited control interprets ⊥: programming side

• Auxiliary stack of stacks:

push: ⟨𝜇t̂p.𝑐 || 𝜋1⟩{𝜋2,… , 𝜋𝑛} ⊳ 𝑐{𝜋1, 𝜋2,… , 𝜋𝑛}
pop: ⟨𝑡 || t̂p⟩{𝜋1, 𝜋2,… , 𝜋𝑛} ⊳ ⟨𝑡 || 𝜋1⟩{𝜋2,… , 𝜋𝑛}

• The 𝜇 binder does not capture the auxiliary stack:

⟨𝜇𝛼.𝑐 || 𝜋⟩{𝜎} ⊳ 𝑐[𝜋/𝛼]{𝜎}

“Delimited control”
(Felleisen, Danvy-Filinski — in logic:
Ariola-Herbelin-Sabry, Herbelin-Ghilezan)

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

Polarisation and focalisation
4) Polarisation

What Giving a formal status to the polarities of connectives
Why Reconcile 𝛽-reductions with 𝜂-expansions

• For negative connectives, 𝜂-expansion delays
evaluation. E.g. for →:

𝑡𝑢 𝑣𝑠 𝜆𝑥.𝑡𝑢𝑥
• For positive connectives, 𝜂-expansion forces evaluation.
E.g. for ∨:

𝑢 𝑣𝑠 match 𝑢with (𝑙(𝑥).𝑙(𝑥) ∣ 𝑟(𝑥).𝑟(𝑥))

How Variables and terms have a polarity that determines the
local reduction strategy

• Terms of a negative type like → are called by name
• Terms of a positive type like ∃ are called by value

(Girard, Danos-Joinet-Schellinx, also my 2009 paper at CSL)

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

Polarisation and focalisation
4) Polarisation

• Composition is not associative but reminiscent of Loday’s
duplicial algebras

(ℎ ∙ 𝑔) ∙ 𝑓 = ℎ ∙ (𝑔 ∙ 𝑓)
(ℎ ∘ 𝑔) ∘ 𝑓 = ℎ ∘ (𝑔 ∘ 𝑓)
(ℎ ∙ 𝑔) ∘ 𝑓 = ℎ ∙ (𝑔 ∘ 𝑓)
(ℎ ∘ 𝑔) ∙ 𝑓 ≠ ℎ ∘ (𝑔 ∙ 𝑓) in general

M.-M. Models of a non-associative composition. In
A. Muscholl, editor, FoSSaCS, volume 8412 of LNCS, pages
397–412. Springer, 2014

• Introduced by Girard in order to give a meaning to 𝐴 = ¬¬𝐴
in classical sequent calculus (the logic LC)
In LC, negation is defined by duality and is therefore not
given as a connective. Negation inverts the polarity.

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

Polarisation and focalisation
5) Captured contexts are not continuations

The main insight of LC is, to me, the idea that the introduction
rules of negation, taken as a connective, hide cuts (focalisation)

Γ,𝑁
𝜋
⊢ Δ—Γ ⊢ ¬𝑁,Δ Γ′, ¬𝑁

𝜋 ′

⊢ Δ′
—

Γ, Γ′ ⊢ Δ,Δ′
⊳

—
𝑁 ⊢ 𝑁—
⊢ ¬𝑁,𝑁 Γ′, ¬𝑁

𝜋 ′

⊢ Δ′
—

Γ′ ⊢ 𝑁,Δ′ Γ,𝑁
𝜋
⊢ Δ—

Γ, Γ′ ⊢ Δ,Δ′

Γ′ 𝜋 ′

⊢ ¬𝑃,Δ′
Γ

𝜋
⊢ 𝑃,Δ—Γ, ¬𝑃 ⊢ Δ—

Γ, Γ′ ⊢ Δ,Δ′
⊳

Γ
𝜋
⊢ 𝑃,Δ

Γ′ 𝜋 ′

⊢ ¬𝑃,Δ′

—
𝑃 ⊢ 𝑃—

𝑃, ¬𝑃 ⊢—
Γ′,𝑃 ⊢ Δ′

—
Γ, Γ′ ⊢ Δ,Δ′

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

Polarisation and focalisation
5) Captured contexts are not continuations

• We show that Girard’s LC is related to the idea in
programming of having high-level access to the components
of the contexts captured by control operators

• The type of captured contexts is therefore different from the
type of continuations 𝐴 → ⊥. Continuations are functions,
and the contents of functions cannot be accessed in an
immediate way

• It is obvious in “real-world” programming languages such as
C (getcontext) or Smalltalk (thisContext) that captured
contexts are positive objects that can be inspected.
Clements’ thesis theorises having high-level access to the
components of the contexts.

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

Polarisation and focalisation
5) Captured contexts are not continuations

One more motivation:
• Krivine simplifies reasoning in the 𝜆𝒞 calculus, by allowing
certain pseudo-types in the left-hand side of implications.

• For technical reasons, an essential pseudo-type in Krivine’s
work is the set {k𝜋 ∣ 𝜋 ∈ 𝑋}. This also amounts to
distinguishing a positive type of captured stacks from the
type of continuations 𝑋 → ⊥.

• The difference is, we will do so in a direct manner, making
such types first class, in the sense that we define their
meaning also when they are on the right-hand side of
implications.

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

Polarisation and focalisation
Summary of the method

𝜆ℓ calculus
Classical natural deduction (quasi-proofs)

↓↓↓↓↓↓↓
solving equations

Lpol,t̂p
Sequent calculus

(confluence,
equational theory)

↓↓↓↓↓↓↓
CPS translation

𝜆 calculus with surjective pairs
Intuitionistic logic

(coherence,
strong normalisation)

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

The 𝜆ℓ calculus
• We introduce the positive type ∼𝐴 of inspectable stacks,
which is distinct from the negative type 𝐴 → ⊥ of
continuations

• We define negation in function of the polarity with:

¬𝑃 ≝ 𝑃 → ⊥ , ¬𝑁 ≝ ∼𝑁

(defining negation in function of the polarity is reminiscent
of Danos, Joinet and Schellinx)

• In the 𝜆ℓ calculus we have the following isomorphisms:

𝑃 ≅ ∼(𝑃 → ⊥)
𝑁 ≅ (∼𝑁) → ⊥
∼∀x(𝐴 → 𝐵) ≅ ∃x(𝐴 ∧ ∼𝐵)

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

The 𝜆ℓ calculus

• The values that inhabit the type ∼𝐴 are of the form [𝜋]
where 𝜋 is a context of the abstract machine

• We introduce combinators that let us access the contents of
these inspectable stacks

𝐷→ ∶ (∼(𝐴 → 𝐵)) → (𝐴 ∧ ∼𝐵)
𝐷∀ ∶ (∼∀𝑥 𝑁) → ∃𝑥 ∼𝑁
𝐷⊥ ∶ ⊥ → 𝐴 → 𝐴

⟨𝐷→ || [𝑉⋅𝜋1]⋅𝜋2⟩ ≻ ⟨(𝑉, [𝜋1]) || 𝜋2⟩
⟨𝐷∀ || [𝜋1]⋅𝜋2⟩ ≻ ⟨[𝜋1] || 𝜋2⟩

⟨𝐷⊥ || [𝜋⊝]⋅𝑡⋅𝜋 ′⟩ ≻ ⟨𝑡 || 𝜋 ′⟩{𝜋⊝}

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

The 𝜆ℓ calculus
Example
We derive 𝐷∀→ ∶ (∼∀x(𝐴 → 𝐵)) → ∃x(𝐴 ∧ ∼𝐵) as follows:

𝐷∀→ ≝ 𝜆𝑥+.let 𝑦+ be𝐷∀ 𝑥+ in𝐷→ 𝑦+

𝐷∀→ reduces as follows:

⟨𝐷∀→ || [𝑉⋅𝜋]⋅𝜋+⟩{𝜎} ≻∗ ⟨(𝑉, [𝜋]) || 𝜋+⟩{𝜎}

i.e. in pattern-matching notation:

𝐷∀→ ≃ 𝜆[𝑥⋅𝛼].(𝑥, [𝛼])
≝ 𝜆[𝛾].𝜇𝛽.⟨𝜆𝑥.𝜇𝛼.⟨(𝑥, [𝛼]) || 𝛽⟩ ∣∣ 𝛾⟩

(compare to the term of the 𝜆𝒞 calculus
𝜆𝑥𝑦.(𝒞 𝜆𝑘.(𝑥 𝜆𝑒.(𝒞 𝜆𝑙.(𝑘 (𝑦 𝑒 𝑙))))))

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

The 𝜆ℓ calculus

A captured stack [𝜋] can be re-installed as the context of another
term 𝑡 by the constant send:

⟨send || [𝜋]⋅𝑡⋅𝜋 ′⟩{𝜎} ≻ ⟨𝑡 || 𝜋⟩{𝜋 ′, 𝜎}

In other words, the constant send converts a captured stack into a
continuation:

send ∶ (∼𝐴) → 𝐴 → ⊥

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

The 𝜆ℓ calculus

The operator responsible for the apparition of inspectable stacks
is ℓ:

ℓ ∶ (𝐴 → ⊥) → ∼𝐴
This operation is formally described by introducing the j𝜋
operator (analogous to the k𝜋 of 𝜆𝒞).
The operator ℓ saves with j the context 𝜋 in which ℓ is applied:

⟨ℓ || 𝑡⋅𝜋⟩{𝜋 ′, 𝜎} ≻ ⟨𝑡 || j𝜋⋅𝜋 ′⟩{𝜎}

Once the operator j𝜋 comes in head position, it captures the stack
and restores the context 𝜋:

⟨j𝜋 || 𝜋 ′⟩{𝜎} ≻ ⟨[𝜋 ′] || 𝜋⟩{𝜎}

Constructiveness, in classical logic Ingredients The 𝜆ℓ calculus

The 𝜆ℓ calculus
Contributions in details

• Natural deduction, hence a language of untyped realisers
(quasi-proofs), at the same time a delimited control calculus
that implements high-level access to stacks

• An L calculus provides a confluent cut-elimination and an
equational theory
(Lpol,t̂p inspired by Curien and Herbelin’s �̄�𝜇 ̃𝜇)

• CPS translations for 𝜆ℓ and Lpol,t̂p simulate reductions and
preserve equivalences
(hence strong normalisation of typed terms and coherence)

• Subsumes call-by-value and call-by-name 𝜆𝜇 calculus as well
as De Groote-Saurin’s Λ𝜇 calculus and variants of the
shift0/reset0 operators

• A direct computational interpretation of polarities
being adapted for non-classical Call-by-Push-Value models

Thank you

	Constructiveness in classical logic
	Constructive interpretations of classical logic
	Expressive vs. fine-grained interpretations

	Ingredients
	L calculi
	Polarisation and focalisation

	The lambda-ell calculus
	The lambda-ell calculus

	Appendix

