Formulae-as-Types
for an Involutive Negation

Guillaume Munch-Maccagnoni

it

LIPN, Université Paris 13

Joint meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic and the Twenty-Ninth Annual
ACMY/IEEE Symposium on Logic in Computer Science

(CSL-LICS 2014)
July 18th 2014

Constructiveness, in classical logic Ingredients The A€ calculus
0000 0000 000000
0000 000000

Constructive interpretations of classical logic

Proposition (Joyal)
Any Cartesian closed category € with an object 0 satisfying a
natural isomorphism 0% ~ A is a boolean algebra (= does not
distinguish proofs).
Not easy to see which hypotheses of CCCs we should relinquish.
+ 2nA retract of A and L not initial
Call-by-name AC calculus
+ Symmetric monoidal instead of Cartesian
Multiplicative Linear Logic
+ Composition not always associative
Evaluation order defined by polarities (Here)

[

)
|

|

Constructiveness, in classical logic Ingredients The A€ calculus

08000
0000

0000 000000
000000

Constructive interpretations of classical logic

Two steps

+ Godel-Gentzen —-translation
+ Friedman-Dragalin’s A-translation
I19-conservativity of Peano Arithmetic over Heyting Arithmetic

+ Godel-Gentzen ——-translation
+ Godel’s Dialectica interpretation
Interpretation of the axiom of dependent choice using bar
recursion (Spector)

+ Cut-elimination in Girard’s variant LC of Gentzen’s LK
+ analysis of cut-free proofs
Sequent calculus satisfying A = ~=A

+ CPS translation + passing the identity continuation
Translations for control operators (Griffin, Murthy) in a certain
relationship with Godel-Gentzen -—-translations
(Lafont-Reus-Streicher, Laurent)

|

[

)
|

Constructiveness, in classical logic Ingredients The A€ calculus
00e00 0000 000000
0000 000000

Constructive interpretations of classical logic

Example
Kuroda translation (1951) / Call-by-value CPS translation

X(ty, oy t)" E X(ty, oo ty)
(PvQ" ¥ PVQ
PrQ" ¥ PAQ
(Ix P)* = Jdx P*
(P->Q)" = 2(P"A-QY)
(VaP)* = —~dx -P*

Proposition

« If P + Q classically then P* + ~—~Q” intuitionistically

« If P + Q classically then P+ Q intuitionistically when P and Q
are purely positive (transform an intuitionistic derivation of

P +-=Qintooneof P - (Q > Q) »> Q).

|

[

)
|

Constructiveness, in classical logic Ingredients The A€ calculus
ooceo 0000 000000
0000 000000

Constructive interpretations of classical logic

Direct interpretations

+ Gentzen’s sequent calculus refined by Girard and Danos,
Joinet and Schellinx
= a~-translation + A-translation

« Formulae-as-types, A calculi with control operators:
Griffin (AC); Parigot (Ay); Curien and Herbelin (Auj)
= n-translation + A-translation

+ Krivine’s classical realisability
= ~~-translation + A-translation + modified realisability
(+ Cohen'’s Forcing)

And others (Selinger, Coquand, Avigad,
Aschieri-Berardi-de’Liguoro...)

[

)
|

|

Constructiveness, in classical logic Ingredients The A€ calculus
ooooe 0000 000000
0000 000000

Constructive interpretations of classical logic
The AC calculus

« The control operator C can be typed with ==P - P (Griffin)

+ The most convenient way of reducing terms is with abstract
machines (Krivine, Curien-Herbelin)
The call-by-name machine of Reus and Streicher:

(tullz)y > (tum)
At fum) >, (tlu/x]] x)

(Cltm)y >n (t]kystop)
(ke [E7) >y (t =)

« Amounts to studying at once the translations and the target.

|

[

)
|

Constructiveness, in classical logic Ingredients The A€ calculus
00000 0000 000000
€000 000000

Expressive vs. fine-grained interpretations

+ Expressiveness
ex. “Is it possible to realise the formula A?”

« Cut-elimination
« Witness extraction
« Consistency

+ Understanding the fine details
ex. “Is there a behaviour common to all realisers of A?”

+ In particular: type isomorphisms
(thus: Equational theory with 7 laws)
+ Rewriting theory
+ Bohm theorem
+ Is there a canonical interpretation for classical logic?

Constructiveness, in classical logic Ingredients The A€ calculus
00000 0000 000000
0000 000000

Expressive vs. fine-grained interpretations

Does the AC calculus give a fine-grained interpretation ?

+ Example:
("VxeNA) > 3JyeN-A

has a proof with the following skeleton:
Axy.(C Ak.(xde.(CAL(k (yel)))))

+ Reasoning by contrapositive is non-trivial and
counter-intuitive
(Yet e.g. Krivine realises the axiom of dependent choice via
its contrapositive)

|

[

)
|

Constructiveness, in classical logic Ingredients The A€ calculus
00000 0000 000000
00®0 000000

Expressive vs. fine-grained interpretations

Does the AC calculus give a fine-grained interpretation ?

Realising (-¥x € N A) - Jy € N =A should be as simple as:

1. Evaluating the argument until a stack of the form n -«
appears where n is an integer

2. Return the pair (1, k;) where k, is the continuation of type
—A

This is more or less what happens in the ¢ calculus

|

[

)
|

Constructiveness, in classical logic Ingredients The A€ calculus
00000 0000 000000
oooe 000000

Expressive vs. fine-grained interpretations
The A€ calculus

The A€ calculus is both:

+ A term syntax for classical natural deduction that satisfies:
Ax~--A , Vx(A > B)=~3dx(AA-B) ...

(i.e. reasoning by contrapositive)

+ A Curry-style A calculus with a delimited control operator
(€) that implements the fact that captured stacks, contrarily to
continuations, can be inspected

|

[

)
|

Constructiveness, in classical logic Ingredients The 2 calculus

00000 @000 000000
0000 000000
)
L calculi

1) Solving equations on abstract machines
+ The A calculus is universal in the sense that it represents
combinators abstractly by their reduction rules. Ex:
Sxyz > xz(yz)

1. One can prove S =g, Axyz.xz(yz)
2. S =Mxyz.xz(yz) is a solution

« Similarly, L calculi (here Curien-Herbelin’s Ayfi..) are
universal because they extend the above principle to abstract
machines — the transitions rules on the left are solved on the

right using the y binder:
tu: 7w {t|un) tu® palt | ua)
ky: t7'B(t|7) ke = Ax.pax | €)
C: wum> (u ky-stop) C = dx.pa.(x || k,-stop)

Caution: y has nothing to do with least fixed-points. i

Constructiveness, in classical logic Ingredients The 2 calculus

00000 [e] Jele) 000000
0000 000000
.
L calculi

2) Correspondence with sequent calculus

, , T (axF)
I'Fu:A|A |a:BFa:B (oh)
N
r't:A->BJ|A I'ua:A—>B I—zx:B,A'(\
cut
(t lua): (T,T Fa:B,AN) :
(Fw

[T Fpadt | ua):B|AA
=tu

Constructiveness, in classical logic Ingredients The 2 calculus

00000 [e]e] le) 000000
0000 000000
)
L calculi

3) Delimited control interprets L: logic side

+ Units (e.g. L) are problematic when combining
Curry-style + extensionality
Restrict the and 7 laws vs still have enough isomorphisms
involving L

+ Dynamically-scoped variable tp:

¢: (T FA)
— L —_— (")
I'Futpc:L|A (k1) Itp: L FA

‘We do have:

utp(t | tp) = £
(utp.c | tp) = c

|

[

)
|

but no longer (ua.c | tp) > c[tp/a]

Constructiveness, in classical logic Ingredients The 2 calculus

00000 oooe 000000
0000 000000
.
L calculi

3) Delimited control interprets L: programming side

+ Auxiliary stack of stacks:

push: (ptp.c | MMy, ooy a} > oy, w1, oo, 0}

pop: <t ” tb>{ﬂ1) Ty vevy 7Tn} > (t ” 71'1){772) ceey 7Tn}

+ The y binder does not capture the auxiliary stack:

(uac|w)o} o c[x/a]{o}

“Delimited control”
(Felleisen, Danvy-Filinski — in logic:
Ariola-Herbelin-Sabry, Herbelin-Ghilezan)

Constructiveness, in classical logic Ingredients The 2 calculus

00000 0000 000000
0000 @00000

Polarisation and focalisation
4) Polarisation
What Giving a formal status to the polarities of connectives
Why Reconcile f-reductions with #-expansions
« For negative connectives, j-expansion delays
evaluation. E.g. for —:
tu Vs Ax.tux

« For positive connectives, #j-expansion forces evaluation.
E.g. for v:

u vs match u with (1(x).I(x) | r(x).r(x))

How Variables and terms have a polarity that determines the
local reduction strategy

« Terms of a negative type like — are called by name
« Terms of a positive type like 7 are called by value

(Girard, Danos-Joinet-Schellinx, also my 2009 paper at CSL)

Constructiveness, in classical logic Ingredients The 2 calculus
00000 0000 000000
0000 0®0000

Polarisation and focalisation
4) Polarisation

+ Composition is not associative but reminiscent of Loday’s
duplicial algebras

(heg)ef=he(g-f)
(heg)ef=he(g-f)
(heg)ef=he(g-f)
(hog)ef #ho(gef)in general

M.-M. Models of a non-associative composition. In

A. Muscholl, editor, FoSSaCS, volume 8412 of LNCS, pages
397-412. Springer, 2014

« Introduced by Girard in order to give a meaning to A = 1A
in classical sequent calculus (the logic LC)
In LC, negation is defined by duality and is therefore not
given as a connective. Negation inverts the polarity. N

q
|

&y

Constructiveness, in classical logic Ingredients The 2 calculus
00000 0000 000000
0000 00@000

Polarisation and focalisation

5) Captured contexts are not continuations

The main insight of LC is, to me, the idea that the introduction
rules of negation, taken as a connective, hide cuts (focalisation)

. N FN ,
LNFEA o TFSNN | TN A
rFoNA T oNFa TN PN A

T FAA WS

. , PFP
o _LERA . I't-PA P -PF

r'FoPA TPEA rEpa Y

IT FAA TTrAD

Constructiveness, in classical logic Ingredients The 2 calculus
00000 0000 000000
0000 000800

Polarisation and focalisation

5) Captured contexts are not continuations

+ We show that Girard’s LC is related to the idea in
programming of having high-level access to the components
of the contexts captured by control operators

+ The type of captured contexts is therefore different from the
type of continuations A - 1. Continuations are functions,
and the contents of functions cannot be accessed in an
immediate way

« Itis obvious in “real-world” programming languages such as
C (getcontext) or Smalltalk (thisContext) that captured
contexts are positive objects that can be inspected.
Clements’ thesis theorises having high-level access to the
components of the contexts.

Constructiveness, in classical logic Ingredients The 2 calculus
00000 0000 000000
0000 000000

Polarisation and focalisation

5) Captured contexts are not continuations

One more motivation:

+ Krivine simplifies reasoning in the AC calculus, by allowing
certain pseudo-types in the left-hand side of implications.

+ For technical reasons, an essential pseudo-type in Krivine’s
work is the set {k, | 7 € X}. This also amounts to
distinguishing a positive type of captured stacks from the
type of continuations X — L.

« The difference is, we will do so in a direct manner, making
such types first class, in the sense that we define their
meaning also when they are on the right-hand side of
implications.

Constructiveness, in classical logic Ingredients The 2 calculus
00000 0000 000000
0000 00000®

Polarisation and focalisation

Summary of the method

AL calculus

Classical natural deduction (quasi-proofs)
solving equations
Lool (confluence,
Sequent calculus equational theory)
CPS translation

A calculus with surjective pairs (coherence,
Intuitionistic logic strong normalisation)

Constructiveness, in classical logic Ingredients The A€ calculus

The A¢ calculus

+ We introduce the positive type ~A of inspectable stacks,
which is distinct from the negative type A —» L of
continuations

+ We define negation in function of the polarity with:
-P¥P- 1 , AN € ~N

(defining negation in function of the polarity is reminiscent
of Danos, Joinet and Schellinx)

+ In the A€ calculus we have the following isomorphisms:

p = ~(P>1)
N ¥ (~N)> 1
~Vx(A->B) = 3x(AA~B)

|

[

)
|

Constructiveness, in classical logic Ingredients The A€ calculus

The A¢ calculus

+ The values that inhabit the type ~A are of the form [7]
where 7 is a context of the abstract machine

« We introduce combinators that let us access the contents of
these inspectable stacks

D,:(~(A->B))—> (AA~B)
Dy :(~VxN) - 3dx ~N
D :1-A-A

<D—> ” [V'Wl]'ﬂ'Z) > ((V) [771]) ” 772)
(Dy || [y]-mp) > ([m] |)
(Dy || [mwo]-t-n"y > (t | ') {7}

|

[

)
|

Constructiveness, in classical logic Ingredients
00000 0000
0000 000000
The A¢ calculus
Example

We derive Dy _, : (~Vx(A - B)) - 3x(A A ~B) as follows:
Dy, € dxtlety*be Dy x"inD_, y*
Dy _, reduces as follows:
Dy, | [V-x]m o} >V, [7]) 7 o}
i.e. in pattern-matching notation:

DV% = A[x‘x](x) [“])
ALy L (o (x, [a]) 1B] 7)

(compare to the term of the AC calculus

Axy.(CAk.(xde.(CAL(k (yel))))))

The A€ calculus
008000

[

)
|

|

Constructiveness, in classical logic Ingredients The A€ calculus
00000 0000 000000
0000 000000

The A¢ calculus

A captured stack [7] can be re-installed as the context of another
term t by the constant send:

(send | [x]-t-n") o} > (t | m) {7, o}

In other words, the constant send converts a captured stack into a
continuation:

send: (~A) >A—> L

Constructiveness, in classical logic Ingredients The A€ calculus

The A¢ calculus

The operator responsible for the apparition of inspectable stacks
is ¢:

2:(A->1)—>~A
This operation is formally described by introducing the j,,
operator (analogous to the k, of AC).
The operator ¢ saves with j the context 7 in which ¢ is applied:

<€ " t-ﬂ){ﬂ,”, U} > <t ” jn'ﬂ,>{0}

Once the operator j, comes in head position, it captures the stack
and restores the context 7:

(ix | 7'Ho} > ([T [m){o}

Constructiveness, in classical logic Ingredients The A€ calculus

The A{ calculus

Contributions in details

« Natural deduction, hence a language of untyped realisers
(quasi-proofs), at the same time a delimited control calculus
that implements high-level access to stacks

+ An L calculus provides a confluent cut-elimination and an
equational theory
(L1, inspired by Curien and Herbelin’s A1)

« CPS translations for A€ and L
preserve equivalences
(hence strong normalisation of typed terms and coherence)

pol, Simulate reductions and

+ Subsumes call-by-value and call-by-name Ay calculus as well
as De Groote-Saurin’s Ay calculus and variants of the
shifty /resety operators

+ A direct computational interpretation of polarities
being adapted for non-classical Call-by-Push-Value models ==}

Thank you

	Constructiveness in classical logic
	Constructive interpretations of classical logic
	Expressive vs. fine-grained interpretations

	Ingredients
	L calculi
	Polarisation and focalisation

	The lambda-ell calculus
	The lambda-ell calculus

	Appendix

