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1 RAII and move semantics

Stroustrup’s “Resource acquisition is initialisation” idiom (RAII, Stroustrup 1994) attaches destruc-
tors to types in C++, called whenever the lifetime of a variable ends, either by the end of its scope
being reached, by an exception being raised, or by a control operator (return, break) being called. It
is used in C++ to ensure the basic exception-safety guarantee (Stroustrup, 2001). Unlike finalizers
called by a tracing garbage collector, destructors are called at fixed and predictable times.
RAII allows a form of resource management, for ensuring for instance that dynamically-allocated

memory is always freed by the end of a scope. It is also used to ensure that locks are always freed,
connections are always closed, etc. Doing so amounts to treat locks and connections as resources.
Thus, a main point of RAII is that destructors may perform effects.

The extension of C++ with move semantics (Hinnant, Dimov, and Abrahams, 2002) allowed to
express the moving of non-copiable resources. Moving a resource alters its lifetime: it can change the
order in which destructors are called, or transfer the duty of calling the destructor to a different scope.
Notably it allowed the definition of a non-copiable smart pointer for automatic resource management
(unique_ptr) expressing ownership.

Baker (1994a,b, 1995) has proposed a synthesis of the notion of resource from systems program-
ming with that of resources from linear logic (Girard, 1987). Arguably, it contained an early de-
scription of move semantics (it mentioned in particular the compatibility of moving with C++-style
destructors). Although these articles described many of the ideas behind the resource management
model of the C++11 (Stroustrup, Sutter, and Dos Reis, 2015) and Rust (Anderson, Bergstrom, Gore-
gaokar, Matthews, McAllister, Moffitt, and Sapin, 2016) languages, they appear in advance of their
time and rarelymentioned. In this presentation, we substantiate a link between C++-style destructors
and linear logic.

2 A resource modality for RAII

We consider L any distributive symmetric monoidal closed category (such as in particular any stan-
dard model of linear logic). For anyE ∈ L, there is a monad−⊕E. It has been noticed in Hasegawa
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(2004) that this monad lacks in general a strength, and therefore cannot be used to model exceptions
like in a cartesian setting (Moggi, 1991). Intuitively, the operations bind and raise (or throw) need
to dispose of variables in their context.
The main idea to model exceptions in L is to consider the slice category L∕I where I is the

monoidal unit. We recall that the slice category C∕X of a category C for X ∈ Chas objects (A, �)
for A ∈ C and � ∈ C(A,X), and morphisms those in C that preserve the second component. In
particular, (X, idX) is terminal, and so L∕I is affine. When an object A ∈ L interprets a type and
� ∈ L(A, I) interprets a derivation, we think of (A, �) as another type obtained by attaching the
destructor � to the type A.
We are more generally interested in the case where we are given a strong monad (T , �, �, �) onL.

We consider the slice category L∕T I and think of objects (A, � ∶ A→ T I) as destructors that may
perform an effect. We recall the following result attributed to Street1:

Proposition 1. For any monoid M in L with multiplication m ∈ L(M ⊗ M,M) and unit e ∈
L(I,M), the slice categoryL∕M has amonoidal structure with unit IM = (I, e) and tensor (A, �)⊗
(B, �′) = (A⊗ B,m ◦ �⊗�′). The forgetful functor U ∶ L∕M → L is strict monoidal.

Now, the object T I has a monoid structure given by �I◦�T I,I ∶ T I⊗TI → T I and �I ∶ I → T I .
Thus,L∕T I has a monoidal structure and strict monoidal forgetful functorU ∶ L∕T I → L. L∕T I
has a terminal object (T I, idT I ). Notice that if L is symmetric, the symmetry does not necessarily
lift to a symmetry on L∕T I . This is the case though whenever T is commutative. Otherwise, there
is a definite order in the application of destructors: the destructor of P ⊗Q first calls the destructor
of Q and then the destructor of P .
We notice that the functor U has a right adjoint if and only ifLhas the products −×T I (as is the

case in any model of multiplicative-additive intuitionistic linear logic). One therefore has a monoidal
adjunction L∕T I U //

⊥ LRoo , giving rise to a resource modality S = UR onL in the sense of Melliès
(2009). When L has finite products, this adjunction has the structure of a (non-commutative) linear
call-by-push-valuemodel (Curien, Fiore, andMunch-Maccagnoni, 2016). In particular, its deductive
system given by the obliquemorphisms of the adjunction (Munch-Maccagnoni, 2014), still expresses
multiplicative-additive intuitionistic linear logic, though with fewer identities between derivations,
reflecting the presence of an evaluation order. The deductive system includes a symmetry A⊗B ⊢
B ⊗A found in

L(UA⊗UB,UB ⊗ UA) ≅ L∕T I(A⊗ B,RU (B ⊗A)) ,

in words, moving resources is available as an effectful operation.
In this setting, we study the monad TE = T (−⊕E) on L and strength-like maps �P ,A ∶ UP ⊗

TEA → TE(UP ⊗ A) defined for P ∈ L∕T I and A ∈ L.

3 Resource management modes as polarities

We will conclude with considerations of programming language design following from the analogy:

smart pointer ∼ resource modality

1https://mathoverflow.net/a/229371
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which is suggested by Chirimar, Gunter, and Riecke, 1996 (a resource modality for a reference-
counted garbage collection) and the previous section (a resource modality for unique_ptr).

We propose to extend it into an analogy:

resource management mode ∼ polarity

where the notion of polarities (Girard, 1991, 1993) suggests a way of mixing different resource man-
agement modes as kinds in a functional programming language, presented recently in a companion
article (Munch-Maccagnoni, 2018).
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