
A resource modality for RAII

Guillaume Combette (CNRS, ENS Lyon)
Guillaume.Combette@ens-lyon.fr

Guillaume Munch-Maccagnoni (Inria, LS2N CNRS)
Guillaume.Munch-Maccagnoni@inria.fr

31st May 2018

1 RAII and move semantics

Stroustrup’s “Resource acquisition is initialisation” idiom (RAII, Stroustrup 1994) attaches destruc-
tors to types in C++, called whenever the lifetime of a variable ends, either by the end of its scope
being reached, by an exception being raised, or by a control operator (return, break) being called. It
is used in C++ to ensure the basic exception-safety guarantee (Stroustrup, 2001). Unlike finalizers
called by a tracing garbage collector, destructors are called at fixed and predictable times.
RAII allows a form of resource management, for ensuring for instance that dynamically-allocated

memory is always freed by the end of a scope. It is also used to ensure that locks are always freed,
connections are always closed, etc. Doing so amounts to treat locks and connections as resources.
Thus, a main point of RAII is that destructors may perform effects.

The extension of C++ with move semantics (Hinnant, Dimov, and Abrahams, 2002) allowed to
express the moving of non-copiable resources. Moving a resource alters its lifetime: it can change the
order in which destructors are called, or transfer the duty of calling the destructor to a different scope.
Notably it allowed the definition of a non-copiable smart pointer for automatic resource management
(unique_ptr) expressing ownership.

Baker (1994a,b, 1995) has proposed a synthesis of the notion of resource from systems program-
ming with that of resources from linear logic (Girard, 1987). Arguably, it contained an early de-
scription of move semantics (it mentioned in particular the compatibility of moving with C++-style
destructors). Although these articles described many of the ideas behind the resource management
model of the C++11 (Stroustrup, Sutter, and Dos Reis, 2015) and Rust (Anderson, Bergstrom, Gore-
gaokar, Matthews, McAllister, Moffitt, and Sapin, 2016) languages, they appear in advance of their
time and rarelymentioned. In this presentation, we substantiate a link between C++-style destructors
and linear logic.

2 A resource modality for RAII

We consider L any distributive symmetric monoidal closed category (such as in particular any stan-
dard model of linear logic). For anyE ∈ L, there is a monad−⊕E. It has been noticed in Hasegawa

1

mailto:Guillaume.Combette@ens-lyon.fr
mailto:Guillaume.Munch-Maccagnoni@inria.fr


(2004) that this monad lacks in general a strength, and therefore cannot be used to model exceptions
like in a cartesian setting (Moggi, 1991). Intuitively, the operations bind and raise (or throw) need
to dispose of variables in their context.
The main idea to model exceptions in L is to consider the slice category L∕I where I is the

monoidal unit. We recall that the slice category C∕X of a category C for X ∈ Chas objects (A, �)
for A ∈ C and � ∈ C(A,X), and morphisms those in C that preserve the second component. In
particular, (X, idX) is terminal, and so L∕I is affine. When an object A ∈ L interprets a type and
� ∈ L(A, I) interprets a derivation, we think of (A, �) as another type obtained by attaching the
destructor � to the type A.
We are more generally interested in the case where we are given a strong monad (T , �, �, �) onL.

We consider the slice category L∕T I and think of objects (A, � ∶ A→ T I) as destructors that may
perform an effect. We recall the following result attributed to Street1:

Proposition 1. For any monoid M in L with multiplication m ∈ L(M ⊗ M,M) and unit e ∈
L(I,M), the slice categoryL∕M has amonoidal structure with unit IM = (I, e) and tensor (A, �)⊗
(B, �′) = (A⊗ B,m ◦ �⊗�′). The forgetful functor U ∶ L∕M → L is strict monoidal.

Now, the object T I has a monoid structure given by �I◦�T I,I ∶ T I⊗TI → T I and �I ∶ I → T I .
Thus,L∕T I has a monoidal structure and strict monoidal forgetful functorU ∶ L∕T I → L. L∕T I
has a terminal object (T I, idT I ). Notice that if L is symmetric, the symmetry does not necessarily
lift to a symmetry on L∕T I . This is the case though whenever T is commutative. Otherwise, there
is a definite order in the application of destructors: the destructor of P ⊗Q first calls the destructor
of Q and then the destructor of P .
We notice that the functor U has a right adjoint if and only ifLhas the products −×T I (as is the

case in any model of multiplicative-additive intuitionistic linear logic). One therefore has a monoidal
adjunction L∕T I U //

⊥ LRoo , giving rise to a resource modality S = UR onL in the sense of Melliès
(2009). When L has finite products, this adjunction has the structure of a (non-commutative) linear
call-by-push-valuemodel (Curien, Fiore, andMunch-Maccagnoni, 2016). In particular, its deductive
system given by the obliquemorphisms of the adjunction (Munch-Maccagnoni, 2014), still expresses
multiplicative-additive intuitionistic linear logic, though with fewer identities between derivations,
reflecting the presence of an evaluation order. The deductive system includes a symmetry A⊗B ⊢
B ⊗A found in

L(UA⊗UB,UB ⊗ UA) ≅ L∕T I(A⊗ B,RU (B ⊗A)) ,

in words, moving resources is available as an effectful operation.
In this setting, we study the monad TE = T (−⊕E) on L and strength-like maps �P ,A ∶ UP ⊗

TEA → TE(UP ⊗ A) defined for P ∈ L∕T I and A ∈ L.

3 Resource management modes as polarities

We will conclude with considerations of programming language design following from the analogy:

smart pointer ∼ resource modality

1https://mathoverflow.net/a/229371

2

https://mathoverflow.net/a/229371


which is suggested by Chirimar, Gunter, and Riecke, 1996 (a resource modality for a reference-
counted garbage collection) and the previous section (a resource modality for unique_ptr).

We propose to extend it into an analogy:

resource management mode ∼ polarity

where the notion of polarities (Girard, 1991, 1993) suggests a way of mixing different resource man-
agement modes as kinds in a functional programming language, presented recently in a companion
article (Munch-Maccagnoni, 2018).

References

Brian Anderson, Lars Bergstrom,Manish Goregaokar, JoshMatthews, KeeganMcAllister, JackMof-
fitt, and Simon Sapin. 2016. Engineering the servo web browser engine using Rust. In ICSE ’16.
https://doi.org/10.1145/2889160.2889229 1

Henry G. Baker. 1994a. Linear logic and permutation stacks - the Forth shall be first. SIGARCH
Computer Architecture News 22, 1 (1994), 34–43. https://doi.org/10.1145/181993.181999 1

Henry G. Baker. 1994b. Minimum Reference Count Updating with Deferred and Anchored Pointers
for Functional Data Structures. SIGPLAN Notices 29, 9 (1994), 38–43. https://doi.org/10.

1145/185009.185016 1

Henry G. Baker. 1995. "Use-Once" Variables and Linear Objects - Storage Management, Reflec-
tion and Multi-Threading. SIGPLAN Notices 30, 1 (1995), 45–52. https://doi.org/10.1145/

199818.199860 1

R.F. Blute, J.R.B. Cockett, and R.A.G. Seely. 1996. ! and ?-Storage as tensorial strength. Mathe-
matical Structures in Computer Science 6, 4 (1996), 313–351.

Jawahar Chirimar, Carl A. Gunter, and Jon G. Riecke. 1996. Reference Counting as a Computational
Interpretation of Linear Logic. J. Funct. Program. 6, 2 (1996), 195–244. https://doi.org/10.

1017/S0956796800001660 3

Pierre-Louis Curien, Marcelo Fiore, and Guillaume Munch-Maccagnoni. 2016. A Theory of Effects
and Resources: Adjunction Models and Polarised Calculi. In Proc. POPL. https://doi.org/10.

1145/2837614.2837652 2

Thomas Ehrhard. 2016. Effects in Call-By-Push-Value, from a Linear Logic point of view. (2016).

Jean-Yves Girard. 1987. Linear Logic. Theoretical Computer Science 50 (1987), 1–102. 1

Jean-Yves Girard. 1991. A new constructive logic: Classical logic. Math. Struct. Comp. Sci. 1, 3
(1991), 255–296. 3

Jean-Yves Girard. 1993. On the Unity of Logic. Ann. Pure Appl. Logic 59, 3 (1993), 201–217. 3

Masahito Hasegawa. 2004. Semantics of linear continuation-passing in call-by-name. In Interna-
tional Symposium on Functional and Logic Programming. Springer, 229–243. 1

3

https://doi.org/10.1145/2889160.2889229
https://doi.org/10.1145/181993.181999
https://doi.org/10.1145/185009.185016
https://doi.org/10.1145/185009.185016
https://doi.org/10.1145/199818.199860
https://doi.org/10.1145/199818.199860
https://doi.org/10.1017/S0956796800001660
https://doi.org/10.1017/S0956796800001660
https://doi.org/10.1145/2837614.2837652
https://doi.org/10.1145/2837614.2837652


Howard E. Hinnant, Peter Dimov, and Dave Abrahams. 2002. A Proposal to Add Move Seman-
tics Support to the C++ Language. (2002). http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2002/n1377.htm 1

Anders Kock. 1972. Strong functors and monoidal monads. Archiv der Mathematik 23, 1 (1972),
113–120.

Paul Blain Levy. 2005. Adjunction models for call-by-push-value with stacks. Theory and Applica-
tion of Categories 14, 5 (2005), 75–110.

Paul-André Melliès. 2009. Categorical semantics of linear logic. Panoramas et Synthèses, Vol. 27.
Société Mathématique de France, Chapter 1, 15–215. 2

Paul-André Melliès. 2012. Parametric monads and enriched adjunctions. Unpublished manuscript
28 (2012).

Eugenio Moggi. 1991. Notions of computation and monads. Inf. Comput. 93, 1 (July 1991), 55–92.
https://doi.org/10.1016/0890-5401(91)90052-4 2

GuillaumeMunch-Maccagnoni. 2014. Models of a Non-Associative Composition. InProc. FoSSaCS
(LNCS), A. Muscholl (Ed.), Vol. 8412. Springer, 397–412. 2

Guillaume Munch-Maccagnoni. 2018. Resource Polymorphism. (2018). https://arxiv.org/abs/

1803.02796 3

Bjarne Stroustrup. 1994. The design and evolution of C++. Pearson Education India. 1

Bjarne Stroustrup. 2001. Exception Safety: Concepts and Techniques. Springer Berlin Heidelberg,
Berlin, Heidelberg, 60–76. https://doi.org/10.1007/3-540-45407-1_4 1

Bjarne Stroustrup, Herb Sutter, and Gabriel Dos Reis. 2015. A brief introduction to C++’s model
for type- and resource-safety. (2015). http://www.stroustrup.com/resource-model.pdf 1

4

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1377.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1377.htm
https://doi.org/10.1016/0890-5401(91)90052-4
https://arxiv.org/abs/1803.02796
https://arxiv.org/abs/1803.02796
https://doi.org/10.1007/3-540-45407-1_4
http://www.stroustrup.com/resource-model.pdf

	RAII and move semantics
	A resource modality for RAII
	Resource management modes as polarities
	References

