
Categorical semantics of ordered linear logic
for a reconstruction of ownership in

programming languages

Advisor: Guillaume Munch-Maccagnoni, Inria, Nantes

21st December 2022

Topics

• Semantics and logic

• Programming languages

• Category theory

• MPRI topics: 2.2, 2.1, (2.4)

Location Inria, Gallinette team, Laboratoire LS2N (Nantes)

Advisor Guillaume.Munch-Maccagnoni@Inria.fr

General presentation of the topic Linear logic (Girard, 1987, see also Melliès, 2009) is
long thought to be relevant to the design and implementation of programming languages
with a better awareness of resource usage (e.g. control over memory allocation, as early as
Lafont 1988). In addition, resource-related features of programming languages commonly
used in Rust (and so-called “modern” C++, starting from C++11), do indeed remind of
linear logic in some aspects. Their central concept is that of resource, that is values of a
type with an associated destructor: a clean-up action (such as freeing some memory, closing
a file, releasing a lock. . . ) that consumes the value.

However, linear logic, and more generally the traditional approaches to denotational
semantics, have not yet developed an understanding of resource-management as found
in practice in programming languages. In fact, these features originating from “systems”
programming languages that appeared in the industry are not even so well treated in the
general field of programming language theory.1

1For instance, not modelling destructors has been an explicit limitation of the works to model the Rust type
system using separation logic (Jung et al., 2018), despite their importance for memory-safety and the
known rough edges of their design in Rust.

1

mailto:Guillaume.Munch-Maccagnoni@Inria.fr


In recent works, however, we have found hints that it is possible to reconstruct the
main aspects of resource management in categorical semantics.2 We hope that it can be a
starting point to establish the groundwork for a principled and coherent understanding of
these features in programming languages, and notably their successful future integration
with functional programming.

This internship subject has as a starting point recent approaches to the categorical
semantics of logic and computation, and it can interest mathematically-inclined young
researchers who are interested in advancing the theory of programming languages and
its connection to logic. The topic can evolve into a PhD subject in various directions, from
more theoretical to more practical, in accordance with the tastes of the student.

Resource types and ordered logic The starting point of a rational reconstruction in the
language of linear logic is to consider types with destructors as objects in a category with
objects of the form (A,δ : A → T1) —a slice category—, where A ∈ C is the base type
of values, the starting category C of values is a model of linear or intuitionistic logic
(λ-calculus), T is a strong monad (modelling the ambient effect, e.g. global state), and
thus the destructor δ expects a value of type A and performs an effect before returning
nothing. This construction has good properties, for instance one can model pairs of resource
types A′ = (A,δA) and B′ = (B,δB) with a tensor product A′⊗B′ def.= (A ⊗B,δA⊗B) where
the destructor δA⊗B : A ⊗B → T1 is obtained by doing δA followed by δB via monadic
composition.

Since δA and δB can perform side-effects, this can be different from doing δB followed
by δA, and so A′⊗B′ and B′⊗ A′ are very different types in general (just like structs in
Rust/C++). Linear logics that reject the isomorphism A′⊗B′ ≇B′⊗ A′ are called ordered or
non-commutative (Lambek, 1958).

Ownership In order to control mutability in programming languages (Reynolds, 1978),
various notions of uniqueness or ownership have been proposed as dynamic or static (type-
based) restrictions on the usage of values since the 1990’s. With resource types, Rust/C++11
propose a notion of ownership (expanding the so-called RAII3 pattern from earlier C++)
which was at odds with the literature up to that point. It is more general, dealing with
resource abstractions beyond memory. From this concept nevertheless emerges notions of
linear (affine) type systems, region types (borrowing), and uniqueness (control of aliasing)—
other aspects much better studied in the literature.

The long-term goal is to show how notions related to ownership (linear type systems,
region typing, uniqueness) follow from a rational reconstruction in the context of categorical
semantics of programming languages, and how an abstract view advantageously informs
the design of programming languages.

Linear Call-by-Push-Value The framework in which this development takes place is the
call-by-push-value (CBPV) (Levy, 2004), a model of higher-order computation with side-

2Combette and Munch-Maccagnoni, 2018
3“Resource acquisition is initialization”

2



effects, a decomposition of call-by-value λ-calculus motivated by denotational semantics;
more precisely linear CBPV developed by the advisor and his colleagues (Curien, Fiore,
and Munch-Maccagnoni, 2016), which is the focus of the internship.

Linear call-by-push-value is a model of higher-order computation that describes the
proper way for combining side-effects (Moggi, 1991) and resources (Girard, 1987). It unifies
CBPV and Melliès’s tensor logic (Melliès and Tabareau, 2010), and it makes the expected
connexions between (linear) logic and (effectful) computation. However, the results are
currently to (commutative) linear logic.

Goals We would like to extend the logic and the results from Curien, Fiore, and Munch-
Maccagnoni (2016) into an “ordered call-by-push-value”, to model the non-commutative
phenomenon mentioned before, and to serve as a starting point for further investigating
notions related to ownership in programming languages.

The internship task is to understand this paper with the help of the advisor, and, as a re-
search in team with the advisor, to investigate the difficulties in the non-commutative case,
and lastly, if successful, to contribute to the publication of the results in an international
conference or journal.

Pre-requisites As a young researcher, you probably already have:

• outstanding creativity,

• taste and capacity for acquiring a bibliographic knowledge of a topic,

• teamwork,

• clear and rigorous writing,

• good oral presentation skills.

More specifically for this topic, and less importantly, one expects:

• starting knowledge and interest in categorical semantics of logic and computation,

• interest or curiosity in systems programming (e.g. Rust), or proof theory (e.g. linear
logic, focusing), or old-school linguistics (where non-commutative logic originates
from), etc.

Notes

• Our team Gallinette provides a nice atmosphere. It is a large and young team of
researchers in Nantes, specialised in logic, programming languages, and the formali-
sation of mathematics. Many colleagues work on the development and application of
the Coq proof assistant.

3



• My speciality is in logic and denotational semantics (e.g. lambda-calculus). More
recently, I have found this area of application of my works to programming lan-
guages4, and I started hacking and contributing to the OCaml language runtime. I
interact both with researchers in logic/semantics and with OCaml/Rust researchers
and implementers in the industry.

• Funding is available for travel (e.g. workshops and visits abroad). There are collabo-
ration opportunities with M. Fiore (Univ. Cambridge, UK).

• In addition, a student with taste in programming will also have the opportunity, if
they want, to get involved in side-projects meant to improve OCaml’s support for
safe resource management in a concrete manner.

References

Guillaume Combette and Guillaume Munch-Maccagnoni. 2018. A resource modal-
ity for RAII (abstract). Technical Report. INRIA. https://hal.inria.fr/
hal-01806634

Pierre-Louis Curien, Marcelo Fiore, and Guillaume Munch-Maccagnoni. 2016. A Theory
of Effects and Resources: Adjunction Models and Polarised Calculi. In Proc. POPL.
https://doi.org/10.1145/2837614.2837652

Jean-Yves Girard. 1987. Linear Logic. Theoretical Computer Science 50 (1987), 1–102.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018. RustBelt:
securing the foundations of the rust programming language. PACMPL 2, POPL (2018),
66:1–66:34. https://doi.org/10.1145/3158154

Yves Lafont. 1988. The linear abstract machine. Theoretical computer science 59, 1-2
(1988), 157–180.

Joachim Lambek. 1958. The mathematics of sentence structure. The American Mathemat-
ical Monthly 65, 3 (1958), 154–170.

Paul Blain Levy. 2004. Call-By-Push-Value: A Functional/Imperative Synthesis. Semantic
Structures in Computation, Vol. 2. Springer.

Nicholas D. Matsakis and Felix S. Klock II. 2014. The rust language. In ACM SIGAda Ada
Letters, Vol. 34. ACM, 103–104.

Paul-André Melliès. 2009. Categorical semantics of linear logic. Panoramas et Synthèses,
Vol. 27. Société Mathématique de France, Chapter 1, 15–215.

Paul-André Melliès. 2012. Parametric monads and enriched adjunctions. (2012). Draft.

4See my presentation of this topic at the Collège de France: https://www.college-de-france.fr/site/xavier-
leroy/seminar-2018-12-19-11h30.htm.

4

https://hal.inria.fr/hal-01806634
https://hal.inria.fr/hal-01806634
https://doi.org/10.1145/2837614.2837652
https://doi.org/10.1145/3158154
https://www.college-de-france.fr/site/xavier-leroy/seminar-2018-12-19-11h30.htm
https://www.college-de-france.fr/site/xavier-leroy/seminar-2018-12-19-11h30.htm


Paul-André Melliès and Nicolas Tabareau. 2010. Resource modalities in tensor logic. Ann.
Pure Appl. Logic 161, 5 (2010), 632–653.

Eugenio Moggi. 1991. Notions of computation and monads. Inf. Comput. 93, 1 (July 1991),
55–92. https://doi.org/10.1016/0890-5401(91)90052-4

John C. Reynolds. 1978. Syntactic Control of Interference. In Conference Record of the Fifth
Annual ACM Symposium on Principles of Programming Languages, Tucson, Arizona,
USA, January 1978, Alfred V. Aho, Stephen N. Zilles, and Thomas G. Szymanski (Eds.).
ACM Press, 39–46. https://doi.org/10.1145/512760.512766

Bjarne Stroustrup, Herb Sutter, and Gabriel Dos Reis. 2015. A brief introduction to
C++’s model for type- and resource-safety. (2015). http://www.stroustrup.com/
resource-model.pdf

5

https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/512760.512766
http://www.stroustrup.com/resource-model.pdf
http://www.stroustrup.com/resource-model.pdf

