
Programme for a rational
reconstruction of ownership in PLs

Guillaume Munch-Maccagnoni

ProgLang@Inria meeting, Paris, February 8th 20231

¹: Updated from feedback, Feb. 21st.

Ownership Rational reconstructions Research questions Approach

Introduction

• About resources in programming languages (an abstraction to reason
about state)

• How to gain further understanding of it via models in denotational
semantics

• Challenges (technical, methodological)

Ownership Rational reconstructions Research questions Approach

Introduction

Goals
• Present a set of research questions in denotational semantics motivated

by language design problems
• Locate this effort within an approach to PLs that mixes data-gathering

from the real world, and a critical view of the relationship between
semantics and programming

Ownership Rational reconstructions Research questions Approach

Ownership/Uniqueness
Control of aliasing

let m = Array.make 4 (Array.make 4 0);;
val m : int array array =
[|[|0; 0; 0; 0|];
[|0; 0; 0; 0|];
[|0; 0; 0; 0|];
[|0; 0; 0; 0|]|]

m.(0).(0) <- 128;;
- : unit = ()
m;;
- : int array array =
[|[|128; 0; 0; 0|];
[|128; 0; 0; 0|];
[|128; 0; 0; 0|];
[|128; 0; 0; 0|]|]

Ownership Rational reconstructions Research questions Approach

Ownership/Uniqueness
Control of aliasing

Control of aliasing
• Reasoning about state (cf. iterator invalidation)
• Concurrent programming (ownership transfer & other patterns of

non-interference)
• Optimizations (C restrict; memory re-use)

Ownership Rational reconstructions Research questions Approach

Ownership/Uniqueness
Resource management (bytecomp/bytelink.ml@8f58956 (Nov. 1996))

Note: example found by systematic audit of patterns of resource-management
in the OCaml compiler implementation

Ownership/Uniqueness
Resource management (bytecomp/bytelink.ml@40bab2d (July 2018))

Ownership Rational reconstructions Research questions Approach

Ownership/Uniqueness
Resource management

Resource management
• Memory management (malloc/free)
• Typestate/protocols
• Interoperability
• Fault tolerance (exception handling)

Ownership Rational reconstructions Research questions Approach

Ownership/Uniqueness

The Rust programming language represents a breakthrough for all these
questions

• C++11 (RAII (destructors) + move semantics, among many other things):
above (at an industrial scale, + structure)

• Type system for ownership & borrowing (systems programming/OOP +
“linear borrows”)

(Matsakis and Klock II, 2014; Anderson et al., 2016)
Like C++, it arose outside of academia

Ownership Rational reconstructions Research questions Approach

Ownership/Uniqueness
Approaches in this area

• Linear type systems: type systems that count how many times a variable
appears
(Wadler, 1991, and others)

• Program logics, e.g. separation logic: quite successful in verifying non-toy
systems including Rust
(Reynolds, 1978; O’Hearn et al., 1999, and others)

• Ownership type systems (OOP & systems communities): greater focus on
language design, more clearly a source of inspiration for Rust
(Clarke and Wrigstad, 2003; Jim et al., 2002, and others)

Ownership Rational reconstructions Research questions Approach

Rational reconstructions

Rational reconstructions
• Build an understanding via a refined (=épuré) model where features

stand by themselves
• Connecting with existing bodies of knowledge (e.g. λ-calculus and its

semantics as a bridge between intuitionistic logic and functional
programming)

• Opinionated theories (not some program logics that you could apply to
any programming language good or bad)

Ownership Rational reconstructions Research questions Approach

Rational reconstructions
Example: continuations

Continuations: Historically lots of different approaches
• Semantics: categorical (monad, comonad), translations (CPS,

Gödel-Gentzen, into linear logic)
• Many (!) different formalisms
• Many different questions: programming (control operators), logic

(classical translations)

Ownership Rational reconstructions Research questions Approach

Rational reconstructions
Example: continuations

Rational reconstructions:
• Girard (1991), Danos et al. (1997): a logic that generalizes all (many)

approaches
• Thielecke (1997), Levy (1999) connecting with the study of effects
• Curien and Herbelin (2000): idem for syntaxes/calculi
• Melliès: building blocks that one composes

(Melliès and Tabareau, 2010)

C

L
%%

⊥dd
M

L

op
''

⊥ee
op

Lop

M
((

⊥ff
L

Cop

Ownership Rational reconstructions Research questions Approach

Rational reconstructions
Linear call-by-push-value

C

L
%%

⊥dd
M

L

op
''

⊥ee
op

Lop

M
((

⊥ff
L

Cop

• Linear call-by-push-value (2016): how to combine resource modalities and
effect modalities

• Girard: Logic of Unity (1993). Mix linear & non-linear continuations
(Discussed recently: how to add duplicable continuations to OCaml?)

Ownership Rational reconstructions Research questions Approach

Rational reconstructions
A resource modality for RAII

• Linear Call-by-push-value (2016): combination of resource modalities and
effect modalities

• Combette & M. (2018). Connection between types with destructors and
ordered logic.

V/TI
&&

⊥ff

□
V

♢
))

⊥ff VT(−⊕E)

Ownership Rational reconstructions Research questions Approach

Rational reconstructions
A resource modality for RAII

• A type-based abstraction. Attach a destructor to a type, to create a new
type.

• Ordered data types (rather than linear or affine)

A⊗B ≇B⊗ A

• Still affine at the level of provability!

A⊗B ↔ B⊗ A

• Solves open question of combining linearity and control effects (with lots
of thanks to C++ RAII)

♢A →□(A →♢B)→♢B

“One needs to know how to discard a computation in order to propagate an
exception”

Ownership Rational reconstructions Research questions Approach

Rational reconstructions
A resource modality for RAII

“Are types in Rust linear or affine?”
Our model is clear:

• Linear at the level of values
• Ordered at the level of types
• Affine at the level of provability

Ownership Rational reconstructions Research questions Approach

Rational reconstructions
A resource modality for RAII

List(A)=µX .(1⊕ (A⊗ X))

Tsil(A)=µX .(1⊕ (X ⊗ A))

• The stack overflow issue
• Open problem in C++, Rust, Swift...
• Typed pointer reversal (solution from functional programming)

Ownership Rational reconstructions Research questions Approach

Rational reconstructions
A resource modality for RAII

List(A)=µX .(1⊕ (A⊗ X))

Tsil(A)=µX .(1⊕ (X ⊗ A))

• The stack overflow issue
• Open problem in C++, Rust, Swift...
• Typed pointer reversal (solution from functional programming)

Ownership Rational reconstructions Research questions Approach

Research questions
MLwith resources?

How to add first-class resources to ML?
Mix several resources and effects in the same language

O
&

��⊥WW
V

%%
⊥dd C

M

--

⊥
mm

type t = Res u with destructor f
&t

e.g. Kind system inspired by polarities (Girard, 1991, 1993).
• Qualitative linearity (e.g. special traits in Rust), as opposed to

quantitative linearity (counting how many times variables are used)
• Nevertheless expected to be compatible with lessons from affine type

systems

Ownership Rational reconstructions Research questions Approach

Research questions
Types of closures

Reconstruct what we already know
Example: types of closures

A →p B def= □p(A _ B) (p ∈ {M,O})

• The kind of a function does not depend on inputs and outputs
• Distinction between functions and closures
• Different kinds of closures (depending on what is in the closure)
• In Rust: Fn, FnOnce, FnMut

Ownership Rational reconstructions Research questions Approach

Research questions
Types of closures II

Making predictions
Tov and Pucella (2011): practical affine types (kind system with principal
kinds)

t →〈α〉 u (〈α〉 ∈ {A,U})

• We do not reconstruct such a refined type system...
• ...but, they have noticed that currified functions tend to accumulate

annotations in a predictable manner

∀αβ(α→β→〈α〉 t →〈α〉+〈β〉 u)

The model predicts a way by which by introducing explicitly a primitive
(“call-by-push-value”) arrow, one can remove superfluous annotations

∀αβ(α_β_ t _ u)

(see also the treatment of currying in F#)

Ownership Rational reconstructions Research questions Approach

Research questions
Rational reconstruction of ownership

Challenges to test the model
In Rust/C++, linearity and ownership are emergent phenomena of types with
destructors (resource types/ownership types).
Other notions follow intuitively from them in Rust:
1. Region typing (“borrows”),
2. Uniqueness (“linear borrows”),
3. External uniqueness/linear abstract data types (“interior mutability”).

Can this intuitive hierarchy be explained in denotational semantics?

Ownership Rational reconstructions Research questions Approach

Research questions
Rational reconstruction of ownership

Challenges to test the model
What is borrowing? How does it appear?

• Hypothesis: “&” as forgetful functor from ownership types to the base
category (linear/copiable)

&(A⊗B)=&A⊗&B

How does it prevent use-after-free if the result of a borrow is a copiable type?
• Related to a programming problem: how can I define resources starting

from types all copiable?
• Hypothesis: mix of kind system + destructors + borrowing + linear

abstract data types
⇒ Methodological limits to the “toy system” approach

Ownership Rational reconstructions Research questions Approach

Research questions
Rational reconstruction of ownership

Other open problems interesting to look at from this angle
• Erlang/Rust panic model

• Ahman and Bauer (Ahman and Bauer)
• Limitations of Rust borrow checker

• Revisit type-and-effect systems for ownership

Ownership Rational reconstructions Research questions Approach

Challenges in language design

As you might have noticed
• Intertwined considerations from logic to computer architecture
• Requires lots of knowledge about the diverse problems faced by

programmers
• Diminishing returns of the experience of writing compilers
• Limitations of the “toy language” approach
• There is more to science than making a falsifiable claim (such as type

safety)
• Formal methods: how do you take into account emergent code and

reasoning patterns? (cf. resource-management example at the start)

Ownership Rational reconstructions Research questions Approach

Possible keys

This approach:
• A critical view of Curry-Howard

(see e.g. “the Romance of Mathematics” about monads in Petricek, 2018)
• Allows more distance between model/toy formalism and language

proposition, requiring a rational (not necessarily technical) discourse to
connect to programming languages

• Responsibility for the “owners” of the means of production of knowledge
(e.g. languages with critical mass to gather user feedback and experience)

• Go back at the roots of our belief in mathematical approaches
(e.g. Priestley, “The Algol Research Programme”, 2011.)

Ownership Rational reconstructions Research questions Approach

Possible keys
Structured programming

Structured programming (Dijkstra)
• Correctness should follow from the structure of the program
• The structures provided by the programming language should facilitate

reasoning about the program
(Priestley, 2011)

“[Destructors are] a systematic approach to resource management
with the important property that correct code is shorter and less
complex than faulty and primitive approaches. [. . .]

The introduction of exceptions [...] was delayed for about half a year
until I found “resource acquisition is initialization” as a systematic
and less error-prone alternative to the finally approach.”

(Stroustrup, 2007, emphasis mine)

Ownership Rational reconstructions Research questions Approach

Possible keys
Structured programming

Structured programming (Dijkstra)
• Correctness should follow from the structure of the program
• The structures provided by the programming language should facilitate

reasoning about the program
(Priestley, 2011)

“[Destructors are] a systematic approach to resource management
with the important property that correct code is shorter and less
complex than faulty and primitive approaches. [. . .]

The introduction of exceptions [...] was delayed for about half a year
until I found “resource acquisition is initialization” as a systematic
and less error-prone alternative to the finally approach.”

(Stroustrup, 2007, emphasis mine)

Ownership Rational reconstructions Research questions Approach

Possible keys
C++ as a 40-year-long experiment

“C++ is built on the idea of incremental growth and the gradual replacement of
older facilities with newer ones where appropriate.” (Stroustrup, 2020)
(Rust follows a similar approach.)

A theory of programming language design and evolution
• rooted in the socio-technological context of programming languages,
• rooted both in experience and (to my initial surprise) the overarching

research programme of our community,
• that seeks relative claims (within one language), where one cannot find

evidence for absolute ones (between all languages).

Ownership Rational reconstructions Research questions Approach

Possible keys
C++ as a 40-year-long experiment

“C++ is built on the idea of incremental growth and the gradual replacement of
older facilities with newer ones where appropriate.” (Stroustrup, 2020)
(Rust follows a similar approach.)

A theory of programming language design and evolution
• rooted in the socio-technological context of programming languages,
• rooted both in experience and (to my initial surprise) the overarching

research programme of our community,
• that seeks relative claims (within one language), where one cannot find

evidence for absolute ones (between all languages).

Conclusion

Thank you

References I
Danel Ahman and Andrej Bauer. Runners in Action. In Programming

Languages and Systems (2020), Peter Müller (Ed.). Springer International
Publishing, 29–55.

Brian Anderson, Lars Bergstrom, Manish Goregaokar, Josh Matthews, Keegan
McAllister, Jack Moffitt, and Simon Sapin. 2016. Engineering the servo web
browser engine using Rust. In ICSE ’16.
https://doi.org/10.1145/2889160.2889229

Henry G. Baker. 1994. Linear logic and permutation stacks - the Forth shall be
first. SIGARCH Computer Architecture News 22, 1 (1994), 34–43.
https://doi.org/10.1145/181993.181999

Dave Clarke and Tobias Wrigstad. 2003. External Uniqueness Is Unique
Enough. In ECOOP 2003 - Object-Oriented Programming, 17th European
Conference, Darmstadt, Germany, July 21-25, 2003, Proceedings (Lecture
Notes in Computer Science), Luca Cardelli (Ed.), Vol. 2743. Springer,
176–200. https://doi.org/10.1007/978-3-540-45070-2_9

https://doi.org/10.1145/2889160.2889229
https://doi.org/10.1145/181993.181999
https://doi.org/10.1007/978-3-540-45070-2_9

References II
Guillaume Combette and Guillaume Munch-Maccagnoni. 2018. A resource

modality for RAII (abstract). Technical Report. INRIA.
https://hal.inria.fr/hal-01806634

Pierre-Louis Curien, Marcelo Fiore, and Guillaume Munch-Maccagnoni. 2016.
A Theory of Effects and Resources: Adjunction Models and Polarised Calculi.
In Proc. POPL. https://doi.org/10.1145/2837614.2837652

Pierre-Louis Curien and Hugo Herbelin. 2000. The duality of computation.
ACM SIGPLAN Notices 35 (2000), 233–243.

Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. 1997. A New
Deconstructive Logic: Linear Logic. Journal of Symbolic Logic 62 (3) (1997),
755–807.

Jean-Yves Girard. 1991. A new constructive logic: Classical logic. Math.
Struct. Comp. Sci. 1, 3 (1991), 255–296.

Jean-Yves Girard. 1993. On the Unity of Logic. Ann. Pure Appl. Logic 59, 3
(1993), 201–217.

https://hal.inria.fr/hal-01806634
https://doi.org/10.1145/2837614.2837652

References III
Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James

Cheney, and Yanling Wang. 2002. Cyclone: A Safe Dialect of C. In
Proceedings of the General Track: 2002 USENIX Annual Technical
Conference, June 10-15, 2002, Monterey, California, USA, Carla Schlatter
Ellis (Ed.). USENIX, 275–288. http://www.usenix.org/publications/
library/proceedings/usenix02/jim.html

Paul Blain Levy. 1999. Call-by-Push-Value: A Subsuming Paradigm. In Proc.
TLCA ’99. 228–242.

Nicholas D. Matsakis and Felix S. Klock II. 2014. The rust language. In ACM
SIGAda Ada Letters, Vol. 34. ACM, 103–104.

Paul-André Melliès and Nicolas Tabareau. 2010. Resource modalities in tensor
logic. Ann. Pure Appl. Logic 161, 5 (2010), 632–653.

Peter W. O’Hearn, John Power, Makoto Takeyama, and Robert D. Tennent.
1999. Syntactic Control of Interference Revisited. Theor. Comput. Sci. 228,
1-2 (1999), 211–252.
https://doi.org/10.1016/S0304-3975(98)00359-4

http://www.usenix.org/publications/library/proceedings/usenix02/jim.html
http://www.usenix.org/publications/library/proceedings/usenix02/jim.html
https://doi.org/10.1016/S0304-3975(98)00359-4

References IV
Tomas Petricek. 2018. What we talk about when we talk about monads. The

Art, Science, and Engineering of Programming (2018).
Mark Priestley. 2011. The Algol Research Programme. Springer London,

225–252. https://doi.org/10.1007/978-1-84882-555-0_9
John C. Reynolds. 1978. Syntactic Control of Interference. In Conference

Record of the Fifth Annual ACM Symposium on Principles of Programming
Languages, Tucson, Arizona, USA, January 1978, Alfred V. Aho, Stephen N.
Zilles, and Thomas G. Szymanski (Eds.). ACM Press, 39–46.
https://doi.org/10.1145/512760.512766

Bjarne Stroustrup. 2007. Evolving a language in and for the real world: C++
1991-2006. In Proceedings of the Third ACM SIGPLAN History of
Programming Languages Conference (HOPL-III), San Diego, California,
USA, 9-10 June 2007. 1–59.
https://doi.org/10.1145/1238844.1238848

Bjarne Stroustrup. 2020. The Evil of Paradigms. (2020).

https://doi.org/10.1007/978-1-84882-555-0_9
https://doi.org/10.1145/512760.512766
https://doi.org/10.1145/1238844.1238848

References V

Hayo Thielecke. 1997. Categorical Structure of Continuation Passing Style.
Ph.D. Dissertation. University of Edinburgh.

Jesse A. Tov and Riccardo Pucella. 2011. Practical affine types. In Proceedings
of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2011, Austin, TX, USA, January 26-28,
2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 447–458.
https://doi.org/10.1145/1926385.1926436

Philip Wadler. 1991. Is there a use for linear logic? ACM SIGPLAN Notices 26,
9 (1991), 255–273.

https://doi.org/10.1145/1926385.1926436

	Ownership
	Introduction
	Ownership/Uniqueness

	Rational reconstructions
	Rational reconstructions

	Research questions
	Research questions

	Approach
	Challenges in language design
	Possible keys
	Conclusion

	Appendix
	References

