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Resourcemanagement

Values with a clean-up operation
let read_line name =
let f = open_in name in
print_endline (input_line f);
flush stdout;
close_in f

Examples in Multicore OCaml: continuations/fibers, resources in scheduling
frameworks. Discussions with industrial users of OCaml about problems with
resource leaks.
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Resourcemanagement

Even in case of errors
let read_line name =
let f = open_in name in
try
print_endline (input_line f);
flush stdout;
close_in f

with e ->
close_in_noerr f;
raise e

(example from Real World OCaml, Minsky et al., 2013)
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Resourcemanagement

Resource: value which is hard to copy or dispose of.
• large or shared data structures

(⇒ memory management)
• low-level abstractions
• anything that needs to be cleaned-up (file handle, sockets, locks, values

from a foreign runtime...)
• anything for which aliasing is harmful
• emerging abstractions (e.g. poison guards for fault-tolerance in Rust)
• Programming with resources: any data structure containing the above

(lists of resources, closures of resources...)
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Resourcemanagement

• Memory management (when avoiding a GC)
• Usage of a value respects a protocol (e.g. file, network connection, value

from a foreign runtime)
• Fault tolerance (correct exception handling)

⇒ Correctness, efficiency, interoperability, expressiveness
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Resourcemanagement

What Techniques to reason about the state of the program
How Language support for linear values (linearity as a safety property)
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Resource Management in C++11/Rust

C++11/Rust represent a breakthrough for all these questions
• C++11: “move semantics”: resources as first-class values in C++. A notion

of ownership based on linear values becomes core to the language.
Connections with linear logic anticipated by Baker (1994a, 1995).

• Rust: extends the C++11 model with fancy types to avoid certain classes
of bugs at compilation, shows it relevance for concurrent/parallel
programming.
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Resource Management in C++11/Rust

Key concept: Destructors (aka RAII: “Resource acquisition is initialization”)
• Function that is called when a variable goes out of scope (predictably)
• Including when an exception is raised (stack unwinding)

cf. unwind-protect
But:

• A type-level abstraction: algebra of types
• Move semantics (since C++11): passing and returning a resource along

with the responsibility of calling its destructor (ownership); data types
(e.g. vectors) can now manage resources.
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Resource Management in C++11/Rust

Linearity and ownership are emergent phenomena of types with destructors.
In Rust, other notions follow intuitively:
1. Region typing (“borrowing”),
2. Uniqueness (“linear/mutable borrows”),
3. External uniqueness/linear abstract data types (“interior mutability”).
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A semantic reconstruction of RAII

jww G. Combette “A resource modality for RAII” (LOLA 2018)
Understanding RAII/destructors via Curry-Howard.

• Interpret types with destructors as objects (A,δ : A → TI) of the slice
category C/TI

• The exists a resource modality (like linear logic “!”) for types with
destructors

• Unlike “!” (which enriches linear logic with a kind for intuitionistic logic),
it enriches intuitionistic logic with a kind for ordered logic (because the
order of destruction matters)
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A semantic reconstruction of RAII

• A type-based abstraction. Attach a destructor to a type, to create a new
type.

• Ordered data types (rather than linear or affine)

A⊗B ≇B⊗ A

• Still affine at the level of provability! (move is an effect)

A⊗B ↔ B⊗ A

• Solves the open question of combining linearity and control effects (e.g.
exceptions)
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A semantic reconstruction of RAII

“Are types in Rust linear or affine?”
Our model is clear:

• Linear for values
• Ordered for types
• Affine in terms of provability/static type system
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Proposal: First-Class Resources in ML

Resource polymorphism, 2018 (CoRR)
Propositions in language design and implementation
See a language 3 layers:
1. Type system (challenge, lots of relevant literature)
2. Language abstractions (this proposal)
3. Runtime/implementation (this proposal, but not this talk)

The proposal is also meant as a survey of resource management
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Proposal: First-Class Resources in ML

Goals:
• Looking for an ML-like “sweet spot”: between simplicity, modularity,

expressiveness...
• Be rooted in programming practice and experience (the goal is not to turn

a mathematical concept into a language feature)
• Learn from the C++11 move semantics proposal: make resources

“first-class” (enable gradual migration, avoid creating a new dialect that
mixes poorly with other code)

• Backwards-compatibility at all costs including performance (e.g. do not
change how preexisting code has to be compiled)

⇒ Add one concept of resource, enriched with various notions of polymorphism
pertaining to resources
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Proposal: First-Class Resources in ML

New types
type t = Res of u with destructor f

(* f : u -> unit *)
(* f must not raise *)

t &

• Runtime kind distinction Owned/Unrestricted, inspired by the notion of
polarity in linear logic (Girard, 1991, 1993), similar to Rust’s special traits
(Drop/Copy)

New terms
&v
*x (* on bound variables *)

Everything else follow from there.
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Proposal: First-Class Resources in ML

type file_in = File of Stdlib.in_channel
with destructor Stdlib.close_in_noerr

let open_file name : file_in =
File (Stdlib.open_in name)



Resource management First-Class Resources in ML Combining GC and Linear Allocation Conclusion

Proposal: First-Class Resources in ML

let drop *x = ()
(* val drop : (^a : O) -> unit = <fun> *)

let fancy_drop *x =
try
let *y = x in raise Exit

with
Exit -> ()
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Proposal: First-Class Resources in ML

let create_and_move name =
let *x = open_file name in
f x (* move resource *)
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Proposal: First-Class Resources in ML

let twice1 name =
let *f = open_file name in

✗ (f,f) (* expected: error: f cannot be copied *)
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Proposal: First-Class Resources in ML

let open_list =
List.map (fun name ->

(name, open_file name))
(* (string * file_in) list : O *)

open_list l
(* Clean-up after Exception:
Sys_error "No such file or directory". *)
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Proposal: First-Class Resources in ML

let open_list =
List.map (fun name ->

(name, open_file name))
(* (string * file_in) list : O *)

open_list l
(* Clean-up after Exception:
Sys_error "No such file or directory". *)
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Proposal: First-Class Resources in ML

Parametric resource polymorphism
let rec map f = function

[] -> []
| *a::*l -> let *r = f a in r :: map f l

(* map : (^a -> ^b) -> ^a list -> ^b list *)

Compiling U <: O
Monomorphisation of polarities (there are only 2 per distinct type variable)
U Compiled as usual
O Compiled with destructor calls & moves, receiving destructor implicitly

as an argument (e.g. implicit first-class module)
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Proposal: First-Class Resources in ML

Experiment: adapting OCaml Stdlib modules to respect linearity.
E.g. the List module

• It is already linear (one just needs to add * and & where needed, in the
notations of this talk). Only the List.sort function needed to be made
linear; a PR to do so has been accepted because it made it objectively
better.

• One of the most polymorphic library
• 16 functions have two parameters and would compiled up to 4 times after

kind monomorphisation, e.g. List.map
• 4 functions have three parameters and would be compiled up to 8 times, e.g.

List.map2
• No function has more than 3 parameters
• All the possible kind combinations make sense
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Proposal: First-Class Resources in ML

(Notations allude to, but the proposal leaves as an open question, an
expressive kind system for affine typing)

Practical Affine Types ∗

Jesse A. Tov Riccardo Pucella

Northeastern University
{tov,riccardo}@ccs.neu.edu

Abstract

Alms is a general-purpose programming language that supports practical
affine types. To offer the expressiveness of Girard’s linear logic while keeping
the type system light and convenient, Alms uses expressive kinds that minimize
notation while maximizing polymorphism between affine and unlimited types.

A key feature of Alms is the ability to introduce abstract affine types via
ML-style signature ascription. In Alms, an interface can impose stiffer resource
usage restrictions than the principal usage restrictions of its implementation.
This form of sealing allows the type system to naturally and directly express a
variety of resource management protocols from special-purpose type systems.

We present two pieces of evidence to demonstrate the validity of our design
goals. First, we introduce a prototype implementation of Alms and discuss our
experience programming in the language. Second, we establish the soundness
of the core language. We also use the core model to prove a principal kinding
theorem.

1 A Practical Affine Type System
Alms is a practical, general-purpose programming language with affine types. Affine
types enforce the discipline that some values are not used more than once, which
in Alms makes it easy to define new, resource-aware abstractions. General-purpose
means that Alms offers a full complement of modern language features suitable for
writing a wide range of programs. Practical means that Alms is neither vaporware
nor a minimal calculus—it is possible to download Alms today and try it out.

Rationale. Resource-aware type systems divide into two camps: foundational cal-
culi hewing closely to linear logic, and implementations of special-purpose type sys-
tems designed to solve special problems. We argue that a general, practical type
∗This is the extended version of a paper of the same title submitted to POPL 2011.

1
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Borrows

We have added alongside ML a copy of it made of linear values. How do they
mix?
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Borrows

&
let read_line name =
let *f = open_file name in
print_endline (input_line &f);
flush stdout
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Borrows

let read_line name =
let *f = open_file name in
let File g : file_in = &f in
drop f;
print_endline (input_line g)
(* Sys_error "Bad file descriptor" *)
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Borrows
Linear Abstract Data Types

module File : sig
type t : O
val open : string -> t
val input_line : t & -> string

end

let read_line name =
let f = File.open name in
let g : File.t & = &f in
drop f;
print_endline (File.input_line g)

(* Compilation error: g outlives its resource *)



Resource management First-Class Resources in ML Combining GC and Linear Allocation Conclusion

Borrow polymorphism

Expressiveness argument:
Assuming all resources are fixed, the expressiveness with borrows should be
that of entire ML
filter : (’a & -> bool) -> ’a list & -> ’a list &

let x = &l in let y = filter f x in ...

(* (string * File.t) list &
vs.

(string * File.t) & list
? *)
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Borrow polymorphism

& a homomorphism
(string * File.t) list &

= (string * File.t) & list
= (string & * File.t &) list

(interpretation: forgetful functor from O to U)
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Summary

• New types
type t = Foo of t with destructor f
t &

• New term formers
&x
*x

• Parametric resource polymorphism (with monomorphisation of kinds at
runtime)

• Borrow polymorphism (& as a forgetful functor)
• Linear abstract data types

Not discussed here: type-dependent polarities, linear mutable state, linear
borrows, types of closures, borrow modality, linear continuations, tail calls, and
more
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Further experiments

1. Implementing destructors with typed pointer reversal (jww. Rémi
Douence, ML 2019)

2. Semantics of asynchronous exceptions & failure recovery (OCaml
workshop 2021)
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Advantages of GC and Linear Allocation

Automatic memory management with RAII (C++11/Rust)
• Stack allocation & memcpy (orthogonal to the present proposal)
• Unique pointers

• Ownership & borrowing discipline
• “As efficient” as raw malloc/free

• Reference-counted pointers
• Copiable
• Many costs & limitations (e.g. cycles)
• Baker: minimise cost by moving, borrowing and deferred copying (more

recently, see works on Perceus at this workshop)
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Advantages of GC and Linear Allocation
“tracing operates on live objects, while reference counting operates on dead
objects”

A Unified Theory of Garbage Collection

David F. Bacon
dfb@watson.ibm.com

Perry Cheng
perryche@us.ibm.com

V.T. Rajan
vtrajan@us.ibm.com

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

ABSTRACT
Tracing and reference counting are uniformly viewed as being fun-
damentally different approaches to garbage collection that possess
very distinct performance properties. We have implemented high-
performance collectors of both types, and in the process observed
that the more we optimized them, the more similarly they behaved
— that they seem to share some deep structure.

We present a formulation of the two algorithms that shows that
they are in fact duals of each other. Intuitively, the difference is that
tracing operates on live objects, or “matter”, while reference count-
ing operates on dead objects, or “anti-matter”. For every operation
performed by the tracing collector, there is a precisely correspond-
ing anti-operation performed by the reference counting collector.

Using this framework, we show that all high-performance col-
lectors (for example, deferred reference counting and generational
collection) are in fact hybrids of tracing and reference counting.
We develop a uniform cost-model for the collectors to quantify the
trade-offs that result from choosing different hybridizations of trac-
ing and reference counting. This allows the correct scheme to be
selected based on system performance requirements and the ex-
pected properties of the target application.

General Terms
Algorithms, Languages, Performance

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Dynamic storagemanagement; D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection);
D.4.2 [Operating Systems]: Storage Management—Garbage col-
lection

Keywords
Tracing, Mark-and-Sweep, Reference Counting, Graph Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

OOPSLA’04,Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 $5.00.

1. INTRODUCTION
By 1960, the two fundamental approaches to storage reclama-

tion, namely tracing [33] and reference counting [18] had been de-
veloped.

Since then there has been a great deal of work on garbage collec-
tion, with numerous advances in both paradigms. For tracing, some
of the major advances have been iterative copying collection [15],
generational collection [41, 1], constant-space tracing [36], barrier
optimization techniques [13, 45, 46], soft real-time collection [2, 7,
8, 14, 26, 30, 44], hard real-time collection [5, 16, 23], distributed
garbage collection [29], replicating copying collection [34], and
multiprocessor concurrent collection [21, 22, 27, 28, 39].

For reference counting, some of the major advances have been
incremental freeing [42], deferred reference counting [20], cycle
collection [17, 32, 6], compile-time removal of counting opera-
tions [9], and multiprocessor concurrent collection [3, 19, 31].

However, all of these advances have been refinements of the two
fundamental approaches that were developed at the dawn of the era
of high-level languages.

Tracing and reference counting have consistently been viewed as
being different approaches to storage reclamation. We have imple-
mented both types of collector: a multiprocessor concurrent refer-
ence counting collector with cycle collection [3, 6] and a uniproces-
sor real-time incremental tracing collector [4, 5]. In this process,
we found some striking similarities between the two approaches.
In particular, once substantial optimizations had been applied to
the naı̈ve algorithms, the difficult issues that arose were remark-
ably similar. This led us to speculate that the two algorithms in fact
share a “deep structure”.

In this paper we show that the two fundamental approaches to
storage reclamation, namely tracing and reference counting, are al-
gorithmic duals of each other. Intuitively, one can think of tracing
as operating upon live objects or “matter”, while reference count-
ing operates upon dead objects or “anti-matter”. For every oper-
ation performed by the tracing collector, there is a corresponding
“anti-operation” performed by the reference counting collector.

Approaching the two algorithms in this way sheds new light on
the trade-offs involved, the potential optimizations, and the pos-
sibility of combining reference counting and tracing in a unified
storage reclamation framework.

We begin with a qualitative comparison of tracing and reference
counting (Section 2) and then show that the two algorithms are in
fact duals of each other (Section 3). We then show that all real-
istic, high-performance collectors are in fact hybrids that combine
tracing and reference counting (Section 4). We then discuss the
problem of cycle collection (Section 5) and extend our framework
to collectors with arbitrary numbers of separate heaps (Section 6).
Using our categorization of collectors, we then present a uniform

50
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Advantages of GC and Linear Allocation

Reference-counting
✓ Values do not move (interoperability)
✓ Timely resource destruction
✓ Possible to re-use cells
✗ Costs of count updates & synchronisation
✗ Cycles leak
✗ Latency due to upfront deallocation cost, sometimes cascading
✗ Upfront allocation cost
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Advantages of GC and Linear Allocation

RC
�II GC

Perceus OCaml
ML with resources
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Advantages of GC and Linear Allocation

Generational GC (tracing live)
✓ No discipline needed

• Shared data structures & shared mutable state
• Cycles

✓ Allocation almost free for short-lived values
✗ Cost of read/write barriers, synchronisation
✗ Allocation can cause latency
✗ Unable to deal with resources
✗ Values can move
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Advantages of GC and Linear Allocation

Allocate with RAII, e.g. RC=1 (tracing dead)
✓ Timely resource destruction
✓ Purely static re-use of cells (Baker, 1992; Lafont, 1988)
✓ No reference count to update
✓ Values do not move (interoperability)
✓ No read/write barrier, no synchronisation
✓ No cycles
✓ During life: no cost & no interruption
✗ Upfront allocation cost (but no need to stop for GC)
✗ Ownership & borrowing discipline
✗ Latency due to upfront deallocation cost (but in a controlled way)
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Advantages of GC and Linear Allocation

RAII allocation suitable for:
• large data with epochal behaviour (see Nguyen et al., 2016)
• interoperability with systems languages (efficiently and expressively)
• performance-sensitive paths

• To avoid long-lived GC allocations
• To avoid all allocations (e.g. pre-allocate a free list, re-use cells during hot

path, and clean-up after)

(cf. ML 2020 informed position talk)
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Combining GC and Linear Allocation

Language design : expressiveness vs. concision

“RAII hypothesis”

• RAII-allocated types ⊆ types with destructors (obviously)
• Anybody using destructors already pay most of the costs

(ownership & borrowing discipline, traversing the whole structure on
destruction: no benefit to expect from a generational hypothesis anyway)

• Heuristic: types with destructors ⊆ RAII-allocated types
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Combining GC and Linear Allocation

↓U
O : U→O

Embed GC-allocated values into resources

Register GC root; set destructor to unregister root.

Boxroot experiment: rooting is free (= not more expensive than what is already
paid for) (jww G. Scherer, ML 2022)
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Combining GC and Linear Allocation

↑B
O : O→B

Embed linearly-allocated values inside GC-allocated ones

Borrowing as a forgetful functor

Implemented at runtime with:

• Uniform representation of values between GC & RAII.
• Treat borrowed values as if GC allocated.

A runtime classification of pointers makes the GC go faster (OCaml workshop
2022)
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Towards typing

• Rich literature (e.g. Tov and Pucella 2011, and now more recent works,
e.g. Radanne et al. 2019)

• But still unsufficient (cf. Rust limitations, active area of research)
• Key design constraint: do not guess linearity from use count

✓ Force making clear when a function is designed
to be compatible with RAII (backwards-compatibility & no surprise)

✓ Separate linearity & borrow checking
from type inference (ease of implementation, preserve performance
of type inference)

• Forces (and motivates) to have a clear story about ownership. Stepping
stone towards better data race control in parallel programming.
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Summary
1. Types with destructors ⇒ ordered logic
2. Mixing GC and linear allocation with re-use
3. Various notions of resource polymorphism

3.1 parametric resource polymorphism
3.2 borrow polymorphism
3.3 indifference to allocation methods

4. Opportunities for a better story about ownership (including control of
aliasing)
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Difference with linear types:
• Inspired by Baker’s essays on linear logic
• Solves the interaction with control (identified as the next obstacle as far

back as Tov & Pucella)
• Linearity phrased as a safety property
• Linear types do not have runtime contents
• Linear types + typeclasses would end up reconstructing something like

this (but this is not a story told in the literature)



Thank you
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