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Ownership Rational reconstructions Research questions Approach

Introduction

• About resources in programming languages (an abstraction to reason
about state)

• How to gain further understanding of it via models in denotational
semantics

• Challenges (technical, methodological)
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Introduction

Goals
• Present a set of research questions in denotational semantics motivated

by language design problems
• Locate this effort within an approach to PLs that mixes data-gathering

from the real world, and a critical view of the relationship between
semantics and programming
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Ownership/Uniqueness
Control of aliasing

# let m = Array.make 4 (Array.make 4 0);;
val m : int array array =
[|[|0; 0; 0; 0|];
[|0; 0; 0; 0|];
[|0; 0; 0; 0|];
[|0; 0; 0; 0|]|]

# m.(0).(0) <- 128;;
- : unit = ()
# m;;
- : int array array =
[|[|128; 0; 0; 0|];
[|128; 0; 0; 0|];
[|128; 0; 0; 0|];
[|128; 0; 0; 0|]|]
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Ownership/Uniqueness
Control of aliasing

Control of aliasing
• Reasoning about state (cf. iterator invalidation)
• Concurrent programming (ownership transfer & other patterns of

non-interference)
• Optimizations (C restrict; memory re-use)



Ownership Rational reconstructions Research questions Approach

Ownership/Uniqueness
Resource management (bytecomp/bytelink.ml@8f58956 (Nov. 1996))

Note: example found by systematic audit of patterns of resource-management
in the OCaml compiler implementation



Ownership/Uniqueness
Resource management (bytecomp/bytelink.ml@40bab2d (July 2018))
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Ownership/Uniqueness
Resource management

Resource management
• Memory management (malloc/free)
• Typestate/protocols
• Interoperability
• Fault tolerance (exception handling)
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Ownership/Uniqueness

The Rust programming language represents a breakthrough for all these
questions

• C++11 (RAII (destructors) + move semantics, among many other things):
above (at an industrial scale, + structure)

• Type system for ownership & borrowing (systems programming/OOP +
“linear borrows”)

(Matsakis and Klock II, 2014; Anderson et al., 2016)
Like C++, it arose outside of academia
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Ownership/Uniqueness
Approaches in this area

• Linear type systems: type systems that count how many times a variable
appears
(Wadler, 1991, and others)

• Program logics, e.g. separation logic: quite successful in verifying non-toy
systems including Rust
(Reynolds, 1978; O’Hearn et al., 1999, and others)

• Ownership type systems (OOP & systems communities): greater focus on
language design, more clearly a source of inspiration for Rust
(Clarke and Wrigstad, 2003; Jim et al., 2002, and others)
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Rational reconstructions

Rational reconstructions
• Build an understanding via a refined (=épuré) model where features

stand by themselves
• Connecting with existing bodies of knowledge (e.g. λ-calculus and its

semantics as a bridge between intuitionistic logic and functional
programming)

• Opinionated theories (not some program logics that you could apply to
any programming language good or bad)
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Rational reconstructions
Example: continuations

Continuations: Historically lots of different approaches
• Semantics: categorical (monad, comonad), translations (CPS,

Gödel-Gentzen, into linear logic)
• Many (!) different formalisms
• Many different questions: programming (control operators), logic

(classical translations)
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Rational reconstructions
Example: continuations

Rational reconstructions:
• Girard (1991), Danos et al. (1997): a logic that generalizes all (many)

approaches
• Thielecke (1997), Levy (1999) connecting with the study of effects
• Curien and Herbelin (2000): idem for syntaxes/calculi
• Melliès: building blocks that one composes

(Melliès and Tabareau, 2010)

C

L
%%

⊥dd
M

L

op
''

⊥ee
op

Lop

M
((

⊥ff
L

Cop



Ownership Rational reconstructions Research questions Approach

Rational reconstructions
Linear call-by-push-value
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• Linear call-by-push-value (2016): how to combine resource modalities and
effect modalities

• Girard: Logic of Unity (1993). Mix linear & non-linear continuations
(Discussed recently: how to add duplicable continuations to OCaml?)
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Rational reconstructions
A resource modality for RAII

• Linear Call-by-push-value (2016): combination of resource modalities and
effect modalities

• Combette & M. (2018). Connection between types with destructors and
ordered logic.
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Rational reconstructions
A resource modality for RAII

• A type-based abstraction. Attach a destructor to a type, to create a new
type.

• Ordered data types (rather than linear or affine)

A⊗B ≇B⊗ A

• Still affine at the level of provability!

A⊗B ↔ B⊗ A

• Solves open question of combining linearity and control effects (with lots
of thanks to C++ RAII)

♢A →□(A →♢B)→♢B

“One needs to know how to discard a computation in order to propagate an
exception”
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Rational reconstructions
A resource modality for RAII

“Are types in Rust linear or affine?”
Our model is clear:

• Linear at the level of values
• Ordered at the level of types
• Affine at the level of provability
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Rational reconstructions
A resource modality for RAII

List(A)=µX .(1⊕ (A⊗ X ))

Tsil(A)=µX .(1⊕ (X ⊗ A))

• The stack overflow issue
• Open problem in C++, Rust, Swift...
• Typed pointer reversal (solution from functional programming)
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Rational reconstructions
A resource modality for RAII
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Research questions
MLwith resources?

How to add first-class resources to ML?
Mix several resources and effects in the same language
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e.g. Kind system inspired by polarities (Girard, 1991, 1993).
• Qualitative linearity (e.g. special traits in Rust), as opposed to

quantitative linearity (counting how many times variables are used)
• Nevertheless expected to be compatible with lessons from affine type

systems
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Research questions
Types of closures

Reconstruct what we already know
Example: types of closures

A →p B def= □p(A _ B) (p ∈ {M,O})

• The kind of a function does not depend on inputs and outputs
• Distinction between functions and closures
• Different kinds of closures (depending on what is in the closure)
• In Rust: Fn, FnOnce, FnMut
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Research questions
Types of closures II

Making predictions
Tov and Pucella (2011): practical affine types (kind system with principal
kinds)

t →〈α〉 u (〈α〉 ∈ {A,U})

• We do not reconstruct such a refined type system...
• ...but, they have noticed that currified functions tend to accumulate

annotations in a predictable manner

∀αβ(α→β→〈α〉 t →〈α〉+〈β〉 u)

The model predicts a way by which by introducing explicitly a primitive
(“call-by-push-value”) arrow, one can remove superfluous annotations

∀αβ(α_β_ t _ u)

(see also the treatment of currying in F#)
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Research questions
Rational reconstruction of ownership

Challenges to test the model
In Rust/C++, linearity and ownership are emergent phenomena of types with
destructors (resource types/ownership types).
Other notions follow intuitively from them in Rust:
1. Region typing (“borrows”),
2. Uniqueness (“linear borrows”),
3. External uniqueness/linear abstract data types (“interior mutability”).

Can this intuitive hierarchy be explained in denotational semantics?
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Research questions
Rational reconstruction of ownership

Challenges to test the model
What is borrowing? How does it appear?

• Hypothesis: “&” as forgetful functor from ownership types to the base
category (linear/copiable)

&(A⊗B)=&A⊗&B

How does it prevent use-after-free if the result of a borrow is a copiable type?
• Related to a programming problem: how can I define resources starting

from types all copiable?
• Hypothesis: mix of kind system + destructors + borrowing + linear

abstract data types
⇒ Methodological limits to the “toy system” approach
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Research questions
Rational reconstruction of ownership

Other open problems interesting to look at from this angle
• Erlang/Rust panic model

• Ahman and Bauer (Ahman and Bauer)
• Limitations of Rust borrow checker

• Revisit type-and-effect systems for ownership
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Challenges in language design

As you might have noticed
• Intertwined considerations from logic to computer architecture
• Requires lots of knowledge about the diverse problems faced by

programmers
• Diminishing returns of the experience of writing compilers
• Limitations of the “toy language” approach
• There is more to science than making a falsifiable claim (such as type

safety)
• Formal methods: how do you take into account emergent code and

reasoning patterns? (cf. resource-management example at the start)
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Possible keys

This approach:
• A critical view of Curry-Howard

(see e.g. “the Romance of Mathematics” about monads in Petricek, 2018)
• Allows more distance between model/toy formalism and language

proposition, requiring a rational (not necessarily technical) discourse to
connect to programming languages

• Responsibility for the “owners” of the means of production of knowledge
(e.g. languages with critical mass to gather user feedback and experience)

• Go back at the roots of our belief in mathematical approaches
(e.g. Priestley, “The Algol Research Programme”, 2011.)
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Possible keys
Structured programming

Structured programming (Dijkstra)
• Correctness should follow from the structure of the program
• The structures provided by the programming language should facilitate

reasoning about the program
(Priestley, 2011)

“[Destructors are] a systematic approach to resource management
with the important property that correct code is shorter and less
complex than faulty and primitive approaches. [. . . ]

The introduction of exceptions [...] was delayed for about half a year
until I found “resource acquisition is initialization” as a systematic
and less error-prone alternative to the finally approach.”

(Stroustrup, 2007, emphasis mine)
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Possible keys
C++ as a 40-year-long experiment

“C++ is built on the idea of incremental growth and the gradual replacement of
older facilities with newer ones where appropriate.” (Stroustrup, 2020)
(Rust follows a similar approach.)

A theory of programming language design and evolution
• rooted in the socio-technological context of programming languages,
• rooted both in experience and (to my initial surprise) the overarching

research programme of our community,
• that seeks relative claims (within one language), where one cannot find

evidence for absolute ones (between all languages).
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Conclusion

Thank you
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